Td n° 3 d'Analyse fonctionnelle

Compacité

Séance du 27 février 2015

Exercice 1. Mesure de Haar sur les groupes compacts

Soit G un groupe muni d'une topologie \mathcal{T} . On dit que G est un groupe topologique si l'application $G \times G \to G$, $(x,y) \mapsto xy^{-1}$ est continue. Dans un groupe topologique, les applications $x \mapsto ax$ et $x \mapsto xa$, pour $a \in G$ sont donc des homéomorphismes, et la topologie de G est entièrement déterminée par une base de voisinage de l'élément identité e

Soit f une fonction sur G. On note $L_s f(x) = f(sx)$ la translatée à gauche de f et $R_s f(x) = f(xs)$ la translatée à droite.

Dans tout l'exercice, G est un groupe topologique compact séparé.

1. Soit $f \in C(G)$, une fonction continue sur G à valeurs complexes. Montrer que pour tout $\varepsilon > 0$, il existe un voisinage V de e tel que $|f(t) - f(s)| \le \varepsilon$ pour tous $s, t \in G$ tels que $st^{-1} \in V$.

On note $H_L(f)$ l'enveloppe convexe des $L_s f$.

- 2. En utilisant le théorème d'Arzela Ascoli, montrer que $\overline{H_L(f)}$ est compact.
- 3. En appliquant le théorème de Kakutani, montrer qu'il existe $\phi \in \overline{H_L(f)}$ constante.
- 4. On note $H_R(f)$ l'enveloppe convexe des $R_s f$. Montrer que si c, c' sont des fonctions constantes telles que $c \in \overline{H_L(f)}$ et $c' \in \overline{H_R(f)}$, alors c = c'.
- 5. En déduire que que pour tout $f \in C(G)$, il existe une unique fonction constante appartenant à $\overline{H_L(f)}$. On la notera Mf.
 - 6. Montrer que l'on a les propriétés suivantes
 - $-Mf \ge 0 \text{ si } f \ge 0,$
 - -M1=1,
 - $-M(\alpha f) = \alpha M f$
 - $M(L_s f) = M f = M(R_s f),$
 - -M(f+g) = Mf + Mg.
- 7. En déduire que M s'identifie à une mesure de probabilité régulière sur G, invariante par translations à gauche et à droite. On appelle cette mesure la mesure de Haar, et on la notera dm. Montrer que

$$\int_{G} f(x)dm(x) = \int_{G} f(x^{-1})dm(x).$$

*

Exercice 2. Opérateurs compacts

- 1. Soient E et F des Banach. Montrer qu'un opérateur $T \in \mathcal{L}(E, F)$ de rang fini est compact, et que la limite d'opérateurs de rang fini est compacte.
- 2. Soit E et F deux espaces de Banach et $T \in \mathcal{L}(E, F)$. On suppose que E est réfléxif séparable. Montrer que T est compact si et seulement si pour toute suite $(x_n)_n$ de E convergeant faiblement vers un certain x, la suite $(Tx_n)_n$ converge fortement vers Tx.

3. On considère la multiplication par $(a_n)_{n\in\mathbb{N}}$ $M_a:\ell^2\to\ell^2,\ (u_n)_{n\in\mathbb{N}}\mapsto(a_nu_n)_{n\in\mathbb{N}}$. Montrer que M_a est continue si et seulement si $(a_n)\in\ell^\infty$. Montrer que M_a est compacte si et seulement si $a_n\to 0$.

*

Exercice 3. S.e.v. de fonctions dérivables fermé dans les fonctions continues Soit F un s.e.v. fermé de $C([0,1],\mathbb{R})$, inclus dans $C^1([0,1],\mathbb{R})$.

1. Montrer que la dérivation $D: F \to \mathcal{C}([0,1],\mathbb{R}), f \mapsto f'$ est continue.

Indication : On pourra par exemple utiliser le théorème du graphe fermé.

2. En déduire que F est de dimension finie.

*

Exercice 4. Opérateurs à noyaux

Soit (X, μ) et (Y, η) deux espaces mesurés et $k \in L^2(X \times Y, \mu \times \eta)$. Pour tout $f \in L^2(Y, \eta)$, on définit

$$Tf(x) = \int_{Y} k(x, y) f(y) d\eta(y).$$

- 1. Montrer que $T: L^2(Y, \eta) \to L^2(X, \mu)$ est continu et compact.
- 2. On suppose que X=Y et que l'unique solution de l'équation

$$f(x) = \int_{Y} k(x, y) f(y) d\eta(y)$$

est la solution triviale, f=0. Montrer que pour tout $g\in L^2(X,\mu)$ il existe une unique solution $f\in L^2(X,\mu)$ de l'équation

$$f(x) = g(x) + \int_{Y} k(x, y) f(y) d\eta(y).$$

*