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Abstract

The aim of this paper is to give a short introdution to the work of Peter

Scholze on Perfectoid Spaces [Sch12], including almost purity theorem and some

natural applications in number theory related Langlands Program. We study

a beautiful object diamond who lives on pro-étale site.Finally we introduce

Fontaine-Fargues curve and geometric view of untilts.
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1 Introduction

In commutative algebra, algebraic geometry and number theory we study the mixed
character case from character p case by Faltings almost purity method. The basic
result , due to Fontaine and Wintenberger ,states that the absolute galois group of
Qp(p

1
p∞ ) is isomorphic to the absolute galois group of Fp((t)).Scholze generalizes this

result,he proves a tilting equivalence for perfectoid field and perfectoid affinoid K-
algebra. Globally there is an tilting equivalence for perfectoid spaces in both analytic
topology and étale site. The inverse is also quite interesting, it can be interpreted by
Fargues-Fontaine Curve, and nowadays development on diamond in pro-étale site.
By analogy with complex analytic geometry,we develop the theory of rigid analytic
geometry by using Grothendieck topology. There are many surprised treasures, such
as: the rigid GAGA theorem, comparison theorem as well as some shortcomings.
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One is from topology,in rigid analytic geometry an open mapping with bijection on
points level may not be an isomorphism. This suggests some points are missing. An-
other is it only focuses on affinoid K-algebras studies by Tate. For example the rigid
generic fibre of Spf(Zp[[T ]]) is rigid analytic open disk but not affinoid.
So we start from Huber’s original ideal on contionuous valuation. We study the ’valu-
ation geometry’ and introduce the so called Adic Space. In particular,the Perfectoid
Space. To do this, we need some settings on perfectoid tate ring. When we have
some mixed character objects in perfectoid world,we can define a tilting map to make
them have character p.The inverse of the tilting is not quite natural.Fortunately, Witt
rings,the fundamental curve and p-divisible group can afford us some parameterization
to know the untilting.
We also consider different sites on perfectoid space,étale sites,pro-étale sites and v-
sites(in Scholze’s paper étale cohomology of diamonds),we want some finitness property
on cohomology and let the rigid adic space looks locally contractible,more precisely
covered by perfectoid space.With this we can develop some p-adic Hodge theory to
compare cohomology with Galois action.
Finally, all comes into a core, the Langlands program.This paper only introduce some
Scholze’s work on mod p Langlands correspondence. Scholze also use these geometric
object get an approch to local langlands correspondence for reductive group as proving
the rank n bundles on the fundamental curve Bunn is an ’dimension 0 smooth Artin
stack’ by certain finite property of Rapoport-Zink Space.

2 Classical setting on adic space

In this section,we start with some introduction on rigid analytic spaces.

2.1 Overview on adic spaces

Consider A an algebra of finite type over an algebraically closed field k, and let X0 be
MaxSpec(A), and X = Spec(A). Regard them simply as topological spaces with their
Zariski topology. Let us recall the following:
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Definition 2.1.1 A constructible subset C of a Noetherian topological space is a finite
union of locally closed subsets (or, equivalently, a finite Boolean expression in open
subsets).

Let X and X0 be as above. Given a constructible set C in X, the assignment

C 7→ C0 := X0 ∩ C

yelds an inclusion-preserving bijection

{constructible sets in X} ↔ {constructible sets in X0}

in both directions, and such C ⊂ X is open, resp. closed, if and only if C0 ⊂ X0 is
open, resp. closed in the Zariski topology. This works the same for any scheme X
locally of finite type over a field, with X0 its subspace of closed points. A sheaf theory
on a topological space is developed on a basis for the topology, and is well posed once
one has enough inclusion relations and, transition maps.

Proposition 2.1.2 Let X be a scheme locally of finite type over a field, and X0 its
subspace of closed points. We have an equivalence of categories of sheaves of sets

Shv(X) ' Shv(X0)

defined by F 7→ F |X0, where the categories of sheaves on X and X0, respectively, are
to be considered with respect to the Zariski topology.

Definition 2.1.3 Let S be a set, Σ a collection of non-empty subsets of S. We say
F ⊂ Σ is a prime filter if the following properties are satisfied:

(1) given U,U ′ ∈ F , then U ∩ U ′ ∈ F (so in particular U ∩ U ′ 6= ∅).

(2) given U ∈ F , and U ′ ⊇ U , with U ∈ Σ, then also U ′ ∈ F .

(3) given U1, . . . , Un ∈ Σ such that ∪Ui ∈ F , then some Ui is in F .

As soon as Σ is non-empty, a Zorn’s Lemma argument ensures prime filters on Σ exist.
It T is a topological space, and F is a prime filter of open sets, then for any F sheaf
of sets on T , the F -stalk of F is defined to be

lim−→
U∈F

F (U).
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One has the following::

Theorem 2.1.4 Let X be a scheme locally of finite type over a field k, and X0 be its
subspace of closed points. Then the correspondence

X → {prime filters of non-empty open subsets of X0}

given by x 7→ {open U0 ⊂ X0 | x ∈ U} is bijective.

For a refernce, see [BC]

Definition 2.1.5 A topological space T is sober if every irreducible closed subset has
a unique generic point.

Remark 2.1.6 Examples of sober topological spaces are locally Hausdorff spaces and
schemes. The easiest non-sober space is an infinite set with the cofinite topology, as
the space itself is irreducible and it has no generic point.

Remark 2.1.7 The theorem 2.1.6, essentially says that if we have a sober topolo-
gical space T , we can reconstruct t from its sheaf theory, that is, from knowledge of
Shv(T ).first, if X and Y are topological spaces, recall that for any morphism

f : X → Y

we have an induced functor

f∗ : Shv(X)→ Shv(Y )

and in fact an adjoint pair (f∗, f
−1), where f−1 is the inverse image functor

f−1 : Shv(Y )→ Shv(X),

and f−1 is exact (in the sense that it commutes with fiber products and equalizers,
or equivalently with all finite limits). A morphism Shv(X) → Shv(Y ) is a pair of
functors (h′, h), with

h : Shv(X)→ Shv(Y )

and
h′ : Shv(Y )→ Shv(X)

for which h′ is left adjoint to h, and h′ is exact.
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Theorem 2.1.8 If X and Y are sober topological spaces, then the natural map

HomTop(X, Y )→ Mor(Shv(X),Shv(Y ))/ ∼

is a bijection, where ∼ denotes natural equivalence for adjoint pairs.

As an example, one may consider X = {∗} to be a single point, yelding

Mor(Set,Shv(Y )) = |Y |,

the set underlying Y (via stalks and skyscraper sheaves of sets).

Towards adic spaces

In light of our previous discussion, we mention that Huber shows that for an affinoid
algebra A over a complete nonarchimedean field k there is a naturally associated quasi-
compact sober space Spa(A) containing Sp(A) as a subset so that the inclusion induces
an equivalence of categories

Shv(Spa(A)) ' Shv(Sp(A)),

where we regard Sp(A) with the usual topology as in Tate’s theory.

Definition 2.1.9 A topological K − algebra A is called affinoid over K,if there exists
a surjective algebra homomorphism

K < T1, T2, ..., Tn >→ A

Definition 2.1.10 1. We note Con(A) is the equivalence class of continous valu-
ation on A.

2. Let Spa(A,A0) = {v ∈ Con(A0) | v(A0) ≤ 1}

3. ForA is an affinoid algebra, Sp(A)={X = Maxspec(A), Grothendieck topology, OX}

We have the following:

Proposition 2.1.11 The map f : A → B as above is flat (in the commutative-
algebraic sense) if and only if the morphism Sp(B) → Sp(A) is flat (that is, is flat
on stalks of the respective structure sheaves).
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Now the question is, given that f is flat, whether or not fK : K⊗̂kA → K⊗̂kB is
flat as well. The answer is yes, but to prove it it’s used Raynaud’s theory on formal
models for rigid spaces. The metric completion inherent in such scalar extension is the
main source of difficulties, but at a more geometric level one has the annoyance that,
roughly speaking, that in the following diagram the dotted arrows do not exist:

Sp(AK)

��

Sp(BK)
Sp(fK)
oo

��

Sp(A) Sp(B)
Sp(f)
oo

2.2 Formal models

Let k be a nonarchimedean field, with valuation ring O. Roughly, a formal model for
a rigid space X over k is a quasi-compact formal scheme X over O, which is locally
isomorphic to

Spf (O{t1, . . . , tn}/(f1, . . . , fm)) .

If 0 < |π| < 1, then O{t1, . . . , tn}[ 1
π
] is a Tate algebra, so one can associate to such X

a quasi-compact quasi-separated rigid space over k by gluing affinoids

Sp (k〈t1, . . . , tn〉/(f1, . . . , fm)) ,

yelding a “generic fiber” Xrig of the formal scheme X over O.

More in detail, if X is a quasi-compact quasi-separated rigid space over k, then
Raynaud proved X has the form Xrig := X⊗ k for some formal scheme X as above flat
over O, and in the affinoid case, explicitly, if we let

A := k〈t1, . . . , tn〉/I

for some ideal I of k〈t1, . . . , tn〉, then for X = Sp(A) we can choose

X = Spf (O{t1, . . . , tn}/(O{t1, . . . , tn} ∩ I)) .
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(If |k×| ⊂ R×>0 is not discrete then some work is needed to show O{t1, . . . , tn} ∩ I is
finitely generated).

Theorem 2.2.1 Let X be a quasi-compact, quasi-separated rigid space over k. Then

lim←−
Xrig'X

|X|

is homeomorphic to the adic space attatched to X.

Theorem 2.2.2 Let K be a complete nonarchimedean field There is a fully faithful
functor from rigid analytic space over K to adic space over Spa(K,K0) which sends
Sp(R) to Spa(R,R0).

Theorem 2.2.3 There is a fully faithful functor from locally noetherian scheme to
adic space which sends Spf(R) to Spa(R,R0) .This is caller gneric fiber construction.

For a refernce, we recommend Huber’s Étale cohomology [HE].

3 Huber rings

A huber ring is a topological ting A containning an open subring A0,which is adic with
respect to a finitely generted ideal I ⊂ A0. For a Huber ring A,we always write A0 for
power bounded element of A, A00 is the ideal of topological nilpotent elements and A+

shall be any open and integrally subring of A0.

Example 3.0.1 For F/Qp a complete nonarchimedean extension with ring of intergers
OF consider tate algebra F 〈X1, , , , Xn〉 is a Huber ring.

Proposition 3.0.2 For A a Huber ring, Con(A) is spectral.

Proof. (sektch,for detail see [H1])
Since Con(A) = {v ∈ Spv(A,A00A) | v(a) < 1 for all a ∈ A00} is closed in Spv(A,A00A)

and notice that a closed subspace of a spectral space is spectral.

Definition 3.0.3

We let Spa(A,A+) = {v ∈ Con(A0) | v(A+) ≤ 1}
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Since the pro-constructible subset of spectral space is again spectral,so we have

Proposition 3.0.4 The topological space Spa(A,A+) is spectral

Example 3.0.5 1. LetK be an nonarchimedean field, then it’s easy to see Spa(K,OK)

is a single point.

2. Let K be an nonarchimedean field,complete with respect to a discrete valuation
| · |K with the residue field k.Then Spa(OK ,OK) has two points,given by

| · |K : OK → R≥0

and | · |k : OK → OK/$ → R≥0

the last arrow is trivial valuation.the first point corresponds a morphism

η : Spa(OK ,OK)→ Spa(K,OK)

the adic generic fibre of a formal scheme X/OK is defined as

Xad
η = Xad ×Spa(OK ,OK) Spa(K,OK)

The topology of X = Spa(A,A+) is generated by so called rational subsets

X(
T1

s1

, , ,
Tn
sn

) = {x | |fi(x)| ≤ |si(x)| 6= 0 | fi ∈ Ti}

Where Ti ⊂ A is a finite subset such that TiA is open in A. We put a natural structure
presheaf Ox on X as follows. We equip the ring R[ 1

s1
, , , 1

sn
] with a topology making

R0[T1
s1
, , , Tn

sn
] open equipped with the J = IR0[T1

s1
, , , Tn

sn
] adic topology.This defines a

ring topology on R[ 1
s1
, , , 1

sn
] and turns into a huber ring. Define

R〈T1

s1

, , ,
Tn
sn
〉 = J − adic completion of R[

1

s1

, , ,
1

sn
]

Now for U = X(T1
s1
, , , Tn

sn
),

OX(U) = R〈T1

s1

, , ,
Tn
sn
〉

and O+
X(U) as the completion of the integral closure ofR+[T1

s1
, , , Tn

sn
] in OX(U).

Definition 3.0.6 A Huber ring is called sheafy if OX is a sheaf on X = Spa(A,A0).
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Remark 3.0.7 OX is a sheaf on X = Spa(A,A+) for some choice of A+ if and only if
for any choice of A+

Definition 3.0.8 A Huber ring A is called

1. Tate if it contains a topological nilpotent unit $.

2. uniform if A0 is a bounded subset of A.

3. stably uniform if OX(U) is uniform for all rational subsets.

4. strongly noetherian if A is Tate and A1, , , Xn〉 are noetherian for every n.

5. perfectoid is A is a complete uniform tate ring satisfies some conditions we define
later.

Theorem 3.0.9 A Tate ring A is sheafy if

1. (Huber) A is strongly noetherian.

2. (Scholze)A is perfectoid.

3. (Buzzard-Verberkmoes)A is stably uniform.

Definition 3.0.10 1. An affinoid adic space is

X = (X,OX , {| · |x}x∈X),

associated with sheafy huber pair.

2. An adic space is locally affinoid adic space.

3. A rigid analytic space over K is an adic space X admitting an open covering by
Spa(Ai, A

0
i ) with all Ai are K-affinoid alebras.

The most famous example of Adic space is the Fargues-Fontaine Curve, which is defined
in section 8.
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4 Perfectoid rings

For a Huber ring A,we always write A0 for power bounded element of A,and A+ shall
be any open and integrally subring of A0

Definition 4.0.1 A perfectoid ring is a complete Tate ring A (huber with topologically
nilpotent unit $ ∈ A) satisfying the following properties:

(1) A0 is bounded.

(2) There exists a topologically nilpotent unit $ with $p | p in A0.

(3) the frob Φ : A0/$A0 → A0/$A0 is surjective.

Remark 4.0.2 For any complete Tate ring A and nonzero pseudo-uniformizer $ satis-
fying $p | p in A0, the Frobenius map Φ : A0/$ → A0/$p is necessarily injective. The
surjectivity condition is independent of the choice of such $.Acutually,it’s equivalent
to the frob Φ from A0/p to itself is an isomorphism (surjective)

Example 4.0.3 Here is an example of perfectoid ring which doesn’t arise as an algebra
over a field:

A = Zcyc
p 〈(p/T )1/p∞〉∧[1/T ].

One can take $ := T 1/p, as $p = T divides p in A0.

There are two ways to introduce Perfectoid field which are equivalent.

Definition 4.0.4 A perfectoid field is a perfectoid ringK that is a field and its topology
is defined by a rank 1 valuation

| · | : K → R≥0.

Remark 4.0.5 This definition is hard to describe whether a field is perfectoid or
not.another definition asks the valuation group is non-discrete since it’s p-divisible.

Proposition 4.0.6 Let K be a nonarchimedean field.Then K is perferctoid field if and
only if the folllowing conditions hold

1. K is not discrete valued

2. |p|<1
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3. the Frob Φ : A0/p→ A0/p is surjective.

Proposition 4.0.7 Let A be a complete uniform Tate ring.

(1) If there exists a pseudo-uniformizer $ ∈ A such that $p | p and Φ : A0/p→ A0/p

is surjective, then A is perfectoid.

(2) If A is perfectoid, then Φ : A0/p → A0/p is surjective under the additional
assumption that the ideal pA0 ⊂ A0 is closed.

Example 4.0.8

(1) The field Qp and it’s finite extensions are not perfectoid field.

(2) We consider Qp(p
1/p∞)∧ (with $ = p1/p) and Qp(ζp∞)∧, with $ coming from the

Z/pZ piece of Qp(ζp2)/Qp (a (Z/p2Z)×-extension). Both are perfectoid fields.

(3) We consider:

Qp〈T 1/p∞〉 = lim−→
n≥1

Qp〈T 1/pn〉∧ := (lim−→
n

Zp[T
1/pn ])∧[1/p].

and this is not perfectoid. However,

Qcyc
p 〈T 1/p∞〉 = Qp〈T 1/p∞〉⊗̂ZpZ

cyc
p

is. This is also obtained as A[1/p], A being the p-adic completion of Zcyc
p [T 1/p∞ ].

Perfectoid rings of char p are not very interesting, by using Banach open mapping
theorem we can prove that

Proposition 4.0.9 Let A be a topological ring with pR=0.Then the following are
equivalent:

1. A is perfectoid

2. A is a perfect complete tate ring.
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4.1 The Tilting functor

There is a functor

{perfectoid rings} // {perfectoid Fp-algebras }

{perfectoid fields}
?�

OO

// {perfectoid fields of char. p}
?�

OO

denoted A 7→ A[. Note that the above diagram contains many nontrivial statements
in it. There exists such assignment A 7→ A[ sending a perfectoid ring to a perfectoid
Fp-algebra, and such assignment is such that such ring A is a field if and only if A[ is.
More than this, such A is a perfectoid field if and only if A[ is, which means we’ll have
to keep track how this functor interacts with valuations.

Theorem 4.1.1 For K a perfectoid field of characeristic 0, there exists an equivalence
of categories:

{perfectoid K-algebras} → {perfectoid K[-algebras }.

We shall refer to such equivalence with the name of “tilting equivalence”, from now on.

The inverse functor depends on the “untilt” K of K[, as for different K one can obtain
the same K[. Fontaine gave an exhaustive description of all the characteristic 0 fields
that give a particular K[.

Remark 4.1.2 For a perfectoid field K of character 0, the equivalence

{finite separable L/K} ∼=
{
finite separable L′/K[

}
is a Theorem due to Fontaine and Wintenberger. The equivalence respects degrees in
both directions, and in fact the Galois theories on both sides. We shall expand on this
later, as this will turn out to be essential in the sequel.

Choose $ ∈ A a pseudo-uniformizer such that $p | p, so that $ ∈ A0 and A0 has the
$-adic topology.

Definition 4.1.3 We define:

A0[ = lim←−
Φ

A0/$A0 = {(an)n≥0 | an+1
p = an}.
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Note that on A0[, we have a canonical p-th root: if a = (an)n≥0 then a1/p := (an+1)n≥0.

Lemma 4.1.4 The multiplicative map:

lim←−
a7→ap

A0 → lim←−
Φ

A0/$A0 =: A0[
$

sending (a(n)) 7→ (a(n) mod $)n≥0 is a homeomorphism.

Remark 4.1.5 We note that the left side is independent of $, and we define A =

A0[1/$]

Proof. The key is to build a continuous 0-th component of the inverse. We can then
apply this construction to the canonical p-th root extraction on the right side.

As a first step towards the tilting equivalence, we seek to define some $[ ∈ A[0, not a
zero-divisor, satisfying the following properties:

(1) A0[[1/$[] is perfectoid using $[ with A0[ the subring of power-bounded elements.

(2) There is a natural isomorphism:

A0[/$[ ' A0/$A0

using the 0-th projection A0[ → A0/$A[.

we want $[ = ($,$1/p, $1/p2 , . . .).We notice that after multiplying $ a unit it has a
compatible sequence of p-power rooots in A

Lemma 4.1.6 $[ is not a zero-divisor in A0[ and is topologically nilpotent.

Example 4.1.7 If K is a perfectoid field, we are going to see that K[ := K0[[1/$[] is
a perfectoid field of characteristic p with |K[×| = |K×|, and |$[| = |$|.

Definition 4.1.8 Define the tilt of A to be:

A[ = A0[[1/$[] ⊃ A0[

with the $[-adic topology on A0[. This is a complete Tate ring with $[ as a pseudo-
uniformizer and A0[ the ring of definition.
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To conclude that A[ is perfectoid first We know A[ is independent of the choice of $
and $[ and that its ring of power-bounded elements is precisely A[0.

Proposition 4.1.9 For any two $,$′ ∈ A0 and $[, ($′)[ are associated choices in
A0[, then A0[[1/$[] ' A0[[1/($′)[].

It remains to show that A0[ is actually the ring of power-bounded elements in A[.

Proposition 4.1.10 We have A0[ = (A[)0.

We saw that
A0[/$[A0[ ' A0/$A0.

Definition 4.1.11 Let x = (xn) ∈ A[0. We pick any sequence of lifts (xn). Then we
define

x# = lim−→
n→∞

xp
n

n .

It’s obviously the map is well define.

Proposition 4.1.12 If K is a perfectoid field, then Cont(K) ∼= Cont(K[) via

v 7→ v[ : x 7→ v(x#).

Remark 4.1.13 Given a perfectoid ring R,we define R[ = lim←−Φ
R,A priori this is a

topological monoid,but it has a ring structure given by

(x0, x1, , , ) + (y0, y1, , , ) = (z0, z1, , , )

where zi = limx→∞(xi+n + yi+n)p
n ,luckly,exist and make R[ into a perfectoid ring.

5 Tilting equivalence

Definition 5.0.1 A ring R is intergral perfectoid if it satisfies the following conditions:
it is p-adically separated and complete, it is$-adically complete and separated for some
element $ ∈ R such that $p divides p in R, the pth power map ϕ : R/pR→ R/pR is
surjective, and the kernel of ϑ : Ainf(R)→ R is principal.
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Proposition 5.0.2 Let S be a ring that is p-adically separated and complete as well
as $-adically complete and separated with respect to some element $ ∈ S such that
$p divides p in S. The following are equivalent:

(1) Every element of S/$pS is a pth power.

(2) Every element of S/pS is a pth power.

(3) Every element of S/$pS is a pth power.

If the above equivalent conditions hold, then there exist units u, v ∈ S× such that u$
and vp admit compatible systems of p-power roots in S.

Proposition 5.0.3 Let S be a ring which is p-adically separated and complete as well
as $-adically complete and separated with respect to some element $ ∈ S such that
$p divides p in S. Then, the equivalent conditions in the last Proposition are also
equivalent to the map ϑ : Ainf(S)→ S being surjective.

Theorem 5.0.4 Let R-Perf be the category of integral perfectoid R-algebras, and
likewise for R[-Perf . Then the tilting functor (·)[ induces an equivalence of categories:

R-Perf '−→ R[-Perf

whose quasi-inverse is denoted by (·)# and called “untilting”.

the hard part is the following theorem which use deformation theory.For a ference, see
[Bh]

Theorem 5.0.5 Let R be a integral perfectoid ring.

(1) The reduction mod $ functor:

R-Perf → (R/$)-Perf

is an equivalence of categories.

(2) The reduction mod $ functor:

Ra-Perf → (Ra/$)-Perf

is an equivalence of categories.
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We will talk about it’s global form when we develop geometric tools. We can also use
some almost mathematics to prove the following result:

Theorem 5.0.6 Let R be a Tate-perfectoid ring, R[ its tilt. Then tilting induces an
equivalence of categories:

R-Perf → R[-Perf .

Remark 5.0.7 We finally note that, from the proof of the tilting equivalence for
Tate-perfectoid rings, the untilting functor (·)# can be made explicit. Given a Tate-
perfectoid R-algebra R′, R′[ its tilt, we have R′[# = (Ainf(R

′0)⊗Ainf(R0) R
0)[1/$]. This

is exactly Fontaine’s functor.

6 Perctoid space

We fix a Tate-perfectoid ring R, and call S := Spa(R,R+) affinoid perfectoid space.
We denote S[ := Spa(R[, R[+). the tilting equivalence between perfectoid R-algebras
and perfectoid R[-algebras naturally extends to an equivalence between categories of
perfectoid pairs over (R,R+) and (R[, R[+). We shall denote by:

(R,R+)-Perf

the category whose objects are perfectoid pairs (R′, R′+) which come with a morphism
of Huber pairs (R,R+) → (R′, R′+), and whose morphisms are morphisms of Huber
pairs. Likewise for (R[, R[+).

Proposition 6.0.1 Tilting (R′, R′+) 7→ (R′[, R′[+), and the continuous projection x 7→
x# induces an isomorphism

R[+/$[ ' R+/$.

Moreover
R[+ = lim←−

x 7→xp
R+.

Theorem 6.0.2 Let (R,R+) be a perfectoid pair, with tilt (R[, R[+). Define:

X := Spa(R,R+) and X[ := Spa(R[, R[+),

equipped with the presheaves OX ,O
+
X and OX[ ,O+

X[ respectively.
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(1) We have a homeomorphism |X| ' |X[| given by sending x ∈ X to the points
x[ ∈ X[ characterized by

f 7→ |f(x[)| := |f#(x)|.

This homeomorphism identifies rational subsets in both directions. Moreover, the
completed residue fields at x and x[ are perfectoid fields and are naturally tilts of
each other (so in particular their value groups are naturally identified).

(2) Let U ⊂ X be a rational subset, with tilt U [ ⊂ X[. Then the complete Huber pair
over (R,R+):

(OX(U),O+
X(U))

is perfectoid, and its tilt is uniquely isomorphic to (OX[(U [),O+
X[(U

[)) functori-
ally in U .

(3) The presheaves OX and OX[ are sheaves.

(4) The cohomology group H i(X,O+
X) is almost zero for all i > 0.

We would like to know when the valuation on R sending f ∈ R to |f(x)|, for x ∈ X =

Spa(R,R+), is close to being of the form g 7→ |g#(x)|, because this last is supposed to
induce the desired homeomorphism X ' X[ by sending x 7→ x[. It turns out that one
can find g# approximating f , so that the two maps coincide on all but those points at
which |f(x)| and |g#(x)| are small.

Lemma 6.0.3 (Approximation) Let O = R〈T 1/p∞

0 , . . . , T
1/p∞
n 〉. Let f ∈ O0 be a

homogeneous element of degree d ∈ Z[1/p]. Pick any rational number c ≥ 0 and any
ε > 0. Then there exists an element

gc,ε ∈ O[0 = R[0〈T 1/p∞

0 , . . . , T 1/p∞

n 〉

homogeneous and of the same degree d, such that for all points x ∈ X = Spa(O,O0),
we have

|f(x)− g#
c,ε(x)| ≤ |$|1−ε max(|f(x)|, |$|c).

As a first consequence we make precise the intuition discussed above. If ε < 1, it means
that |f(x)| and |g#

c,ε(x)| are small, and we have, for all x ∈ X = Spa(O,O0),

max(|f(x)|, |$|c) = max(|g#
c,ε(x)|, |$|c).
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Use this we can prove any rational subsets of X has form [−1(U) for some rational
subset U of X[. To prove OX is a sheaf, we use (2), So OX(U) is uniform for any
rational open subset. Recall all stably uniform tate rings are sheafy. For(4) first use
the sheafy condition and Tate acyclicity we know the Cech complex is exact. Then we
consider the the integral level and use Banach open mapping theorem.

Definition 6.0.4 A perfectoid space over S = Spa(R,R+) is an adic space which is
locally isomorphic to an affinoid perfectoid S-space. Morphisms of perfectoid spaces
over S are morphisms of adic spaces over S. For an affinoid perfectoid space X over
S, tilting yelds an affinoid perfectoid space X[ over S[.

We give the following definition, to establish what we mean when we say a perfectoid
space X[ over S[ is the tilt of a perfectoid space X over S.

Definition 6.0.5 We say a perfectoid space X[ over S[ is the tilt of a perfectoid space
X over S if and only if the following natural bijection holds true for all perfectoid pairs
over (R,R+):

Hom(Spa(R′, R′
+

), X) ' Hom(Spa(R′
[
, R′

[+
), X[).

As a formal consequence of the results in the preceding sections, we obtain the follow-
ing:

Theorem 6.0.6 Any perfectoid space X over S admits a tilt X[ over S[, unique up to
unique isomorphism. This induces an equivalence between the categories of perfectoid
spaces over S and perfectoid spaces over S[. The underlying topological spaces |X| and
|X[| are naturally homeomorphic, the homeomorphism preserving rational subsets in
both directions. A perfectoid space X over S is affinoid perfectoid if and only if X[ is
affinoid perfectoid over S[. Finally, for any affinoid perfectoid subspace U ⊂ X, the
pair:

(OX(U),O+
X(U))

is a perfectoid pair with tilt
(OX[(U [),O+

X[(U
[)).

Moreover:

U ' Spa(OX(U),O+
X(U)) and U [ ' Spa(OX[(U [),O+

X[(U
[)).
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So why we study perfectoid space? Since the rigid analytic spaces are always loc-
ally perfectoid in asuitable sense. For A is affinoid X = Spa(A,A0),then πt1(X) is
quite large and H i

ét(X,O
0a
X ) = 0 has no finitness result. But for perfectoid Tate ring

everything become pleasant.

7 Étale topology and Pro-étale topology

7.1 étale topology

First we recall some basic algebraic geometry:

Theorem 7.1.1 (Zariski’s Main Theorem) Suppose f : X → Y is a proper morph-
ism of locally noetherian schemes.

(1) The set of points of X that are isolated in their fiber forms an open subset X0 ⊂
X.

(2) The morphism f |X0 : X0 → Y factors into an open immersion followed by a
finite morphism:

X0

f
  

� � open
// Y ′

finite
~~

Y

From now on,in this section, we assume all Huber rings are complete Tate and all
spaces are adic.

Definition 7.1.2 A morphism f : Spa(A,A+) → Spa(B,B+) of affinoid adic space
is finite étale if B is finite étale A algebra and B+ is integral closure of A+ in
B. More generally,a morphism f : X → Y of adic spaces is finite étale if for
all open affinoids Spa(A,A+) ⊂ Y ,X ×Y Spa(A,A+) = Spa(B,B+) is affinoid and
Spa(A,A+)→ Spa(B,B+)is finite étale.

Definition 7.1.3 A morphism f : X → Y of locally noetherian adic spaces is called
étale if for any point x ∈ X, there exist open neighbourhoods U and V of x and f(x)
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respectively, and a factorization for f |U

U

f |U ��

� � i open
//W

h finite étale~~

V

Definition 7.1.4

(1) A morphism of perfectoid pairs (R′, R′+)→ (S, S+) is called strongly finite étale
if it is finite étale and, in addition, S0a is a finite étale R′0a-algebra.

(2) A morphism f : X → Y of perfectoid spaces is called strongly finite étale if
there is a cover of Y by open affinoid perfectoid subspaces V ⊂ Y such that
the preimage U := f−1(V ) is affinoid perfectoid, and the associated morphism of
perfectoid pairs

(OY (V ),O+
Y (V ))→ (OX(U),O+

X(U))

is strongly finite étale.

(3) A morphism f : X → Y of perfectoid spaces is called strongly étale if for any
point x ∈ X there are open neighbourhoods U and V of x and f(x) respectively,
and a factorization for f |U :

U

f |U ��

� � i open
// Z

h��

V

where h is strongly finite étale.

Remark 7.1.5 f : X → Y is strongly finite étale, resp. strongly étale, if and only if
the tilt f [ : X[ → Y [ is

Theorem 7.1.6 (Almost Purity) Let R′ be a perfectoid R-algebra. For any finite
étale cover S/R′, S is perfectoid and S0a is finite and étale over R′0a in the sense of
almost mathematics.

to prove almost purity theorem,we need Gabber’s henselian approximation method:

Lemma 7.1.7 Let A be an R0-algebra which is Henselian along ($). Then the categor-
ies of finite étale A[1/$]-algebras and A∧[1/$]-algebras are equivalent. A∧ indicates
the $-adic completion of A.
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use this we get the following lemma:

Lemma 7.1.8 Let (Ai) be a filtered direct system of complete R0-algebras, and let A
be the completion of the direct limit, which is again a complete R0-algebra. Then we
have an equivalence of categories:

A[1/$]fét ' 2- lim−→Ai[1/$]fét.

In particular, if (Ri) is a filtered direct system of perfectoid R-algebras, and R′ is the
completion of the direct limit, then:

R′fét ' 2- lim−→(Ri)fét.

by this lemma,after few computation,we have

Lemma 7.1.9 Fix x ∈ X. Then we have the following equivalence of categories:

2- lim−→
x∈U

OX(U)fét ' κ(x)∧fét.

Now we also notice that The fully faithful functor κ(x[)
∧
fét ↪→ κ(x)∧fét is an equivalence

of categories. Finally, we use the fact that if Y → X is a strongly finite étale morphism
of perfectoid spaces, for any affinoid perfectoid subspace U ⊂ X, its preimage V ⊂ Y

is affinoid perfectoid, and the morphism of Huber pairs over (R,R+):

(OX(U),O+
X(U))→ (OY (V ),O+

Y (V ))

is strongly finite étale. Therefore, in particular, OX(V )0a
∗ [1/$] = OX(V ) is finite étale

over OX(U).

Theorem 7.1.10 Let (R,R+) be a perfectoid pair ,X = Spa(R,R+) with tilt X[.

1. for any open affinoid perfectoid subspace U ⊂ X,we have a fully faithful functorstrongly finite tale coverofU

 / ≈ =

finite tale coversof OX(U)

 / ≈ .

by taking global sections

moreover,this functor is equivalence of categories.
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2. For any finite étale cover S/R, S is perfectoid and S0a is finite and étale over
R0a. Moreover, S0a is a uniformly almost finitely generated R0a-module.

We fix an affinoid perfectoid space S := Spa(R,R+) and its tilt S[.

We give the following:

Definition 7.1.11 Let X be a perfectoid space over S. The étale site of X is the
category Xét of perfectoid spaces which are étale over X, and coverings are given by
topological coverings. The associated topos is denoted by X∼ét.

As soon as we have a morphism of perfectoid spaces X → Y , we obtain an induced
morphism of sites Xét → Yét, as well as of topoi.

Theorem 7.1.12 the tilting operation not only induces a homeomorphism of topolo-
gical spaces |X| ' |X[| which is functorial in X, but also an equivalence of sites:

Xét ' X[
ét

which carries on to the étale topoi.

This is a key fact which turns out to be the full strength of the theory of perfect-
oid spaces, which will be made fruitful for the purpose of understanding p-adic étale
cohomology of proper rigid-analytic varieties by the introduction of the pro-étale to-
pology.

We conclude with a few vanishing results.

Proposition 7.1.13 Let X be a perfectoid space over S. Then, for all i > 0, H i(X,O+
X)

is almost zero. Moreover, the assignement

U 7→ OU(U)

is a sheaf on Xét, and H i
ét(X,O

0a
X ) = 0 for all i > 0 if X is affinoid perfectoid.

Proof. We prove the last statement, being the proof of the first identical. This is
checked just proving exactness of the complex

(∗) 0→ OX(X)0a →
∏
i

OVi(Vi)
0a →

∏
i,j

OVi×XVj(Vi ×X Vj)0a → · · ·
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for any finite covering {Vi} of X, where each Vi is étale over X. The Vi’s are rational
subsets of some finite étale V ′i → Ui ⊂ X, and Ui is a rational subspace. We are reduced
to the case X is affinoid perfectoid and by tilting we reduce to the characteristic p > 0

case.

We first assume we know already OX is an étale sheaf on X, and therefore the complex

0→ OX(X)→
∏
i

OVi(Vi)→
∏
i,j

OVi×XVj(Vi ×X Vj)→ · · ·

is exact. We use the almost purity theorem and Banach open mapping theorem to
deduce that a suitable power of $ kills the cohomology of (∗). By applying the inverse
of the pth power map, we deduce such cohomology is almost zero, and we conclude.

We are left to show that OX is a sheaf on Xét. We reduce to the case X is affinoid
perfectoid. For any étale cover V → X, by the almost purity theorem we know V is
again a perfectoid space, and then it makes sense to tilt it. By tilting, we reduce to
checking exactness of the complex:

0→ OX(X)→
∏
i

OVi(Vi)→
∏
i,j

OVi×XVj(Vi ×X Vj)→ · · ·

in characteristic p > 0, we reduce to the case X is a locally noetherian adic space over
Fp(($))($1/p∞)∧, for which OX is indeed an étale sheaf. To prove the exactness we use
some p-finite reduction method as in Scholze’s original paper[Sch+12].

When we define the pro-étale topology on locally noetherian adic spaces, it will turn
out that perfectoid spaces form a basis for such topology (in characteristic 0) and their
well behavedness is due to the fact that they are contractible in the sense of almost
mathematics, according to the above Proposition. with th same method we have

Proposition 7.1.14 If X is affinoid perfectoid, H i
ét(X,O

+
X/p) is almost zero for all

i > 0
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7.2 Pro-étale topology

Definition 7.2.1 A morphism f : X → Y of perfectoid spaces is pro étale if locally
on X it is of the form

Spa(A∞, A
+
∞)→ Spa(A,A+)

with
(A∞, A

+
∞) = ̂lim−→

i∈I
(A,A+)

where lim−→i∈I is a filtered direct limit and complection is taken with respect to the
topology that makes lim−→i∈I A

+
i open and bounded,with A,Ai,A∞ all perfectoid with

each Spa(Ai, A
+
i )→ Spa(A,A+) étale.

Definition 7.2.2 (The big pro étale site) Let Perf denote the category of perfectoid
spaces in characteristic p, We make this into a site by defining a pro étale covering
to be a collection of pro étale morphism f : Xi → X i∈I such that for all quasicompact
opensU ⊂ X,there exists a finite subset IU ⊂ I and quasicompact opens Ui ⊂ Xi such
that U =

⋃
i∈Iu fi(Ui)

The main theorem we use to do computation in p-adic Hodge theory is

Proposition 7.2.3 When X is locally noetherian analytic adic space over Spa(Qp,Zp)
then Xprot has a basis of affinoid perfectoid subsets.

8 Diamond and untilting with a geometric explan-

ation by Fontaine Fargues curves

8.1 Untilt of a Perfectoid field in char p

Definition 8.1.1 Let K be a perfectoid field of char p.An untilt of K is a pair
(K#, r),where K# is perfectoid and r : K ∼= K#[ is an isomorphism.

Given an untilt (K#, r),the multiplication map K0 → K#[0 → K#0 induces a surject-
ive ring homomorphism

θK# : W (K0)→ K#0
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Σ[fn]pn 7→ Σf#
n p

n

Where kerθK# is an ideal which is primitive of degree 1.

Theorem 8.1.2 The map I → (W (K0)/I)[1
p
] is a bijection of between the set of

primitive ideal of W (K0) of degree 1,and the set of isomorphism classes of untilts of
K.

Definition 8.1.3 (The adic Fargues-Fontaine curve) XK ,YK Let

YK = Spa(W (K0)) \ {|p[$]| = 0}

where $ is a pseudo uniformizer of K.The Frob automorphism on K0 induces a prop-
erly discontinous automorphism φ : YK → YK ; We let XK = YK/φ

Z

We claim that YK is covered by rational subsets of form

U(a, b) = {|[$b]| ≤ |p| ≤ |[$a]|} ⊂ Spa(W (K0))

For an interval I = [a, b] with endpoints lying in Z[1
p
]>0, let YK,Ibe the rational subset

defined above, and let BK,I = H0(YK,I ,OK,I), finally let BK = lim←−I BK,I

Theorem 8.1.4 (kedlaya) BK,I is strongly noetherian. thus the adic curves are actu-
ally adic space.

Theorem 8.1.5 Suppose K=C is algebraic closed.Then there is a bijection between the
set of closed maximal ideals of BC and te set of characteristic 0 untilts of C, given by
I 7→ BC/I

Remark 8.1.6 We can also define a schematic Fargues Fontaine curve XC ,and the set
of frobenius-equivalence classes of char 0 untilts of C, is bijection with closed points of
the scheme XC . For the detail see [FF]

8.2 Untilts of Perfectoid Space in char p

Let us now talk about a Sheaf on Perf with respect to pro-étale topology. If X is a
perfectoid space of Char p, we have representable presheaf hX = Hom(X, Y ) For the
theory of diamond, it was developed in Scholze’s Berkeley lecture.

Proposition 8.2.1 [SW] The presheaf hX is a sheaf.
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Now we degine the diamond.It is meant to mimic the notion of algebraic spaces,which
is the quotient of a scheme by étale equivalence relation.For details,see [SW]

Definition 8.2.2 A diamond is a sheaf on Perf which is a quotient of perfectoid
space by a pro-étale equivalence.

Definition 8.2.3 If X is a perfectoid space, let X� = hX[ ,this is a diamond. In the
case X = Spa(K) for a perfectoid field K,we also write Spd(K) = X�

Proposition 8.2.4 We define Spd(Qp) = hSpa(Q[
p) = Spa(Qcycl,[

p )/Z×p , then it is a
partially proper diamond.

Theorem 8.2.5 [SW17] There is an equivalence of categories between perfectoid spaces
over Qp ,and a category of perfectoid spaces of char p together with a ’structure morph-
ism’ X� → Spd(Qp).

Definition 8.2.6 Let X be an analytic adic space on which p is topological nilpo-
tent.let X be the functor on Perf which sendds object S to the set of equivalence
pairs(S# → X, r).where S → X is a perfectoid space fibered over X,and r : S#,[ → S

is an isomorphism.

Theorem 8.2.7 [SW17] X� is a diamond.

Theorem 8.2.8 (diamond formula) Let C be an algebraically closed perfectoid field of
char p,

Y �
C
∼= Spd(C)× Spd(Qp)

9 An application in mod p langlands correspond-

ence

In the last section, we see some application of perfectoid geometry in Langlands pro-
gram.
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9.1 l-adic cohomology and motiviation for mod p langlands

correspondence

We assume L = C or L = Q̄l. Let p 6= l be a prime number and F/Qp be a finite
ring extension with ring of integers OF ,uniformizerϕand residue field Fq. LetGF =

Gal(F̄ /F ).The classical local langlands correspondence for GLn(F ) is an injection

continuous representationρ : GF → GLn(L)

 / ≈ =

irreducible smoothL− representation of GLn(L)

 / ≈ .

ρ 7−→ π(ρ)

which is chracterised br certain identities of L− and ε−factors.If we enlarge the left side
with all frobenius semisimple Weil-Deligne representations ,this is a bijection. Now let
D/F a division algebra with center F and invariant 1

n
and let D∗be the group of unit

of D. The the local Jacquet Langlands correspondence is an injection

irreducible smooth L− representationof D∗

 / ≈ =

irreducible smoothL− representation of GLn(F )

 / ≈ .

π 7−→ JL(π)

We remark that objects on left side are finite dimensional.

Both correspondence can be realized by l-adic cohomology of Lubin-tate towerM ,which
is a tower of deformation of p-divisible groups. lubin tate tower provide a nonabelian
analogue to class field theory.For l 6= p one can associate to M the l-adic étale co-
homology

H i
c(M , Q̄l) = lim−→

n

H i
c(Mn, Q̄l)

to prove this one needs Berkovich’s theory of vanishing cycles attached to formal
scheme.So the space H i

c(M , Q̄l) realize canonical correspondence between representa-
tions of all three groups act on Lubin Tate space.
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Theorem 9.1.1 (Harris-Taylor,2002) (roughly)

HomG(π,H∗c (M , Q̄l) = JL(π)⊗ rec(π)

So it’s natural to ask is there some geometry and cohomology theories for the case
L = F̄p or L = Q̄p . Since Lubin tate Tower livers on category of adic spaces. we define
the sheaf Fπ onétale site Pn−1

Cp
and prove

Theorem 9.1.2 For any admissible representation π of GLn(F ),the cohomology groups

S i := H i
t(Pn−1

Cp
,Fπ), i ≥ 0

are admissibe D∗ representations.They carry an action of GF and vanish for i > 2(n−
1).

Lubin Tate tower is a tower Mn of rigid analytic varieties parametrizing deformation
space of a p-divisible group with some level structure. For a full definition see [RZ] the
inverse limit lim←−Mncan be equipped with perfectoid space structure.
Let F = Qp,k = Fp and fix a p-divisible group H/k of dimension 1 and height
n.ThenD = End(H) is a division algebra with center Qp and invariant 1

n
.

Definition 9.1.3 Let Nilp be the categroy of W (k)− algebra R in which p is nilpo-
tent.A deformation of H to R ∈ Nilp is a pair (G, ρ) where G is a p− divisible group
over R and

ρ : H ⊗k R/p→ G⊗R R/p

is a qusasi-isogeny
define the functor DefH from Nilp to Sets send R to the equivalence class of pair
(G, ρ).

Theorem 9.1.4 The functor DefH is representable by a formal scheme X/W (k). we
have a decomposition

X ∼=
⊔
i∈Z

Xi

according to the height i of the quasi-isogeny and non-canonically

Xi ∼= Spf(W (k)[[t1, , , tn−1]])
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Define F̌ = F ⊗W (Fq) W (k) be the completion of the unramified extension of F with
residue field k.Now let M0 = Xad

η ×F̌ Cp be the dic generic fibre.One can introduce the
level structures to get spaces Mm with finite étale map Mm →M0

Now we cite the main result in Scholze’s paper moduli of p-divisible groups [SW]

Theorem 9.1.5 there exista unique up to isomorphism perfectoid space M∞ over Qp

such that
M∞ ∼ lim←−Mm

The infinite lubin tate tower M∞ has action of groups D∗, GLn(Qp) and the Weil
group WQp

9.2 Gross-Hopkins period map

Roughly speaking the gross-hopkins periods map is the quotient of M∞ by GLn(F )

Theorem 9.2.1 The gross-hopkins map

πGH : M∞ → Pn−1
Cp

is an étale surjective map of rigid analytic spaces.Each fibre consists of a single isogeny
class of lifts on H.

Proposition 9.2.2 πGHisequivariantforD∗, GLn(Qp) action.And it factors through
a corresponding map at all finite levels

πGH,m : Mm → Pn−1
Cp

and all these maps are étale covering.

Remark 9.2.3 Pn−1
Cp

is far from being simple connected.

9.3 Construction of Scholze’s functor

first we notice that H i
t(M∞,Fp) depend on the choice of complete algebraic closure of

F̌ and they are not admissible. Let π be an admissible representation of GLn(F ) on
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the Fp-vector space.
For the étale map U → Pn−1

Cp
define

Fπ(U) = C 0
GLn(F )(|U ×Pn−1

Cp
M∞|, π)

Proposition 9.3.1 Fπis a sheaf on (Pn−1
Cp

)t and it’s an exact functor.

Theorem 9.3.2

S :

 smooth

Fp − representation of GLn(F )

 / ≈ =

 smooth Fp − representation

of D∗

 / ≈ .

π 7−→ S (π)

The space S (π) carries action of GF

9.4 The main theorem

Theorem 9.4.1 For any admissible representation π of GLn(F ),the cohomology groups

S i := H i
t(Pn−1

Cp
,Fπ), i ≥ 0

are admissible D∗ representations.They carry an action of GF and vanish for i >
2(n− 1).

Proof. (sketch) Fix K ⊂ D∗ a compact open subgroup (shrink if necessary) to show
H i
t(Pn−1

Cp
/K,Fπ) = continous K − cohomology on RΓ(Pn−1

Cp
,Fπ) is finite.

Use Falting’s almost strategy,we reduce it to prove H i(Pn−1
Cp

/K,Fπ ⊗O+/p) is almost
finitely generated. One picks K − stable affinoid covers

Pn−1
Cp

=
⋃
i∈I

Ui =
⋃
i∈I

Vi

where I is finite index set and Ui ⊂⊂ Vi stirctly. Since πGH admits local sections
Vi ↪→M0 we claim that image of the transition map

Hj(Vi/K,Fπ ⊗O+/p)→ Hj(Ui/K,Fπ ⊗O+/p)
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is almost finitely generated.
We note that Fπ|M0 only depends on π|GLn(O) as constructed from GLn(O) − torsor
M∞ →M0

Let πreg = C∞(GLn(O),Fp) we choose a resolution

0→ π → πn0
reg → πn1

reg → πn2
reg →

This can be guaranteed by Lazard’s theorem that Fp[[GLn(O)]] is noetherian.Compute
the spectral sequence we can reduce to the case π0 = πreg

consider the diagram
MLH,∞,Cp

// MLH,0,Cp

Vi,∞
?�

OO

// Vi
?�

OO

And use falting’s result
MLH,∞ ∼= MDr,∞

Then we have
MDr,∞,Cp

// MDr,K,Cp

Vi,∞
?�

OO

// Vi,K
?�

OO

when we writeMDr,∞ ∼ lim←−MDr,K ,we have equivalence of étale sites

MDr,∞/K ∼= MDr,K Vi,∞/K ∼= Vi,K

So
Hj(Vi/K,Fπreg ⊗O+/p) ∼= Hj(Vi,∞/K,O+/p) ∼= Hj(Vi,K ,O+/p)

Sum up to show
Hj(Vi,K ,O+/p)→ Hj(Ui,K ,O+/p)

has almost finitely generated image. Since now

Ui,K ⊂⊂ Vi,K ⊂MDr,K,Cp

Are usual smooth affinoid space over Cp. So we can use p-adic hodge theory to calculate
directly.
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Remark 9.4.2 There is also some local-global compatibility result in p-adic cohomo-
logy of Lubin-Tate Tower. See [Sch15]
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