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Abstract. We study topological properties of the group of Hamil-
tonian diffeomorphisms of certain closed surfaces by applying bar-
codes. Topological data analysts developed the concept of persis-
tence modules and barcodes to study topological aspects of data.
L. Polterovich and E. Shelukhin came up with an idea of bridg-
ing symplectic topology and topological data analysis which are
apparently very different two fields and proved some fundamental
results in symplectic topology. In this article, we roughly explain
this idea without assuming any specific background in symplectic
geometry.
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1. Introduction

Organization of the paper. In Section 2, we explain very roughly
tools in symplectic topology that are used in this article such as (fil-
tered) Floer homology.
In Section 3, we define barcodes and persistence modules.
In Section 4, we define Floer barcodes which is the most important
object of this article.
In Section 5, we see how to apply barcodes to answer to questions in
Hofer geometry.

2. Preliminaries in symplectic topology: Hofer geometry
and Floer homology

In this section, we will explain basic notions of symplectic topology
that will be used in the following sections.

2.1. Symplectic manifolds.

Definition 1. (1) A symplectic form ω on a manifold M is a 2-
form that is closed and non-degenerate.

(2) A symplectic manifold (M,ω) is a pair of a smooth manifold M
and a symplectic form ω.

Example.
(1) Euclidean spaces: (R2n, ωst := dx1∧dy1+dx2∧dy2+ · · ·+dxn∧

dyn)
(2) Cotangent bundles: (T ∗M,dλ) where λ is the Liouville form of

the cotangent bundle.
(3) Closed surfaces: (Σ, ωarea) where ωarea denotes the area-form

on the surface Σ.

Next, we will introduce symplectic diffeomorphisms.

Definition 2. (1) Assume (M,ω) and (N, η) are symplectic man-
ifolds. A symplectomorphism ϕ : (M,ω) → (N, η) is a diffeo-
morphism between M and N satisfying ϕ∗η = ω.

(2) Two symplectic manifolds (M,ω) and (N, η) are symplectomor-
phic if there exists a symplectomorphism between them.

Definition 3. (1) Let (M,ω) be a symplectic manifold. A Hamil-
tonian is a time-dependent smooth function S1(= R/Z)×M →
R.

(2) The Hamiltonian vector field associated to the Hamiltonian H is
the vector field XHt defined by the following: ω(XHt , ·) = −dHt.
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(3) The Hamiltonian flow ϕt
H of the Hamiltonian H is the flow of

the Hamiltonian vector field XHt.

Remark 4. We often call the time-one map of the Hamiltonian flow
a Hamiltonian diffeomorphism.

Proposition 5. Let (M,ω) be a symplectic manifold and H a Hamil-
tonian. The Hamiltonian flow of H is a symplectomorphism for all
t.

The main subject of this paper is the study of the group of symplec-
tomorphisms and its special subgroup called the group of Hamiltonian
diffeomorphisms.

Definition 6. Let (M,ω) be a symplectic manifold. We denote the
group of symplectomorphisms on (M,ω) by Symp(M,ω).

Proposition 7. Let (M,ω) be a symplectic manifold. The set Ham(M,ω)
of Hamiltonian diffeomorphisms on (M,ω) is a group (in particular, it
is a subgroup of Symp(M,ω)).

Definition 8. Let (M,ω) be a symplectic manifold. We denote the
group of Hamiltonian diffeomorphisms on (M,ω) by Ham(M,ω).

Remark 9. We introduce following notations.
(1) Fix(ϕ) := {x ∈M : ϕ(x) = x}
(2) P(H) := {time-1 periodic orbits of the Hamiltonian flow of H}

Remark 10. Ham(M,ω) is a subset of Symp0(M,ω) where Symp0(M,ω)
denotes the set of elements in Symp(M,ω) belonging to the same path-
connected component as the Id.

2.2. Hofer geometry. In Hofer geometry, we study topological as-
pects of the group Ham(M,ω) with respect to the Hofer metric dH .
We will define Hofer metric in this subsection.

Definition 11. (1) Let ϕ ∈ Ham(M,ω). Define the Hofer energy
of ϕ by

E(ϕ) := inf
H∈H, ϕ=ϕH

[

∫ 1

0

sup
x∈M

Ht(x)− inf
x∈M

Ht(x)dt].

(From now on, we will denote E(H) :=

∫ 1

0

{sup
x∈M

Ht(x)− inf
x∈M

Ht(x)}dt.)

(2) Let ϕ, ψ ∈ Ham(M,ω). Define dH by dH(ϕ, ψ) := E(ϕ−1ψ).
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Surprisingly, this function dH will turn out to be a distance (i.e.
metric) on Ham(M,ω).

Theorem 12. dH defines a metric on Ham(M,ω).

Remark 13. From now on, we will refer this metric to the Hofer
metric.

2.3. Why do we study Ham? The following theorem tells us how
much information the group Ham carries.

Theorem 14. Let (M1, ω1), (M2, ω2) be closed symplectic manifolds
where M1,M2 are diffeomorphic manifolds.

(1) If Symp(M1, ω1) and Symp(M2, ω2) are isomorphic as a group,
then (M1, ω1), (M2, ω2) are symplectomorphic up to a constant
i.e. there exists a diffeomorphism f ∈ Diff(M1,M2) s.t. f ∗ω2 =
c · ω1 for some constant c.

(2) If Ham(M1, ω1) and Ham(M2, ω2) are isomorphic as a group,
then (M1, ω1), (M2, ω2) are symplectomorphic up to a constant
i.e. there exists a diffeomorphism f ∈ Diff(M1,M2) s.t. f ∗ω2 =
c · ω1 for some constant c.

2.4. Floer homology. In this subsection, we sketch the construction
of the Floer homology. Floer homology was introduced by A. Floer
originally to solve the Arnold conjecture, stated in the 1950’s, as an
analogue of Morse theory. The conjecture has been one of the main
landmarks in the study of symplectic geometry.

Definition 15. (1) A Hamiltonian diffeomorphism ϕ is non-degenerate
if for every x ∈ Fix(ϕ), dϕ(x) : TxM → TxM does not have 1
as an eigenvalue.

(2) A Hamiltonian H is non-degenerate if it generates a non-degenerate
Hamiltonian diffeomorphism ϕH .

Conjecture 16. (The Arnold conjecture)
If H : S1 ×M → R be a non-degenerate Hamiltonian, then

#Fix(ϕH) ⩾
∑
k

dimHk(M ;Z/2).

In this subsection, we only consider aspherical symplectic manifolds
which is defined as follows.

Definition 17. A symplectic manifold (M,ω) is called aspherical (or
symplectically aspherical) if the following two conditions are satisfied:
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(1)
∫
S2

w∗ω = 0 for any map w : S2 →M .

(2) < c1(TM), π2(M) >= 0 where c1(TM) is the first Chern num-
ber of (TM, J).

Example. Closed surfaces of positive genus equipped with an area-
form.

Why people thought of Morse theory when they think of the Arnold
conjecture is that periodic orbits of a HamiltonianH are exactly critical
points of the action functional AH defined on the set of contractible
loops in M :

Definition 18. Define the action functional AH : LM → R as the
following where LM denotes the set of contractible loops in M:

AH(z) :=

∫ 1

0

H(t, z(t))dt−
∫
D2

z∗ω

where z : D2 →M denotes the capping of z : S1 →M .

Remark 19. The action functional is well-defined (i.e. it does not
depend on the choice of the capping of z) thanks to the aspherical
assumption.

Lemma 20. For any X ∈ TzLM , we have

dAH(z)(X) =

∫ 1

0

ω(ż −XH(z), X)dt.

Proof. LetX ∈ z∗TM(= TzLM). Take u : (−ϵ, ϵ)×S1 →M s.t. u(0, t) =

z(t),
∂u

∂s
(0, t) = X(t). We can calculate

dAH(z)(X) =
d

ds
|s=0AH(u(s, ·)) =

∫ 1

0

ω(ż −XH(z), X)dt.

□

We construct the Floer chain complex out of periodic orbits. For
simplicity, we consider Z/2−coefficients.

Definition 21. Let H be a non-degenerate Hamiltonian. We define
the Floer chain complex by

CFk(H) :=
⊕

z∈P(H),µCZ(z)=k

Z/2 · z
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Remark 22. The grading of the Floer chain complex is given by
the Conley-Zehnder index µCZ which assigns an integer to every non-
degenerate fixed point of ϕH . Here we omit explanations. See [AD] for
details.

As in Morse theory, we count numbers of anti-gradient flows con-
necting two periodic orbits.
First we need a bilinear positive definite map which corresponds to a
Riemannian metric in Morse theory.

∀X,Y ∈ z∗TM, ⟨X,Y ⟩ :=
∫
S1

ω(X(t), J(z(t))Y (t))dt

Now, since

dAH(z)(X) =

∫ 1

0

ω(ż −XH(z), X)dt,

we obtain the following equation of the anti-gradient flow.

u : R → LM,
du

ds
(= −gradAH(z)) = −J((ż −XH(z)))

By regarding u as a map u : R×S1 →M , we can express this equation
as follows.

∂u

∂s
+ J ◦ u∂u

∂t
+∇Ht ◦ u = 0

This PDE is called the Floer equation.

Now, we count the number of these anti-gradient flows connecting two
periodic orbits z−, z+.

Definition 23. For two (contractible) periodic orbits z−, z+ : S1 →M ,

M((H, J); z−, z+) := {u : R× S1 →M :
∂u

∂s
+ J ◦ u∂u

∂t
+∇Ht ◦ u = 0,

u(s, ·) → z−(s→ −∞), u(s, ·) → z+(s→ +∞)}.

Fredholm analysis of the Floer equation shows that the moduli
space M((H, J); z−, z+) is a (Banach) manifold of dimension µCZ(z−)−
µCZ(z+) when (H, J) is regular. Here we will not explain what a pair
(H, J) being regular means. See [AD].
Taking the R-action on M((H, J); z−, z+) (i.e. s′ ·u(s, t) := u(s+s′, t))
into consideration, we think of the R-quotient M̂((H, J); z−, z+) :=
M((H, J); z−, z+)/R which decreases the dimension by 1.
Thus, if µCZ(z−)−µCZ(z+) = 1, then M̂((H, J); z−, z+) is a 0-dimensional
manifold. They turn out to be compact by additional arguments.
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Definition 24. For a periodic orbit z(= ϕt
H(x)) of index k,

∂(H,J)(z) :=
∑

w∈P(H),µCZ(w)=µCZ(z)−1=k−1

#M̂((H, J); z, w) · w

for every k ∈ Z. We extend this definition linearly to CFk(H).

Theorem 25. (CF (H), ∂(H,J)) is a chain complex i.e. ∂(H,J) ◦∂(H,J) =
0. We will refer it to the Floer chain complex.

Remark 26.
(1) The homology defined from Floer chain complex is called Floer

homology and will be denoted by HFk(H, J).
(2) The construction of the Floer homology, more precisely the defi-

nition of the boundary map ∂(H,J), is dependent on the choice of
(ω−compatible) almost complex structure J . However, it turns
out that, given (ω−compatible) almost complex structures J, J ′

which makes (H, J), (H, J ′) regular, although ∂(H,J) ̸= ∂(H,J ′),
HFk(H, J), HFk(H, J

′) are isomorphic i.e. Floer homology does
not depend on the choice of (ω−compatible) almost complex
structure. Thus we will denote it by HFk(H).

(3) By modifying the assumptions on the base manifold (M,ω), we
can construct Floer homologies out of non-contractible periodic
orbits in the same method. We will denote them by HFk(H)α
where α ∈ π0(LM). See [PS].

(4) Define the filtered Floer chain complex by

CF λ
k (H) :=

⊕
z∈P(H),µCZ(z)=k,AH(z)⩽λ

Z/2 · z.

Since the boundary map ∂(H,J) is decreasing the action (i.e.
AH(∂(H,J)(z)) ⩽ AH(z)), (CF λ(H), ∂(H,J)) is also a chain com-
plex. We call it a filtered Floer chain complex and its homology
HF λ(H, J)α a filtered F loer homology.

2.5. Continuation maps: comparing Floer homologies. We dis-
cuss briefly how to compare two Floer homologies HF λ(H)α, HF

λ(G)α
where H,G are non-degenerate Hamiltonians. In order to compare, we
take a homotopy of non-degenerate Hamiltonians Hs : R×S1×M → R

s.t. Hs =

{
H (s ⩽ −1)

G (1 ⩽ s)
and a family of almost complex structure

{Js}s∈R such that (Hs, Js) is regular for all s ∈ R. We denote this
homotopy by (H, j) := {(Hs, Js)}.
Then the Floer equation will be
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∂u

∂s
+ Js ◦ u

∂u

∂t
+∇Hs ◦ u = 0.

Let u be a solution of a Floer equation such that u → x (s →
−∞), u→ y(s→ ∞) where x ∈ P(H), y ∈ P(G).

So we define the following continuation map on Floer chains:

c(H,j) : CFk(H) → CFk(G),

c(H,j)(z−) :=
∑

µCZ(z−)−µCZ(z+)=0

#M((H, j); z−, z+) · z−.

In fact, C(H,j) turns out to be a chain map i.e. C(H,j) ◦ ∂(H,J) =
∂(G,J ′) ◦ C(H,j) so it defines a map between Floer homologies:

(CH,j)∗ : HF
λ(H, J) → HF λ+E+(G−H)(G, J ′).

We call (CH,j)∗ a continuation map.
Remark 27. The definition of the continuation map on Floer chains
depends on the choice of homotopy (H, j). However, they all induce
the same map on Floer homology. Thus, we denote the continuation
map by CH,G := (CH,j)∗ from now on.

Now, we look at a particular homotopy defined by
Hs(t, x) = (1 − β(s))H(t, x) + β(s)G(t, x) where β : R → R s.t. β =
0 when s ⩽ −1, β = 1 when s ⩾ 1, β(s) is monotonely increasing and smooth.
This satisfies, Hs = H when s ⩽ −1 and Hs = G when s ⩾ 1.

We look at the difference of the energy between x and y. In fact,
by focusing on the energy of this pseudo-holomorphic cylinder u, we
achieve

E(u) ⩽ AH(x)−AG(y) + E+(G−H).

E(u) ⩾ 0 so, we have AG(y) ⩽ AH(x) + E+(G−H).
Thus, we can define a continuation map between filtered Floer homolo-
gies with respect to the homotopy (H, j) := (Hs, js) as follows.

C(H,j) : HF
λ
k (H)α → HF

λ+E+(G−H)
k (G)α.

Note that continuation maps on homology does not depend on the
choice of a homotopy as mentioned earlier but this is not always true
when we take the filtertion into consideration.
Remark 28.

(1) Continuation maps provides the isomorphism between Floer ho-
mologies HF (H), HF (G).
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(2) In particular, if f is a C2-small Morse function, then HF (f) ≃
HM(f) ≃ H(M) where HM(f) is the Morse homology defined
by f . This gives us the proof of the Arnold conjecture.

(3) This estimate plays an essential role in proving proposition 45.

2.6. Spectral invariants. We are now ready to define spectral invariants
which is one of the most important tool in symplectic topology. (Ideas
are due to [Vit],[Sch],[Oh].)

Definition 29. Define the spectral invariant ρ : H×H∗(M) → R by

ρ(H,α) := inf{λ : α ∈ Im(iλ)∗, (iλ)∗ : HF λ
∗ (H, J) → HF∗(H, J) ≃

H∗(M)}

where the map (iλ)∗ is the map induced by the inclusion in the chain (of
the chain complex) and the isomorphism between the Floer homology
and the singular homology is the correspondence we have seen in the
previous section.

Spectral invariants has been applied to prove a lot of important
results in symplectic topology such as the energy-capacity inequality,
the existence of a symplectic capacity, the non-degeneracy of dH (the
Hofer metric), etc. See [Hum],[Oh] for further information.

3. Persistence modules and barcodes

3.1. Persistence modules.

Definition 30. A persistence module is a family of finite dimensional
K-vector spaces (Vt)t∈R such that

(1) Vt = 0 for small enough t
(2) For any s ⩽ t, there exists a morphism is,t : Vs → Vt s.t.

it,t = id, is,t ◦ it,r = is,r for any s ⩽ t ⩽ r.
(3) There exist a finite set Spec(V ) := {a1, a2, · · · , aN} ⊂ K s.t. if

ak < s < t ⩽ ak+1, then is,t : Vs → Vt is an isomorphism.

Example. Let I := (a, b] be an interval (b ∈ (−∞,+∞]). Define Q(I)
by

Q(I)t :=

{
K (t ∈ I)

0 (t /∈ I)
, is,t :=

{
id (s, t ∈ I)

0 (otherwise)

Definition 31. (1) A morphism A between two persistence mod-
ules V,W is a family of maps {At}t∈R that satisfies At ◦ is,t =
is,t ◦ As for any s ⩽ t.
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(2) Persistence modules V,W are isomorphic if there exists mor-
phisms A : V → W and B : W → V s.t. A◦B = id, B◦A = id.

Theorem 32. (The stability theorem)
For any persistence module (Vt)t∈R, there exists a finite number of in-
tervals {Ik}k=1,2,··· ,N s.t. V ≃

⊕
Q(Ik).

Definition 33. (1) We say that two persistence modules V = (Vt)
and W = (Wt) are δ-interleaving if there exists morphisms f =
(ft) : V → W δ and g = (gt) : W → V δ satisfying gδt ◦ ft =
it,t+2δ : V → V 2δ and f δ

t ◦ gt = jt,t+2δ : W → W 2δ.
(2) For two persistence modules V = (Vt) and W = (Wt), we define

dint(V,W ) := sup{δ : V and W are δ − interleaving}
and call it the interleaving distance between V and W .

3.2. Barcodes.

Definition 34. A barcode is a finite collection of intervals {Ik}k=1,2,··· ,N
where Ik := (ak, bk] (ak ∈ R, bk ∈ (−∞,+∞]).

Definition 35. (1) We say that two barcodes B = {Ik} and B′ =
{I ′k} are δ-matching if there exists a bijection ρ : {Ik : |Ik| ⩾
2δ} → {I ′k : |Ik| ⩾ 2δ} s.t. d(Ik, I ′ρ(k)) ⩽ δ.

(2) For two barcodes B = {Ik} and B′ = {I ′k}, we define
bbot(B,B

′) := inf{δ : B and B′ are δ −matching}
and call it the bottleneck distance between B and B′.

Theorem 36. (The isometry theorem)
There exists an isometric map B from the set of persistence modules
to the set of barcodes i.e. dint(V,W ) = dbot(B(V ), B(W )).

Remark 37. B maps persistence modules to collections of intervals
as in the stability theorem.

3.3. Filtered Floer homology to barcodes. In this subsection, we
explain how to correspond a non-degenerate Hamiltonian diffeomor-
phism ϕ ∈ Ham(M,ω) to a barcode. Throughout the section, we
assume (M,ω) to be an aspherical symplectic manifold and α to be an
arbitrary taken element of π0(LM).

Proposition 38. If two mean-normalized non-degenerate Hamiltoni-
ans H and G generates the same time-1 map (i.e. ϕH = ϕG), then
HF λ

k (H)α = HF λ
k (G)α.

Remark 39. We can prove HF λ
k (H)α = HF λ

k (G)α for any non-
degenerate Hamiltonians H and G such that Hamiltonian paths gen-
erated by each Hamiltonian has the same homotopy type i.e. ϕt

H ∼ ϕt
G
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on a larger class of symplectic manifolds but proposition 38 uses the
advantage of the symplectic manifold being symplectically aspherical.

Definition 40. Let ϕ ∈ Ham(M,ω)nondeg. Define the Floer barcode
map Bα : Ham(M,ω)nondeg → B by Bar(ϕ) := Bar(HF λ(H)α) where
H is a mean-normalized non-degenerate Hamiltonian that generates ϕ.

Remark 41.
(1) This is well-defined thanks to proposition 38.
(2) Be careful that we take a mean-normalized Hamiltonian to de-

fine the barcode map.

Proposition 42. The barcode map Bα : (Hamnondeg(M,ω), dH) →
(B, dbot) is 1-Lipschitz continuous. Here Hamnondeg(M,ω) is the set of
non-degenerate Hamiltonian diffeomorphisms and α is the homotopy
type of the periodic orbits of the Floer homology.

4. Application: barcodes in Hofer geometry

We introduce a theorem proven by L. Polterovich and E. Shelukhin
in [PS]. In [PS], they deal with a larger class of symplectic manifolds
but here we treat the easiest case for simplicity.

Theorem 43. Let (Σ, σ) be a closed surface having genus ⩾ 4 equipped
with an area form. Then,

(1) aut(Σ, σ) := sup
ϕ∈Ham(Σ,σ)

dH(ϕ,Aut) = +∞.

(2) powerk(Σ, σ) := sup
ϕ∈Ham

dH(ϕ, Powerk) = +∞ for any k ⩾ 2

where Powerk := {ϕ ∈ Ham : ∃ψ s.t. ϕ = ψk}

Remark 44.
(1) The first result is a direct consequence of the second one since

Aut ⊂ Powerk for all k ∈ N.
(2) We only need to prove the second statement in the case where

k is a prime since Powerkp ⊂ Powerp for all k ∈ N (where p is
a prime).

(3) In this section, we denote Hamp−nondeg := {ϕ ∈ Ham : ϕp is
non-degenerate}.

Closed surfaces of genus ⩾ 2 satisfies all the properties to define
Floer homology HF λ(ϕ)α for any ϕ ∈ Hamnondeg(Σ, σ) and any homo-
topy type α ∈ π0(LM) (precisely, they are symplectically aspherical
and atoroidal). Hence, we can apply discussions of the preceding sec-
tions.
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One of the significance of ϕ ∈ Powerp is the p-periodicity of their fix
points: If ϕ = ψp and x ∈ Fix(ϕ), then {x, ψ(x), ψ2(x), · · · , ψp−1(x)}
are all fixed points of ϕ too.
Especially, in this case we can define the rotation map Rp(ψ) : z(t) 7→
z(t+ 1

p
) on Floer homology HF λ(ϕ)α.

Authors of [PS] pushed this observation forward in the following way.

(1) Given a ϕ ∈ Hamp−nondeg, we obtain a Zp-persistence module
(HF λ(ϕp)α, Rp(ϕ)). (We take a p-power of ϕ to be able to define
a rotation map.)

(2) Because of the p-periodicity due to the rotation map, each inter-
val I consisting the barcodeBα(ϕ

p) has multiplicitym(Bα(ϕ
p), I) ≡

0 mod p. Thus, we take a ζ−eigenspace Lζ(ϕ
p) := Ker(Rp(ϕ)−

ζ · Id) where ζ is a p-th root of 1. This enables us to treat each
p-orbit {x, ϕ(x), ϕ2(x), · · · , ϕp−1(x)} as one element.

(3) If ϕ ∈ Powerp (i.e. ϕ = ψp for some ψ), then this defines
another rotation map Rp2(ψ) : HF

λ(ϕp)α → HF λ(ϕp)α, z(t) 7→
z(t + 1

p2
). This actually descends to a map on Lζ(ϕ

p) and this
implies that each interval I consisting the barcode B(Lζ(ϕ

p))
has multiplicity m(Lζ(ϕ

p), I) ≡ 0 mod p.
(4) We define

µα(ϕ) :=

{
sup{δ > 0 : m(Lζ(ϕ

p), I) = m(Lζ(ϕ
p), I2δ) ̸= 0 mod p}

0 when ∀I, m(Lζ(ϕ
p), I) = 0

.

From the observation in step (3), if ϕ ∈ Powerp, then µα(ϕ) =
0. In other words, for ϕ ∈ Hamnondeg, if µα(ϕ) > 0, then
ϕ /∈ Powerp.

Proposition 45. Let ϕ, ψ ∈ Hamnondeg. We have

|µα(ϕ)− µα(ψ)| ⩽ p · dH(ϕ, ψ).

Remark 46. Proposition 45 enables us to define µα for any Hamilton-
ian diffeomorphism including the degenerate ones. In fact, Hamnondeg

is dense in Ham with respect to the Hofer metric dH so define µα(ϕ) :=
limn→+∞ µα(ϕn) where ϕn ∈ Hamnondeg, dH(ϕn, ϕ) → 0.

Since Hamp−nondeg is dense in Ham with respect to the Hofer metric
dH so we have the following property.

Proposition 47. µα(ϕ) = 0 for any ϕ ∈ Powerp.
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Authors of [PS], constructed the following sequence which completes
the proof of theorem 43. This is the only part in the proof where we
use the assumption that the number of genus ⩾ 4.

Proposition 48. Let Σ be a closed surface having genus g ⩾ 4. There
exists a sequence {nk}k∈N ⊂ N that is strictly increasing (i.e. tending
towards infinity), a sequence {ϕk} ⊂ Ham(Σ, ω) and a family αk ∈
π0(LΣ) satisfying following properties:

(1) (ϕk)
p has exactly 22p p-tuples {x, ϕk(x), (ϕk)

2(x), (ϕk)
3(x), · · · , (ϕk)

p−1(x)}
of fixed points of homotopy type αk.

(2) There exists two constants C1 and C2 satisfying the following:
For any ϕk and for any two fixed points x and x′ of ϕp

k which be-
longs to different p-tuples (i.e. {x, ϕk(x), (ϕk)

2(x), (ϕk)
3(x), · · · , (ϕk)

p−1(x)}∩

{x′, ϕk(x
′), (ϕk)

2(x′), (ϕk)
3(x′), · · · , (ϕk)

p−1(x′)} = ∅), we can
estimate their action difference by |AH(x) − AH(x

′)| ⩾ C1 ·
k + C2.

We finish the proof of theorem 43 as follows.

Proof. For each k, focus on the interval Ik := (mk,1,mk,2] where mk,1 is
the least action minx∈Fix(ϕk) AHk

(x) and mk,2 the second least action.
Recall that Hk is a mean-normalized Hamiltonian s.t. ϕk = ϕHk

. Bar-
codesBar(Lζ,αk

(ϕk)) satisfym(Bar(Lζ,αk
(ϕk)), Ik) = m(Bar(Lζ,αk

(ϕk), I
2δ
k ) =

1 mod p for any k. Therefore, we have

dH(ϕk, Powerp) ⩾
1

p
·µα(ϕk) ⩾

1

p
·1
2
·|Ik| =

1

2p
·(mk,2−mk,1) ⩾

1

2p
·(C1·k+C2) → +∞

as k → +∞. Thus, powerp(Σ) = +∞. □

5. Why are barcodes fascinating?

(1) As we mentioned already, spectral invariants had been one of
the main tools in symplectic topology. Floer barcodes contain
all the information of spectral invariants. In fact, from the
point of view of barcodes, spectral invariants are birth points
of half − infinite intervals appearing in Floer barcodes. Thus,
Floer barcodes contain more information than spectral invari-
ants. Indeed, the result in [PS] explained in the previous section
makes use of the finite intervals.

(2) Spectral invariants are not suitable to study fixed points of non-
contractible type: HF λ(H)α vanishes for λ large enough and
α ̸= pt and thus spectral invariants are always −∞. On the
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other hand, barcodes constructed from HF λ(H)α do have finite
bars. Thus, there is a chance that we can obtain information of
Fixα(ϕ).
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