9 Mouvement Brownien I

Exercice 9.1. Soit $(B_t)_{t\geq 0}$ un mouvement brownien unidimensionnel, $(\mathcal{F}_t)_{t\geq 0}$ la filtration qu'il engendre, T un temps d'arrêt presque sûrement fini et \mathcal{F}_T la tribu associée. Montrer que $(B_{t\wedge T})_{t\geq 0}$ est mesurable par rapport à \mathcal{F}_T .

Correction: Il s'agit de voir que pour tout $t_0 \geq 0$ on a $B_{t_0 \wedge T}$ mesurable par rapport à \mathcal{F}_T . Remarquons tout d'abord un fait général (facile à démontrer): si S et T sont deux temps d'arrêt tels que $S \leq T$ alors $\mathcal{F}_S \subset \mathcal{F}_T$. On va démontrer que si on pose le temps d'arrêt $S = t_0 \wedge T$, alors S0 est S1 mesurable et donc S2 mesurable par la remarque ci-dessus.

Pour cela on se rend compte que pour les ω pour lesquels $t \mapsto B_t(\omega)$ est continu et $S(\omega) < \infty$ on a

$$B_{S(\omega)}(\omega) = \lim_{n \to \infty} \sum_{i=0}^{\infty} B_{i2^{-n}} \mathbf{1}_{i2^{-n} \le S < (i+1)2^{-n}}.$$

La convergence ci-dessus a donc lieu pour presque tout ω . Il suffit donc de voir que pour tout $i, n \geq 0, B_{i2^{-n}} \mathbf{1}_{i2^{-n} \leq S \leq (i+1)2^{-n}}$ est \mathcal{F}_S mesurable. C'est facile mais assez fastidieux.

Exercice 9.2 (Fonctions harmoniques). Soit Ω un ouvert de \mathbb{R}^2 et $u:\Omega\to\mathbb{R}$ une fonction localement bornée. Montrer que les propositions suivantes sont équivalentes (la fonction f est alors harmonique).

1. (Propriété de la moyenne) Pour tout $x \in \Omega$ et tout $r < \operatorname{dist}(x, \Omega^c)$ on a

$$u(x) = \frac{1}{2\pi r} \int_{C(x,r)} u,$$

autrement dit, la moyenne de u sur tout cercle dont le disque est inclus dans Ω est égale à la valeur de u au centre de ce cercle.

- 2. La fonction u est de classe $\mathcal{C}^{\infty}(\Omega)$ et satisfait $\Delta u = 0$ où Δ est l'opérateur $\partial_{xx} + \partial_{yy}$.
- 3. La fonction u est de classe $C^2(\Omega)$ et satisfait $\Delta u = 0$.

Correction : L'équivalence entre ces propriétés est démontrée dans le poly de Jean-François Le Gall : Proposition 14.6.4 et Proposition 14.6.8.

Exercice 9.3 (Temps d'atteinte). Soit $(B_t)_{t\geq 0}$ un mouvement brownien unidimensionnel. Pour $a\geq 0$, on pose $T_a=\inf\{s\geq 0: B_t=a\}$.

- 1. Montrer que pour tout $a \ge 0$, $T_a = a^2 T_1$ en loi.
- 2. Soit $0 \le a \le b < \infty$, montrer que $T_b T_a$ a la même loi que T_{b-a} et est indépendant de T_a .

Correction:

1. Soit $(B_t)_{t\geq}$ un mouvement brownien. D'après les propriétés d'invariance d'échelle du MB le processus $\tilde{B}_t = aB_{t/a^2}$ a la loi d'un mouvement brownien. Ainsi si (la princesse) $\tilde{T}_a = \inf\{t \geq 0 : \tilde{B}_t = a\}$ on a l'égalité en distribution $T_a = \tilde{T}_a$. Or par définition on a $\tilde{T}_1 = a^2T_1$.

2. On a déjà vérifié que T_a est un temps d'arrêt (exercice précédent). On peut donc appliquer la propriété de Markov fort à T_a pour obtenir que B^{T_a} est un mouvement brownien indépendant de \mathcal{F}_{T_a} . Or si l'on pose $T_{b-a}^{T_a} = \inf\{t \geq 0 : B_t^{T_a} = b-a\}$ on a l'égalité

$$T_b = T_a + T_{b-a}^{T_a}.$$

En particulier $T_{b-a}^{T_a}$ a la même loi que T_{b-a} et est indépendant de T_a .

Exercice 9.4 (Convergence en loi). On pose $S_1 = \sup_{t \in [0,1]} B_t$. Montrer que la convergence suivante a lieu en loi :

$$\left(\int_0^t e^{B_s} ds\right)^{1/\sqrt{t}} \xrightarrow[t\to\infty]{} e^{S_1}.$$

Indication: on pourra penser à un changement d'échelle.

Correction: On remarque tout d'abord que, d'après la propriété de changement d'échelle du mouvement brownien,

$$\int_0^t e^{B_s} ds \stackrel{\text{loi}}{=} \int_0^t e^{\sqrt{t}B_{s/t}} ds.$$

$$\stackrel{\text{loi}}{=} t \int_0^1 e^{\sqrt{t}B_s} ds.$$

Or $t^{1/\sqrt{t}} \to 1$ quand $t \to \infty$. Il suffit donc de montrer la convergence en loi suivante:

$$\left(\int_0^1 e^{\sqrt{t}B_s} ds\right)^{1/\sqrt{t}} \underset{t \to \infty}{\longrightarrow} e^{S_1}.$$

On va en fait montrer une convergence p.s. On remarque que

$$\left(\int_{0}^{1} e^{\sqrt{t}B_{s}} ds\right)^{1/\sqrt{t}} \le \left(\int_{0}^{1} e^{\sqrt{t}S_{1}} ds\right)^{1/\sqrt{t}} = e^{S_{1}}.$$

Il existe A un ensemble mesurable de probabilité 1 tel que pour tout $\omega \in A$, $t \mapsto B_t(\omega)$ est continu. Soit $\omega \in A$. On note $T(\omega) \in [0,1]$ tel que $B_{T(\omega)}(\omega) = S_1(\omega)$ (existe car $B(\omega)$ continu et [0,1] compact). Soit $\varepsilon > 0$. Il existe $\delta(\omega) > 0$ tel que $|B_t(\omega) - B_{T(\omega)}(\omega)| \le \varepsilon$ pour $|t - T(\omega)| \le \delta(\omega)$ (uniforme continuité sur les compacts). Ainsi,

$$\left(\int_0^1 e^{\sqrt{t}B_s(\omega)} ds\right)^{1/\sqrt{t}} \ge (\delta(\omega))^{1/\sqrt{t}} e^{S_1(\omega) - \varepsilon}.$$

Donc,

$$\liminf_{t \to \infty} \left(\int_0^1 e^{\sqrt{t} B_s(\omega)} ds \right)^{1/\sqrt{t}} \ge e^{S_1(\omega) - \varepsilon}.$$

On a montré que, pour tout $\varepsilon > 0$, p.s.,

$$\liminf_{t\to\infty} \left(\int_0^1 e^{\sqrt{t}B_s} ds \right)^{1/\sqrt{t}} \ge e^{S_1 - \varepsilon}.$$

En considérant une suite $(\varepsilon_k)_{k>0}$ (pour inverser le p.s. et le $\forall \varepsilon_k$), on en déduit que p.s.,

$$\liminf_{t \to \infty} \left(\int_0^1 e^{\sqrt{t}B_s} ds \right)^{1/\sqrt{t}} \ge e^{S_1}$$

ce qui implique la limite p.s. désirée.

Exercice 9.5 (Invariance par isométrie). Démontrer la propriété d'invariance du mouvement brownien par isométrie vectorielle (vue en cours).

Correction: Soit $(B_t)_{t\geq 0}$ un mouvement brownien en dimension d. Soit ψ une isométrie vectorielle de \mathbb{R}^d (vectorielle signifie que $\psi(0) = 0$). On a donc, pour tout couple de vecteurs x, y, les égalités suivantes (dont nous nous servirons par la suite):

$$\|\psi(x) - \psi(y)\| = \|x - y\|, \quad \|\psi(x)\| = \|x\|, \quad \psi(x) \cdot \psi(y) = x \cdot y.$$

Soit $B'_t = \psi(B_t)$ pour tout $t \geq 0$. Il existe un ensemble A mesurable de probabilité 1 tel que pour tout $\omega \in A$, $t \mapsto B_t(\omega)$ est continu. Alors pour tout $\omega \in A$, $t \mapsto B'_t(\omega)$ est continu aussi car ψ est continue. Pour tout $p \in \mathbb{N}$, pour tous $0 = t_0 < t_1 < ... < t_p$, l'indépendance des variables aléatoires $B'_{t_1}, B'_{t_2} - B'_{t_1}, ..., B'_{t_p} - B'_{t_{p-1}}$ vient du fait que pour tout $i, B_{t_{i+1}} - B_{t_i}$ est indépendant de \mathcal{F}_{t_i} (propriété de Markov faible), donc il en est de même pour $\psi(B_{t_{i+1}} - B_{t_i})$, or $\psi(B_{t_{i+1}} - B_{t_i}) = \psi(B_{t_{i+1}}) - \psi(B_{t_i})$ (se vérifie facilement à l'aide des propriétés données ci-dessus). Il reste à montrer que pour tout $i, \psi(B_{t_{i+1}} - B_{t_i})$ suit une loi $\mathcal{N}(0, (t_{i+1} - t_i)Id)$. Considérons la fonction caractéristique de cette variable aléatoire:

$$\phi_{\psi(B_{t_{i+1}} - B_{t_i})}(u) = \mathbb{E}\left(e^{i\psi(v) \cdot \psi(B_{t_{i+1}} - B_{t_i})}\right)$$

$$= \mathbb{E}\left(e^{iv \cdot (B_{t_{i+1}} - B_{t_i})}\right)$$

$$= e^{-\frac{(t_{i+1} - t_i)\|v\|^2}{2}}$$

$$= e^{-\frac{(t_{i+1} - t_i)\|u\|^2}{2}}$$

ce qui montre la propriété cherchée. On a utilisé ici successivement le fait que ψ est bijective donc on peut trouver v tel que $u=\psi(v)$, ainsi que les propriétés énoncées au début de la correction de l'exercice.

Exercice 9.6 (Le mouvement brownien n'est à variation finie sur aucun intervalle). Soient a et b tels que $0 \le a < b$. On pose, pour $n \ge 0$,

$$X_n = \sum_{k=1}^{2^n} \left(B_{a+k(b-a)2^{-n}} - B_{a+(k-1)(b-a)2^{-n}} \right)^2.$$

Calculer la moyenne et la variance de X_n puis trouver la limite p.s. de la suite $(X_n)_{n\geq 0}$. En déduire que p.s., la fonction $t \longmapsto B_t$ n'est à variation finie sur aucun intervalle non trivial. On dit qu'une fonction $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ est à variation finie sur l'intervalle [a, b] si les sommes

$$\sum_{i=1}^{p} |f(t_i) - f(t_{i-1})|$$

sont bornées indépendamment de p et de la subdivision $a = t_0 < t_1 < \ldots < t_p = b$.

Correction : On sait que les que les variables $B_{a+k(b-a)2^{-n}} - B_{a+(k-1)(b-a)2^{-n}}$, pour $k = 1, ..., 2^n$, sont des gaussiennes centrées indépendantes, de variance $(b-a)2^{-n}$. On en déduit que

$$\mathbb{E}(X_n) = \mathbb{E}\left(\sum_{k=1}^{2^n} (B_{a+k(b-a)2^{-n}} - B_{a+(k-1)(b-a)2^{-n}})^2\right) = \sum_{k=1}^{2^n} (b-a)2^{-n} = (b-a)$$

et

$$\mathbb{E}(X_n^2) = \mathbb{E}\left(\left(\sum_{k=1}^{2^n} (B_{a+k(b-a)2^{-n}} - B_{a+(k-1)(b-a)2^{-n}})^2\right)^2\right)$$

$$= \sum_{k=1}^{2^n} \mathbb{E}((B_{a+k(b-a)2^{-n}} - B_{a+(k-1)(b-a)2^{-n}})^4)$$

$$+2\sum_{1\leq k< l\leq 2^n} \mathbb{E}((B_{a+k(b-a)2^{-n}} - B_{a+(k-1)(b-a)2^{-n}})^2)\mathbb{E}((B_{a+l(b-a)2^{-n}} - B_{a+(l-1)(b-a)2^{-n}})^2)$$

$$= 3(b-a)^2 2^{-n} + 2\frac{2^n(2^n-1)}{2}(b-a)^2 2^{-2n} = (b-a)^2 (1+2^{1-n}),$$

où on a utilisé dans la troisième égalité que $\mathbb{E}(Y^4) = 3\sigma^4$ si Y est une $\mathcal{N}(0, \sigma^2)$ (cela se recalcule facilement par intégration par partie). On obtient donc que

$$Var(X_n) = (b-a)^2 2^{1-n}$$

Soit $\varepsilon > 0$. On a, d'après l'inégalité de Markov,

$$\mathbb{P}(|X_n - (b-a)| > \varepsilon) \le \frac{\mathbb{E}(|X_n - (b-a)|^2)}{\varepsilon^2} = \frac{(b-a)^2}{2^{n-1}\varepsilon^2}.$$

D'après le lemme de Borel-Cantelli, p.s., il existe n_0 tel que $|X_n - (b-a)| \le \varepsilon$ pour tout $n \ge n_0$. En considérant une suite $(\varepsilon_k)_{k\ge 0}$, on obtient que p.s., pour tout ε_k , il existe n_0 tel que $|X_n - (b-a)| \le \varepsilon_k$ pour tout $n \ge n_0$, soit la convergence suivante:

$$X_n \xrightarrow[n\to\infty]{p.s.} b-a$$
.

Soient a et b tels que $0 \le a < b$. On a

$$X_n \le \sup_{1 \le k \le 2^n} \left| B_{a+(b-a)k2^{-n}} - B_{a+(b-a)(k-1)2^{-n}} \right| \times \sum_{k=1}^{2^n} \left| B_{a+k(b-a)2^{-n}} - B_{a+(k-1)(b-a)2^{-n}} \right|$$

et par continuité p.s. du mouvement brownien,

$$\sup_{1 \le k \le 2^n} |B_{a+(b-a)k2^{-n}} - B_{a+(b-a)(k-1)2^{-n}}| \xrightarrow[n \to \infty]{\text{p.s.}} 0$$

ce qui implique

$$\sum_{k=1}^{2^n} |B_{a+k(b-a)2^{-n}} - B_{a+(k-1)(b-a)2^{-n}}| \xrightarrow[n \to \infty]{\text{p.s.}} + \infty.$$

Ainsi, pour tout intervalle non trivial [a,b], p.s., la fonction $t \mapsto B_t$ n'est pas à variation finie sur [a,b]. On a donc p.s., pour tout intervalle [a,b] non trivial dont les extrémités sont rationnelles, $t \mapsto B_t$ n'est pas à variation finie sur [a,b]. Enfin, on obtient que p.s., $t \mapsto B_t$ n'est à variation finie sur aucun intervalle non trivial [a,b], en choisissant pour chaque tel [a,b] un intervalle non trivial [a',b'] dont les extrémités sont rationnelles et tel que $[a',b'] \subset [a,b]$, et en remarquant que la variation totale de B sur [a,b] (i.e. le supremum de l'expression proposée dans l'énoncé sur toutes les subdivisions finies de [a,b] possibles) est supérieure ou égale à la variation totale de B sur [a',b'].