FIMFA 1 Année 2012–2013

EXAMEN DU 30 JANVIER 2013

"Intégration & Probabilités"

180 minutes; sans documents ni calculatrice

Toutes les variables aléatoires sont définies sur un même espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$.

Rappel : (Loi des grands nombres faible) Si X_1, X_2, \cdots sont des variables aléatoires réelles i.i.d. telles que $\mathbb{E}(|X_1|) < \infty$, alors $\sum_{i=1}^n \frac{X_i}{n} \to \mathbb{E}(X_1)$ en probabilité.

EXERCICE (20 points). Question A. Pour toute variable aléatoire réelle ξ , on pose

$$\mathscr{M}(\xi) := \Big\{ y \in \mathbb{R} : \, \mathbb{P}(\xi \leq y) \geq \frac{1}{2}, \, \, \mathbb{P}(\xi \geq y) \geq \frac{1}{2} \Big\}.$$

- (A1) Montrer que $\mathcal{M}(\xi) \neq \emptyset$.
- (A2) Montrer que si $\xi \in \mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})$, alors $\mathcal{M}(\xi) \subset [\mathbb{E}(\xi) \sqrt{2\text{Var}(\xi)}, \mathbb{E}(\xi) + \sqrt{2\text{Var}(\xi)}]$.

Dans la suite de l'exercice, soit $\mathfrak{m}(\xi)$ un élément de $\mathscr{M}(\xi)$.

Question B. Soient ξ , ξ_1 , ξ_2 , \cdots des variables aléatoires réelles.

- **(B1)** Montrer que si $\xi_n \to \xi$ en loi, et si (a_n) et (b_n) sont des suites de réels telles que $a_n \to 1$ et $b_n \to 0$ (lorsque $n \to \infty$), alors $a_n \xi_n + b_n \to \xi$ en loi.
- (B2) Montrer que si pour tout $\varepsilon > 0$, il existe un entier $n_0 \ge 1$ tel que $\mathbb{P}\{\sup_{n \ge n_0} | \xi_n \xi_{n_0}| \ge \varepsilon\}$ $\le \varepsilon$, alors ξ_n converge p.s. vers une variable aléatoire réelle.

La Question C est indépendante des Questions D et E.

Question C. Soient Y_1, Y_2, \cdots des variables aléatoires réelles. Pour tout $n \geq 1$ et tout $\omega \in \Omega$, soient $Y_{1,n}(\omega) \leq Y_{2,n}(\omega) \leq \cdots \leq Y_{n,n}(\omega)$ les valeurs de $Y_1(\omega), \cdots, Y_n(\omega)$ arrangées dans un ordre croissant.

- (C1) Montrer que pour tous $n \geq i \geq 1$, $Y_{i,n}$ est une variable aléatoire.
- (C2) On suppose que Y_1, Y_2, \cdots sont indépendantes et identiquement distribuées, qu'il existe¹ $\beta \in \mathbb{R}$ tel que $F_{Y_1}(\beta) = \frac{1}{2}$, et qu'il existe $\delta > 0$ tel que la fonction F_{Y_1} est de

¹Notation : $F_{Y_1}(y) := \mathbb{P}(Y_1 \leq y), y \in \mathbb{R}$, est la fonction de répartition de Y_1 .

classe C^1 sur $]\beta - \delta$, $\beta + \delta[$ avec $F'_{Y_1}(\beta) > 0$. À l'aide de la loi des grands nombres, montrer que $Y_{\lfloor \frac{n}{2} \rfloor, n}$ converge en probabilité vers une limite que l'on précisera². [On ne cherchera pas à calculer la loi exacte de $Y_{\lfloor \frac{n}{2} \rfloor, n}$.]

Question D. Soient X_1, X_2, \cdots des variables aléatoires réelles indépendantes. Posons $S_n := \sum_{i=1}^n X_i, n \ge 1$. Soit a > 0 un réel.

(D1) Soit $n \ge 2$. Soit $A_1 = A_1(n) := \{X_1 + \mathfrak{m}(S_n - S_1) \ge a\}$ et soient

$$A_{\ell} = A_{\ell}(n) := \Big\{ \max_{k: 1 \le k \le \ell - 1} [S_k + \mathfrak{m}(S_n - S_k)] < a, \ S_{\ell} + \mathfrak{m}(S_n - S_{\ell}) \ge a \Big\},$$

pour $2 \le \ell \le n$. Montrer que $\mathbb{P}(A_i \cap \{S_n - S_i \ge \mathfrak{m}(S_n - S_i)\}) \ge \frac{1}{2} \mathbb{P}(A_i), \forall 1 \le i \le n$.

- **(D2)** Montrer que $\mathbb{P}\{\max_{i: 1 \le i \le n} [S_i + \mathfrak{m}(S_n S_i)] \ge a\} \le 2 \mathbb{P}(S_n \ge a), \forall n \ge 1.$
- **(D3)** Montrer que $\mathbb{P}\{\max_{i: 1 \le i \le n} |S_i + \mathfrak{m}(S_n S_i)| \ge a\} \le 2 \mathbb{P}(|S_n| \ge a), \forall n \ge 1.$
- (**D4**) On suppose désormais que $S_n \to S_\infty$ en probabilité (lorsque $n \to \infty$), où S_∞ est une variable aléatoire réelle.

Montrer que pour tout $\varepsilon > 0$, il existe un entier $N = N(\varepsilon) \ge 1$ tel que $\mathbb{P}\{|S_{i+N} - S_{j+N}| \ge \varepsilon\} < \varepsilon$, pour tous entiers $i \ge 0$ et $j \ge 0$.

(D5) À l'aide de certains résultats ci-dessus, montrer que pour tout $\varepsilon > 0$,

$$\sup_{n\geq 1} \mathbb{P}\Big(\max_{i: 1\leq i\leq n} |S_{i+N} - S_N| \geq 2\varepsilon\Big) \leq 2\varepsilon,$$

où N est l'entier dans (D4).

- (D6) Montrer que S_n converge presque sûrement.
- (D7) Dominique dit : on a prouvé dans (D6) que pour les sommes de variables aléatoires indépendantes, convergence en probabilité et convergence presque sûr sont équivalentes ; on peut donc déduire la loi des grands nombres forte à partir de la loi des grands nombres faible, en appliquant (D6) à la suite $(\widetilde{X}_i := \frac{X_i}{n})$. Qu'en pensez-vous ?

Question E. Soient Z_1, Z_2, \cdots des variables aléatoires réelles indépendantes et identiquement distribuées, telles que $\mathbb{P}(Z_1 = 1) = \frac{1}{2} = \mathbb{P}(Z_1 = -1)$. Soit $\alpha > \frac{1}{2}$ un réel.

- (E1) Montrer que $\sum_{n} \frac{Z_n}{n^{\alpha}}$ converge dans L^2 (c'est-à-dire, $\sum_{i=1}^{n} \frac{Z_i}{i^{\alpha}}$ converge dans L^2).
- (E2) La série $\sum_{n} \frac{Z_n}{n^{\alpha}}$ converge-t-elle p.s. ?
- (E3) Étudier convergence (en loi, en probabilité et p.s.) pour la série $\sum_{n} \frac{Z_n}{n^{\alpha}}$ lorsque $\alpha \in]0, \frac{1}{2}]$.

- fin -

²Notation : $\lfloor x \rfloor$ est la partie entière de x ; c'est-à-dire, $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$.