TD 13 – Propriété de Markov

Lundi 14 décembre

Exercice 1 (Questions « simples » sur la classification des états). On notera génériquement $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov de fonction de transition Q à valeurs dans un espace d'états dénombrable S. On notera $N_x = \sum_{n\in\mathbb{N}} \mathbf{1}_{\{X_n = x\}}$ et $T_x = \inf\{n\in\mathbb{N}: X_n = x\}$.

- 1. Donner un exemple où l'ensemble des points visités par la chaîne issue de x n'est pas déterministe, i.e. constant p.s.
- 2. Donner un exemple où, sans que x soit récurrent, sous \mathbb{P}_x , l'ensemble des points visités par la chaîne est p.s. toujours le même. Donner un exemple où, de plus, l'ordre des 3 premiers points visités en partant de x n'est pas déterministe.
- 3. Soit $x, y \in S$, l'affirmation « si y récurrent et si il existe n tel que $Q^n(x, y) > 0$ alors $N_y = \infty$ \mathbb{P}_x -p.s. » est-elle vraie?
- 4. Donner un exemple où il existe n tel que $Q^n(x,y) > 0$ mais pour tout $p, Q^p(y,x) = 0$.
- 5. Montrer que pour $x, y \in S$, $\mathbb{E}_x(N_y) = \infty \Rightarrow y$ récurrent. La réciproque est-elle vraie?
- 6. Peut-on avoir $0 < \mathbb{E}_x(N_y) < \infty$, avec y récurrent?
- 7. Si $\mathbb{E}_x(N_y) = \infty$, quelles valeurs peut prendre $\mathbb{E}_y(N_x)$?
- 8. On suppose que pour tout $x \in S$, l'ensemble $V_x = \{y \in S | \exists n : Q^n(x,y) > 0\}$ est fini. Montrer qu'il existe des états récurrents.
- 9. Si il existe un état $x_0 \in E$ tel que pour tout $x \in E$, on a $\sum Q^n(x_0, x) > 0$ et $\mathbb{P}_x(T_{x_0} < \infty) = 1$, la chaîne est-elle récurrente?
- 10. Montrer que $\mathbb{P}(T_y < +\infty | X_0 = x) > 0$ ssi il existe n tel que $Q^n(x,y) > 0$.
- 11. Montrer que si S a d éléments, alors le plus petit entier tel que $Q^n(x,y) > 0$ est plus petit que d-1.

Exercice 2 (Chaînes irréductibles). Soit $(X_n)_{n\geq 0}$ une chaîne de Markov à valeurs dans un espace dénombrable S de fonction de transition Q. Montrer que $(X_n)_{n\geq 0}$ est irréductible si et seulement si il n'existe pas de sous-ensemble strict non vide F de S tel que $\forall x \in F, \forall y \in F^c, Q(x,y) = 0$.

Exercice 3 (Chaîne de naissance et de mort). Soit $(p_n), (q_n), (r_n)$ tel que $q_0 = 0, p_i > 0, q_{i+1} > 0$ et $p_i + q_i + r_i = 1$. Soit (X_n) une chaîne de Markov sur $\mathbb N$ telle que

$$\mathbb{P}(X_1 = n + 1 | X_0 = n) = p_n, \quad \mathbb{P}(X_1 = n | X_0 = n) = r_n, \quad \text{et} \quad \mathbb{P}(X_1 = n - 1 | X_0 = 1) = q_n.$$

- 1. Montrer que X est irréductible.
- 2. On suppose que $\sum_{i\geq 1} \frac{p_0\cdots p_{i-1}}{q_1\cdots q_i} < \infty$. Montrer que X admet une mesure de probabilité réversible π qu'on déterminera. Que peut-on en déduire sur X?

3. On considère le cas où $p_i = p > 0$ pour tout $i \ge 0$ et $q_i = q > 0$ pour tout $i \ge 1$ avec p < q. Calculer $\mathbb{E}_i(H_i)$ pour tout $i \ge 0$, où $H_i = \inf\{n \ge 1 : X_n = i\}$ désigne le premier temps de retour en i.

Exercice 4.

Exercice 5 (Temps de départ). Soit (X_n) la chaîne de Markov canonique sur un espace dénombrable E, de matrice de transition Q. On suppose que Q(x,x) < 1 pour tout x. On note \mathcal{F}_n la filtration canonique et on définit $\tau = \inf\{n \geq 1 : X_n \neq X_0\}$.

- 1. Montrer que τ est un temps d'arrêt et que pour tout $x \in E$, τ est fini \mathbb{P}_x -p.s. Calculer les lois de τ et de X_{τ} sous \mathbb{P}_x .
- 2. On définit une suite de v.a. par $\tau_0 = 0$ et $\tau_{k+1} = \inf\{n \geq \tau_k, X_n \neq X_{\tau_k}\}$. Montrer que les τ_k sont des temps d'arrêt finis \mathbb{P}_x -p.s.
- 3. On définit un processus (Y_n) par $Y_n = X_{\tau_n}$. Montrer que (Y_n) est une chaîne de Markov et donner sa matrice de transition.
- 4. On suppose que (X_n) est irréductible récurrente. Montrer que (Y_n) est aussi irréductible récurrente.
- 5. Soit μ une mesure invariante pour (X_n) . montrer que ν définie par $\nu(x) = (1 Q(x, x))\mu(x)$ est une mesure invariante pour (Y_n) .

Exercice 6. Soit (X_n) une suite de variables aléatoires i.i.d. et A tel que $\mathbb{P}(X \in A) > 0$. On pose

$$\tau_1 = \inf\{n \ge 0 : X_n \notin A\}$$
 et $\tau_{k+1} = \inf\{n > \tau_k : X_n \notin A\}$.

Déterminer la loi de $(X_{\tau_k}, k \ge 1)$.

Exercice 7 (Rangement sur une étagère). Chaque matin un étudiant prend un des trois livres (numérotés de 1 à 3) posés sur son étagère. La probabilité qu'il choisisse le livre i est α_i , pour $i \in \{1, 2, 3\}$, où $0 < \alpha_i < 1$, et les choix qu'il fait jours après jours sont indépendants. Le soir, il replace le livre qu'il a pris à gauche des autres, sans déranger les autres. Quel est le comportement asymptotique de p_n , la probabilité que le n-ième matin au réveil l'étudiant trouve ses livres rangés dans l'ordre (1, 2, 3) (de gauche à droite)? Quel est le comportement asymptotique du nombre de fois où l'étudiant prend le livre le plus à gauche sur son étagère?

Exercice 8 (Urnes d'Ehrenfest). On considère une urne contenant N boules blanches et noires. À chaque étape, une boule est sélectionnée uniformément au hasard, et sa couleur est inversée.

- 1. Montrer que X_n^N le nombre de boules blanches à l'étape n dans l'urne est une chaîne de Markov, dont on déterminera la matrice de transition.
- 2. Déterminer la mesure d'équilibre π^N de la chaîne de Markov, et sa limite en loi (convenablement renormalisée) lorsque $N \to +\infty$.
- 3. On suppose que $X_0^N=0,$ et on pose $\tau=\inf\{n>0:X_n^N=0\}.$ Calculer $\mathbb{E}(\tau).$
- 4. Calculer $\mathbb{E}(X_n|X_0)$ et $\mathbb{E}(X_n^2|X_0)$.
- 5. (*) On suppose que $X_0^N = \left| N/2 + x\sqrt{N} \right|$. Déterminer la limite en loi de $\frac{X_{\lfloor Nt \rfloor}^N}{\sqrt{N}}$.

Exercice 9 (Convergence en loi). Soit B un mouvement Brownien. On pose $S_1 = \sup_{t \in [0,1]} B_t$. Montrer que la convergence suivante en loi : $\lim_{t \to +\infty} \left(\int_0^t e^{B_s} ds \right)^{1/\sqrt{t}} = e^{S_1}$.