4 Martingales (CV \mathbb{L}^p et UI)

Exercice 4.1 (Série aléatoire). Soit $(X_i)_{i\geq 1}$ une suite de variables indépendantes de Bernoulli de paramètre 1/2, i.e. $\mathbb{P}(X_1=1)=\mathbb{P}(X_1=-1)=1/2$ et α_n une suite de réels positifs. On considère la série

$$S_n = \sum_{i=1}^n \alpha_i X_i.$$

- 1. Montrer que si $\sum \alpha_i^2 < \infty$ alors S_n converge presque sûrement.
- 2. (*) Montrer que si $\sum \alpha_i^2 = \infty$ alors S_n oscille indéfiniement presque sûrement. On pourra considérer la martingale

Correction : Il est aisé de voir que $\sum_{i=1}^{n} \frac{X_i}{i}$ est une martingale qui est bornée dans \mathbb{L}^2 et donc dans \mathbb{L}^1 et ainsi converge presque sûrement.

Exercice 4.2 (Concentration autour de 0 et de 1.). On considère sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ une suite de v.a. $(X_n, n \ge 0)$ à valeurs dans [0,1]. On pose pour tout $n \ge 0$, $\mathcal{F}_n = \sigma(X_0, \ldots, X_n)$. On suppose que $X_0 = a$ p.s. avec $a \in [0,1]$ et que

$$\mathbb{P}\left(X_{n+1} = \frac{X_n}{2} \mid \mathscr{F}_n\right) = 1 - X_n \qquad et \qquad \mathbb{P}\left(X_{n+1} = \frac{1 + X_n}{2} \mid \mathscr{F}_n\right) = X_n \,.$$

- 1. Montrer que pour tout n, $\mathbb{P}\left(X_{n+1} = \frac{X_n}{2} \text{ ou } X_{n+1} = \frac{1+X_n}{2}\right) = 1$.
- 2. Montrer que $(X_n, n \ge 0)$ est une \mathscr{F}_n -martingale qui converge p.s. et dans L^p pour tout $p \ge 1$ vers une v.a. Z.
- 3. Montrer que $\mathbb{E}((X_{n+1} X_n)^2) = \frac{1}{4}\mathbb{E}(X_n(1 X_n))$.
- 4. En déduire la valeur de $\mathbb{E}(Z(1-Z))$ puis la loi de Z.

Correction:

1. On a

$$\mathbb{P}\left(X_{n+1} = \frac{X_n}{2} \text{ ou } X_{n+1} = \frac{1+X_n}{2}\right) = \mathbb{E}\left(\mathbb{E}\left(\mathbb{1}_{X_{n+1} = \frac{X_n}{2}} | \mathscr{F}_n\right)\right) + \mathbb{E}\left(\mathbb{E}\left(\mathbb{1}_{X_{n+1} = \frac{1+X_n}{2}} | \mathscr{F}_n\right)\right) = 1.$$

2. Pour tout $n \ge 0, X_n$ est \mathcal{F}_n -mesurable et à valeurs dans [0,1] donc intégrable. De plus,

$$\begin{split} \mathbb{E}(X_{n+1} \mid \mathscr{F}_n) &= \mathbb{E}\left(\frac{X_n}{2} \mathbb{1}_{\{X_{n+1} = \frac{X_n}{2}\}} \mid \mathscr{F}_n\right) + \mathbb{E}\left(\frac{1 + X_n}{2} \mathbb{1}_{\{X_{n+1} = \frac{1 + X_n}{2}\}} \mid \mathscr{F}_n\right) \\ &= \frac{X_n}{2} \mathbb{P}\left(X_{n+1} = \frac{X_n}{2} \mid \mathscr{F}_n\right) + \frac{1 + X_n}{2} \mathbb{P}\left(X_{n+1} = \frac{1 + X_n}{2} \mid \mathscr{F}_n\right) \\ &= \frac{X_n}{2} (1 - X_n) + \frac{1 + X_n}{2} X_n = X_n. \end{split}$$

Donc $(X_n, n \ge 0)$ est une martingale.

Ici, trois arguments fonctionnent. Étant positive, la martingale (X_n) converge p.s. vers une v.a. Z (à valeurs dans [0,1]); de plus, $(X_n,n\geq 0)$ est à valeurs dans [0,1] donc d'après le théorème de convergence dominée, elle converge vers Z dans L^p pour tout $p\geq 1$. On peut remplacer "étant positive" par "étant bornée dans L^1 " pour obtenir la convergence p.s., puis utiliser de même le théorème de convergence dominée pour obtenir la convergence dans L^p . On peut également utiliser directement le théorème qui nous dit que (X_n) étant une martingale bornée (par 1 toujours) dans L^p pour tout p>1, on sait que X_n converge p.s. et dans L^p vers une variable aléatoire Z. Par une simple utilisation de l'inégalité de Cauchy-Schwarz, la convergence dans L^2 implique la convergence dans L^1 .

3. $(X_n, n \ge 0)$ étant une martingale, on a l'égalité suivante, très souvent utile (cf exercice 2 du TD4)

$$\mathbb{E}((X_{n+1} - X_n)^2 | \mathscr{F}_n) = \mathbb{E}\left(X_{n+1}^2 - X_n^2 | \mathscr{F}_n\right) - 2\mathbb{E}\left(X_{n+1} X_n | \mathscr{F}_n\right) + 2\mathbb{E}\left(X_n^2 | \mathscr{F}_n\right)$$

$$= \mathbb{E}\left(X_{n+1}^2 - X_n^2 | \mathscr{F}_n\right) - 2X_n \mathbb{E}\left(X_{n+1} | \mathscr{F}_n\right) + 2X_n^2$$

$$= \mathbb{E}\left(X_{n+1}^2 - X_n^2 | \mathscr{F}_n\right).$$

Puis on a, comme dans la question 2.,

$$\mathbb{E}(X_{n+1}^2 \mid \mathcal{F}_n) = \left(\frac{X_n}{2}\right)^2 (1 - X_n) + \left(\frac{1 + X_n}{2}\right)^2 X_n = \frac{X_n}{4} + \frac{3X_n^2}{4}.$$

Ainsi, on obtient

$$\begin{split} \mathbb{E}\left((X_{n+1}-X_n)^2\right) &= \mathbb{E}\left(\mathbb{E}\left[(X_{n+1}-X_n)^2|\mathscr{F}_n\right]\right) \\ &= \mathbb{E}\left(\mathbb{E}\left[X_{n+1}^2-X_n^2|\mathscr{F}_n\right]\right) \\ &= \mathbb{E}\left(\frac{X_n}{4}+\frac{3X_n^2}{4}-X_n^2\right) \\ &= \frac{1}{4}\mathbb{E}\left(X_n(1-X_n)\right). \end{split}$$

4. D'après la question 1., (X_n) converge dans L^2 et L^1 donc

$$\mathbb{E}((X_{n+1}-X_n)^2) \underset{n\to\infty}{\longrightarrow} 0 \quad et \quad \mathbb{E}(X_n(1-X_n)) \underset{n\to\infty}{\longrightarrow} \mathbb{E}(Z(1-Z)).$$

La question 3. implique donc l'égalité $\mathbb{E}(Z(1-Z))=0$. Or la v.a. Z(1-Z) est positive p.s. donc elle est nulle ce qui signifie que la v.a. Z suit une loi de Bernoulli $p\delta_1+(1-p)\delta_0$ avec $p\in[0,1]$. On sait que $\mathbb{E}(Z)=p$. De plus, d'après la question 2.,

$$\mathbb{E}(Z) = \lim_{n \to 0} \mathbb{E}(X_n).$$

Or, pour tout $n \ge 0$, $\mathbb{E}(X_n) = \mathbb{E}(X_0) = a$ ce qui entraîne que p = a c'est à dire que Z suit une loi de Bernoulli de paramètre a.

Exercice 4.3 (Théorème de Kakutani). Soit X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires indépendent X_1, \ldots, X_n une suite de variables aléatoires aleatoires aléatoires aléatoi dantes positives de moyenne 1. Pour $n \ge 0$ on pose

$$M_n = \prod_{k=1}^n X_k$$
 $(M_0 = 1).$

1. Montrer que (M_n) est une martingale qui converge p.s. vers M_{∞} .

On pose pour $n \ge 1$, $0 < a_n = \mathbb{E}[X_n^{1/2}] \le 1$ et

$$N_n = \prod_{k=1}^n \frac{X_k^{1/2}}{a_k}$$
 $(N_0 = 1).$

- 2. En utilisant le processus (N_n) montrer que les cinq conditions suivantes sont équivalentes
 - (a) $\mathbb{E}[M_{\infty}] = 1$,
 - (b) $M_n \to M_\infty$ dans \mathbb{L}_1 quand $n \to \infty$,
 - (c) la martingale (M_n) est uniformément intégrale,

 - (d) $\prod_{k=1}^{\infty} a_k > 0$, (e) $\sum_{k=1}^{\infty} (1 a_k) < \infty$.

Montrer que si l'une des conditions précédentes n'est pas remplie alors $M_{\infty}=0$ presque sûrement.

Correction:

- 1. Facile.
- 2. Le cours donne $(b) \iff (c)$. C'est classique (prépa) que $(d) \iff (e)$ (passer au log et faire un équivalent). De plus $(b) \Rightarrow (a)$, la réciproque est donnée par le lemme de Scheffé. D'un autre côté (N_n) est une martingale positive donc converge p.s. vers N_∞ . Si $\prod a_k > 0$ alors $N_n = \sqrt{M_n} / \prod^n a_k$ est bornée dans \mathbb{L}^2 et converge dans \mathbb{L}^2 vers $\sqrt{M_\infty} / \prod a_k$. On en déduit que $M_n \to M_\infty$ dans \mathbb{L}_1 , ceci prouve $(d) \Rightarrow (b)$. Si $\prod a_k = 0$ alors puisque $\sqrt{M_n} / \prod^n a_k$ converge p.s. vers une valeur finie N_{∞} , on a $M_n \to 0$ p.s et $M_{\infty} = 0$ p.s.. D'où non (d) implique non (a). La boucle est bouclée.

Exercice 4.4 (Loi du logarithme itéré.). Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires i.i.d. de loi normale $\mathcal{N}(0,1)$ sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$. On définit $S_n = X_1 + \ldots + X_n$. Le but de l'exercice est de montrer que p.s. on a

$$\limsup_{n\to\infty} \frac{S_n}{(2n\log\log n)^{\frac{1}{2}}} \le 1.$$

On pose $h(x) = (2x \log \log x)^{\frac{1}{2}}$ pour $x \ge e$.

1. Montrer que pour tous $\theta > 0$ et c > 0, on a :

$$\mathbb{P}\left(\max_{1\leq k\leq n}S_k\geq c\right)\leq e^{-\theta c}\mathbb{E}\left(e^{\theta S_n}\right).$$

En déduire que :

$$\mathbb{P}\left(\max_{1\leq k\leq n}S_k\geq c\right)\leq e^{-\frac{c^2}{2n}}.$$

2. Soit K > 1. Majorer la quantité

$$\mathbb{P}\left(\max_{1\leq k\leq K^n} S_k \geq Kh(K^{n-1})\right)$$

et montrer que $\limsup_{n\to\infty} h(n)^{-1}S_n \le K$, p.s.. Conclure.

Exercice 4.5 (La loi du tout ou rien de Hewitt-Savage.). Tiré du poly de J.-F. Le Gall.

Soit $(\xi_n)_{n\in\mathbb{N}^*}$ une suite de v.a. i.i.d. à valeurs dans un espace mesurable (E,\mathscr{E}) . L'application $\omega \to (\xi_1(\omega), \xi_2(\omega), ...)$ définit une v.a. à valeurs dans l'espace produit $E^{\mathbb{N}^*}$, qui est muni de la tribu produit, la plus petite tribu rendant mesurable les applications coordonnées $(x_1, x_2, ...) \to x_i$ pour tout $i \in \mathbb{N}^*$. Une fonction mesurable F définie sur $E^{\mathbb{N}^*}$ est dite symétrique si

$$F(x_1, x_2, ...) = F(x_{\pi(1)}, x_{\pi(2)}, ...)$$

pour toute permutation π de \mathbb{N}^* à support fini. On veut montrer que si F est une fonction symétrique sur $E^{\mathbb{N}^*}$, la variable aléatoire $Y := F(\xi_1, \xi_2, ...)$ est constante p.s. Supposons, sans perte de généralité, que F est bornée, donc Y dans \mathbb{L}^1 .

1. On pose $\mathscr{F}_n = \sigma(\xi_1,...,\xi_n)$, $\mathscr{G}_n = \sigma(\xi_{n+1},\xi_{n+2},...)$, $X_n = \mathbb{E}[Y|\mathscr{F}_n]$ et $Z_n = \mathbb{E}[Y|\mathscr{G}_n]$. Que peut-on dire de $(X_n)_{n\in\mathbb{N}^*}$ et de $(Z_n)_{n\in\mathbb{N}^*}$? En déduire que pour tout $\varepsilon > 0$, il existe n assez grand tel que

$$\mathbb{E}[|X_n - Y|] \le \varepsilon$$
 et $\mathbb{E}[|Z_n - \mathbb{E}(Y)|] \le \varepsilon$.

2. Montrer qu'il existe une fonction mesurable $g: E^n \to \mathbb{R}$ telle que

$$\mathbb{E}[|F(\xi_1, \xi_2, ...) - g(\xi_1, ..., \xi_n)|] \leq \varepsilon.$$

En déduire que

$$\mathbb{E}[|Z_n - g(\xi_{n+1}, ..., \xi_{2n})|] \le \varepsilon.$$

- 3. Conclure.
- 4. Donner un exemple d'application qui ne peut pas être déduit de la loi du 0 1 de Kolmogorov.

Correction:

1. $(\mathscr{F}_n)_{n\in\mathbb{N}^*}$ est une filtration, Y est dans \mathbb{L}^1 et pour tout $n, X_n = \mathbb{E}[Y|\mathscr{F}_n]$, donc $(X_n)_{n\in\mathbb{N}^*}$ est une martingale fermée (c'est sa définition !) donc uniformément intégrable. Elle converge

donc p.s. et dans \mathbb{L}^1 vers $X_\infty = \mathbb{E}[Y|\mathscr{F}_\infty]$ où $\mathscr{F}_\infty = \sigma(\xi_1, \xi_2, ...)$. Y étant \mathscr{F}_∞ -mesurable, (X_n) converge donc p.s. et dans \mathbb{L}^1 vers Y.

D'autre part $(\mathcal{G}_n)_{n\in\mathbb{N}^*}$ est une suite décroissante de tribus, Y est (toujours) dans \mathbb{L}^1 et pour tout $n, Z_n = \mathbb{E}[Y|\mathcal{G}_n]$, donc par le théorème de convergence des martingales rétrogrades on sait que (Z_n) converg p.s. et dans \mathbb{L}^1 vers $Z_\infty = \mathbb{E}[Y|\mathcal{G}_\infty]$, où $\mathcal{G}_\infty = \bigcap_{n\in\mathbb{N}^*} \mathcal{G}_n$. Or on sait par la loi du tout ou rien que \mathcal{G}_∞ est grossière (i.e., ne contient que l'ensemble vide et l'espace tout entier, cf exercice 3 du TD2), donc $Z_\infty = \mathbb{E}(Y)$.

On en déduit immédiatement que pour tout $\varepsilon > 0$, il existe n assez grand tel que

$$\mathbb{E}[|X_n - Y|] \le \varepsilon \qquad et \qquad \mathbb{E}[|Z_n - \mathbb{E}(Y)|] \le \varepsilon. \tag{1}$$

2. X_n est \mathscr{F}_n -mesurable, donc il existe une fonction mesurable $g: E^n \to \mathbb{R}$ telle que $X_n = g(\xi_1,...,\xi_n)$. La première inégalité de (??) s'écrit donc

$$\mathbb{E}[|F(\xi_1, \xi_2, ...) - g(\xi_1, ..., \xi_n)|] \le \varepsilon.$$

La suite $(\xi_{n+1},...,\xi_{2n},\xi_1,...,\xi_n,\xi_{2n+1},...)$ a même loi que la suite $(\xi_1,\xi_2,...)$, donc cette majoration donne aussi

$$\mathbb{E}[|F(\xi_{n+1},...,\xi_{2n},\xi_1,...,\xi_n,\xi_{2n+1},...)-g(\xi_{n+1},...,\xi_{2n})|] \leq \varepsilon.$$

Or *F* est symétrique, donc $F(\xi_{n+1},...,\xi_{2n},\xi_1,...,\xi_n,\xi_{2n+1},...) = Y$ et on obtient

$$\mathbb{E}[|Y - g(\xi_{n+1}, ..., \xi_{2n})|] \le \varepsilon. \tag{2}$$

Par l'inégalité de Jensen, on remarque que pour toute variable aléatoire U intégrable et toute sous-tribu \mathcal{A} , on a $\mathbb{E}[|U|] = \mathbb{E}[\mathbb{E}[|U||\mathcal{A}]] \ge \mathbb{E}[|\mathbb{E}[U|\mathcal{A}]|]$, donc en appliquant ceci à $U = Y - g(\xi_{n+1},...,\xi_{2n})$ et $\mathcal{A} = \mathcal{G}_n$, par (??) on obtient

$$\mathbb{E}[|\mathbb{E}[Y|\mathcal{G}_n] - \mathbb{E}[g(\xi_{n+1}, ..., \xi_{2n})|\mathcal{G}_n]|] \le \varepsilon$$

soit

$$\mathbb{E}[|Z_n - g(\xi_{n+1}, ..., \xi_{2n})|] \le \varepsilon. \tag{3}$$

3. En combinant la deuxième inégalité de (??) avec (??) et (??) on obtient

$$\mathbb{E}[|Y - \mathbb{E}(Y)|] \leq 3\varepsilon,$$

et ε étant arbitraire on en déduit que $Y = \mathbb{E}(Y)$ p.s.

4. Si (X_n) est une suite i.i.d. alors l'événement

$$\left\{\sum_{i=1}^{n} X_i = 0, \text{ pour une infinité de } n\right\},\,$$

est symétrique (sa fonction indicatrice est symétrique) mais n'est pas dans la tribu asymptotique.

Exercice 4.6 (Tiré du partiel 2007 de J.-F. Le Gall). Sur un espace de probabilité filtré $(\Omega, \mathscr{F}, (\mathscr{F}_n)_{n \in \mathbb{N}}, \mathbb{P})$ on considère une sous-martingale $(X_n)_{n \in \mathbb{N}}$ telle que $X_0 = 0$ et $X_n \ge 0$ pour tout $n \in \mathbb{N}$. On définit par récurrence un processus $(A_n)_{n \in \mathbb{N}}$ en posant $A_0 = 0$ et pour tout entier $n \ge 0$,

$$A_{n+1} = A_n + \mathbb{E}[X_{n+1} - X_n | \mathscr{F}_n].$$

- 1. Montrer que le processus $(A_n)_{n\in\mathbb{N}}$ est croissant $(A_{n+1}\geq A_n \text{ p.s.}, \text{ pour tout } n\geq 0)$ et vérifie les deux propriétés:
 - (i) pour tout $n \ge 1$, A_n est \mathscr{F}_{n-1} -mesurable;
 - (ii) le processus $(X_n A_n)_{n \in \mathbb{N}}$ est une martingale.
- 2. Montrer qu'inversement les propriétés (i) et (ii), et la condition initiale $A_0 = 0$, caractérisent la suite $(A_n)_{n \in \mathbb{N}}$ (à un ensemble de probabilité nulle près).
- 3. On fixe a > 0 et on pose $T_a = \inf\{n \ge 0 \mid A_{n+1} > a\}$. Montrer que T_a est un temps d'arrêt, puis que $\mathbb{E}[X_{n \land T_a}] \le a$.
- 4. On admettra ici qu'une sous-martingale arrêtée est encore une sous-martingale, cf TD4, exercice 5, question 1.

En déduire que (X_n) converge vers une limite finie, p.s. sur l'ensemble $\{T_a = +\infty\}$. Conclure que si $A_\infty = \lim_{n \to \infty} A_n$ (limite croissante), X_n converge vers une limite finie, p.s. sur l'ensemble $\{A_\infty < \infty\}$.

5. On suppose que

$$\mathbb{E}\left[\sup_{n\geq 0}|X_{n+1}-X_n|\right]<\infty.$$

Montrer que sauf sur un ensemble de probabilité nulle, les trois propriétés suivantes sont équivalentes:

- (i) $(X_n(\omega))$ converge vers une limite finie;
- (ii) la suite $(X_n(\omega))_{n\in\mathbb{N}}$ est bornée;
- (iii) $A_{\infty} < \infty$.

(On pourra introduire le temps d'arrêt $S_a = \inf\{n \ge 0 \mid X_n > a\}$ et majorer d'abord $\mathbb{E}[A_{n \land S_a}]$.)