Lois indéfiniment divisibles et processus de Lévy

Antoine Gerschenfeld & Céline Nadal DMA, Ecole Normale Supérieure

24 juin 2006

Résumé

Ce mémoire expose les premiers résultats de la théorie des marches aléatoires sur \mathbb{R}^d à temps continu, les processus de Lévy. Un tel processus est entièrement déterminé par sa loi à l'instant 1, qui constitue un exemple de loi indéfiniment divisible (elle est la convolution n-ième d'une autre loi, pour tout n).

L'étude des lois indéfiniment divisibles permet d'en fournir une décompostion caractéristique, appelée représentation de Lévy-Khintchine, comme convolution de trois termes aisément identifiables : un terme de dérive (évolution de la valeur moyenne), un terme de diffusion (traduisant un mouvement brownien) et un terme traduisant une évolution par "sauts" discontinus, analogue à un processus de Poisson.

Mémoire dirigé par F. Benaych-Georges

 $Merci\ Florent\,!$

Table des matières

1	Inti	roduction : processus de Lévy et préliminaires	4
	1.1	Processus de Lévy	4
		1.1.1 Définition	4
		1.1.2 Exemples de processus de Lévy	4
	1.2	Résultats préliminaires	6
		1.2.1 Lois sur $(\mathbb{R}^d)^{\mathbb{R}_+}$: le théorème de Kolmogorov	6
		1.2.2 Convergences de mesures et théorème de Paul-Lévy	7
2	Lois	s indéfiniment divisibles	12
3	Des	s processus de Lévy en loi aux processus de Lévy	18
4	Rep	présentation des mesures indéfiniment divisibles : théorème de Lévy-Khintchine	21
	4.1	Preuve de l'unicité	21
	4.2	Preuve de la réciproque	22
	4.3	Preuve de l'existence	23

1 Introduction : processus de Lévy et préliminaires

1.1 Processus de Lévy

1.1.1 Définition

Définition 1.1. Un processus aléatoire $(X_t)_{t\geq 0}$ sur \mathbb{R}^d ($X_t:(\Omega,F)\to\mathbb{R}^d$) est un processus de Lévy s'il satisfait les conditions suivantes :

- (i) Pour tout choix de $n \ge 1$ et $0 \le t_0 < t_1 < ... < t_n$, les variables aléatoires $X_{t_0}, X_{t_1} X_{t_0}, X_{t_2} X_{t_1}, ..., X_{t_n} X_{t_{n-1}}$ sont indépendantes.
- (ii) $X_0 = 0 \ ps$.
- (iii) La loi de $X_{s+t} X_s$ ne dépend pas de s.
- (iv) (X_t) est continu en probabilité, c'est à dire que pour tout $t \geq 0$ et pour tout $\varepsilon > 0$

$$\lim_{s \to t} P[|X_s - X_t| > \varepsilon] = 0$$

(v) Il existe un ensemble $\Omega_0 \in F$ tel que $\mathbb{P}[\Omega_0] = 1$ et pour tout $\omega \in \Omega_0$, $X_t(\omega)$ est continu à droite en tout $t \geq 0$ et a une limite à gauche en tout t > 0.

Un processus aléatoire vérifiant les conditions (i) à (iv) (on n'impose plus d'hypothèses de continuité) est appelé processus de Lévy en loi.

Remarque. Un processus de Lévy en loi décrit de la manière la plus générale une marche aléatoire à paramètre réel sur \mathbb{R}^d : le mouvement après l'instant t ne dépend que de la position à cet instant, et la loi d'évolution est invariante par translation d'espace (homgénéité spatiale) et de temps (homogénéité temporelle).

1.1.2 Exemples de processus de Lévy

Mouvement brownien

Définition 1.2. Un processus aléatoire $\{X_t : t \geq 0\}$ sur \mathbb{R}^d est un mouvement brownien si c'est un processus de Lévy tel que :

- (i) Pour tout t > 0, X_t suit une loi gaussienne de moyenne 0 et de matrice de covariance tId.
- (ii) Il existe un ensemble $\Omega_0 \in F$ tel que $\mathbb{P}[\Omega_0] = 1$ et pour tout $\omega \in \Omega_0$, $X_t(\omega)$ est continu en t.

Pour un loi gaussienne μ de matrice de covariance A, on a :

$$\widehat{\mu}(z) = e^{-\frac{1}{2} \langle z, Az \rangle}$$

Processus de Poisson composés

Définition 1.3. Une loi de Poisson de moyenne c > 0 est définie par :

$$\forall k \in \mathbb{N}, \mu(\{k\}) = e^{-c} \frac{c^k}{k!}$$

 μ est une loi de Poisson de moyenne c>0 si, pour tout $z\in\mathbb{R}^d$

$$\widehat{\mu}(z) = \exp\left(c\left(e^{iz} - 1\right)\right)$$

et μ est une loi de Poisson composée de paramètres (c, σ) (avec c > 0 et σ une mesure de probabilité sur \mathbb{R}^d telle que $\sigma(\{0\}) = 0$) si, pour tout $z \in \mathbb{R}^d$

$$\widehat{\mu}(z) = \exp(c(\widehat{\sigma}(z) - 1)).$$

Définition 1.4.

 Un processus aléatoire est un processus de Poisson de paramètre c > 0 si c'est un processus de Lévy tel que pour tout t > 0, X_t suive une loi de Poisson de moyenne ct. - Un processus aléatoire est un processus de Poisson composé de paramètres $(c > 0, \sigma)$ si c'est un processus de Lévy tel que pour tout t > 0, X_t suive une loi de Poisson composée de paramètres (ct, σ) .

La loi de Poisson est un cas particulier de loi de Poisson composée obtenu pour d=1 et $\sigma=\delta_1$ (mesure de Dirac au point 1).

Théorème 1.1. Soit $(N_t)_{t\geq 0}$ un processus de Poisson de paramètre c>0 et $(S_n)_{n\in\mathbb{N}}$ une marche aléatoire sur \mathbb{R}^d définis sur un même ensemble de probabilité (Ω, F, \mathbb{P}) . On suppose de plus (N_t) et (S_n) indépendants et que $\mathbb{P}[S_1=0]=0$. Posons

$$X_t(\omega) = S_{N_t(\omega)}(\omega).$$

Alors (X_t) est un processus de Poisson composé de paramètres c et σ avec σ la loi de S_1 .

Démonstration. Soient $k \ge 0$ et $0 \le t_0 < t_1 < ... < t_k$. Soient $B_0, B_1, ..., B_k$ des boréliens de \mathbb{R}^d .

$$\begin{split} \mathbb{P}[X_{t_0} \in B_0, X_{t_1} - X_{t_0} \in B_1, ..., X_{t_k} - X_{t_{k-1}} \in B_k] \\ &= \sum_{n_0, ..., n_k} \mathbb{P}[N_{t_0} = n_0, N_{t_1} - N_{t_0} = n_1, ..., N_{t_k} - N_{t_{k-1}} = n_k; \\ &S_{n_0} \in B_0, S_{n_1 + n_0} - S_{n_0} \in B_1, ..., S_{n_0 + ... + n_k} - S_{n_0 + ... + n_{k-1}} \in B_k] \\ &= \sum_{n_0, ..., n_k} \mathbb{P}[N_{t_0} = n_0, N_{t_1} - N_{t_0} = n_1, ..., N_{t_k} - N_{t_{k-1}} = n_k] \\ &\mathbb{P}[S_{n_0} \in B_0, S_{n_1 + n_0} - S_{n_0} \in B_1, ..., S_{n_0 + ... + n_k} - S_{n_0 + ... + n_{k-1}} \in B_k] \end{split}$$

par indépendance de (N_t) et (S_n) . On applique alors successivement la propriété d'accroissements indépendants (i) dans la définition des processus de Lévy et la propriété (iii) à (N_t) et (S_n) (la marche aléatoire vérifie ces propriétés par construction et N_t est un processus de Lévy).

$$\begin{split} \mathbb{P}[X_{t_0} \in B_0, X_{t_1} - X_{t_0} \in B_1, ..., X_{t_k} - X_{t_{k-1}} \in B_k] \\ &= \sum_{n_0, ..., n_k} \mathbb{P}[N_{t_0} = n_0] \mathbb{P}[N_{t_1} - N_{t_0} = n_1] ... \mathbb{P}[N_{t_k} - N_{t_{k-1}} = n_k] \\ &\qquad \qquad \mathbb{P}[S_{n_0} \in B_0] \mathbb{P}[S_{n_1 + n_0} - S_{n_0} \in B_1] ... \mathbb{P}[S_{n_0 + ... + n_k} - S_{n_0 + ... + n_{k-1}} \in B_k] \ (i) \\ &= \sum_{n_0, ..., n_k} \mathbb{P}[N_{t_0} = n_0] \mathbb{P}[N_{t_1 - t_0} = n_1] ... \mathbb{P}[N_{t_k - t_{k-1}} = n_k] \\ &\qquad \qquad \mathbb{P}[S_{n_0} \in B_0] \mathbb{P}[S_{n_1} \in B_1] ... \mathbb{P}[S_{n_k} \in B_k] \ (iii) \end{split}$$

Enfin, on se sert à nouveau de l'indépendance de (N_t) et (S_n) :

$$\begin{split} \mathbb{P}[X_{t_0} \in B_0, X_{t_1} - X_{t_0} \in B_1, ..., X_{t_k} - X_{t_{k-1}} \in B_k] \\ &= \mathbb{P}[X_{t_0} \in B_0] P[X_{t_1 - t_0} \in B_1] ... P[X_{t_k - t_{k-1}} \in B_k]. \end{split}$$

Pour k = 1 et $B_0 = \mathbb{R}^d$ on obtient $\mathbb{P}[X_{t_1 - t_0} \in B_1] = \mathbb{P}[X_{t_1} - X_{t_0} \in B_1]$ (quels que soient $0 \le t_0 < t_1$ et B_1 borélien). Ainsi on en déduit (par ce qui précède) :

$$\begin{split} \mathbb{P}[X_{t_0} \in B_0, X_{t_1} - X_{t_0} \in B_1, ..., X_{t_k} - X_{t_{k-1}} \in B_k] \\ &= \mathbb{P}[X_{t_0} \in B_0] \mathbb{P}[X_{t_1 - t_0} \in B_1] ... \mathbb{P}[X_{t_k - t_{k-1}} \in B_k] \\ &= \mathbb{P}[X_{t_0} \in B_0] \mathbb{P}[X_{t_1} - X_{t_0} \in B_1] ... \mathbb{P}[X_{t_k} - X_{t_{k-1}} \in B_k] \end{split}$$

donc (X_t) vérifie le (i) et (iii) de la définition des processus de Lévy.

(ii), (iv)et (v) sont évidents (par composition).

Enfin

$$\widehat{\mathbb{P}_{X_t}}(z) = \sum_{n=0}^{\infty} \mathbb{P}[N_t = n] \mathbb{E}[e^{i < z, S_n >}] = \sum_{n=0}^{\infty} e^{-ct} \frac{1}{n!} (ct)^n \widehat{\sigma}(z)^n = \exp\left(ct(\widehat{\sigma}(z) - 1)\right).$$

1.2 Résultats préliminaires

1.2.1 Lois sur $(\mathbb{R}^d)^{\mathbb{R}_+}$: le théorème de Kolmogorov

Théorème 1.2 (Kolmogorov).

Si une famille $(\mu_{t_1,...,t_k})_{t_1,...,t_k \in I, k \geq 1}$, où $\mu_{t_1,...,t_k}$ est une mesure de probabilité sur $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$, satisfait $\forall t_1,...,t_k,...,t_n \in I, \forall B_1,...B_{k-1}, B_{k+1},...,B_n \in \mathcal{B}(\mathbb{R})$,

$$\mu_{t_1,...t_n}(B_1 \times ... \times B_{k-1} \times \mathbb{R} \times B_{k+1} \times ... \times B_n) = \mu_{t_1,...t_{k-1},t_{k+1},...t_n}(B_1 \times ... \times B_{k-1} \times B_{k+1} \times ... \times B_n)$$

alors il existe une unique mesure de probabilités notée \mathbb{P} sur $(\mathbb{R}^I, \mathcal{F})$, où \mathcal{F} est la tribu des cylindres de \mathbb{R}^I

$$\mathcal{F} = \sigma(\{f \in \mathbb{R}^I : f(t_1) \in B_1, ..., f(t_k) \in B_k\}, t_i \in I, B_i \in \mathcal{B}(\mathbb{R}^I))$$

 $telle\ que$

$$\forall t_1,..,t_k \in I, \forall B_1,..B_k \in \mathcal{B}(\mathbb{R}), \mu_{t_1,...t_k}(B_1 \times ... \times B_k) = \mathbb{P}(\{f \in \mathbb{R}^I : f(t_1) \in B_1,..,f(t_k) \in B_k\})$$

Démonstration.

– Cas $I = \mathbb{N}*$:

On peut définir \mathbb{P} sur la classe monotone $\mathcal{C} = \{H \times \mathbb{R}^{\mathbb{N}}, H \in \mathcal{B}(\mathbb{R}^k), k \geq 1\}$: si $A = A_k \times \mathbb{R}^{\mathbb{N}}$, avec $A_k \in \mathcal{B}(\mathbb{R}^k)$, posons $\mathbb{P}(A) = \mu_{1,...,n}(A_k \times \mathbb{R}^{n-k})$ pour tout $n \geq k$ gràce à la propriété de compatibilité.

De manière évidente, $\mathbb{P}(\mathbb{R}^{\mathbb{N}}) = 1$; de plus, si $B = B_l \times \mathbb{R}^{\mathbb{N}}$ est disjoint de A, alors $A_k \times \mathbb{R}^{n-k}$ et $B_l \times \mathbb{R}^{n-l}$ sont disjoints pour $n \geq k \vee l$ d'où $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.

Enfin, si $(A^k)_{k\in\mathbb{N}}$ est une suite décroissante de \mathcal{C} , telle que $\bigcap_k A^k = \emptyset$, montrons $(\mathbb{P}(A^k))_{k>0} \longrightarrow 0$.

Pour cela, supposons que $\mathbb{P}(A^k) > \varepsilon$ pour tout k; on pose $A^k = B_k \times \mathbb{R}^{\mathbb{N}}$ avec $B_k \in \mathcal{B}(\mathbb{R}^{n_k})$ et $(n_k)_{k \in \mathbb{N}}$ strictement croissante. Pour tout k, $\mu_{1,\dots,n_k}(B_k) > \varepsilon$ donc il existe un compact de \mathbb{R}^{n_k} , $K_k \subset B_k$ tel que

$$\mu_{1,..,n_k}(B_k \setminus K_k) < \frac{\varepsilon}{2^{k+1}}$$

On pose $L^k = \bigcap_{l \leq k} (K_l \times \mathbb{R}^{\mathbb{N}})$. L^k est dans \mathcal{C} , et vérifie $\mathbb{P}(A^k \setminus L^k) \leq \sum_{l=1}^k \mu_{1,..,l}(B_l \setminus K_l) < \varepsilon/2$. Or $\mathbb{P}(A^k) > \varepsilon$, donc $\mathbb{P}(L^k) > 0$ et $L^k \neq \emptyset$.

Il existe alors un élément dans $\bigcap_k L^k$: en effet, L^k est de la forme $K_k' \times \mathbb{R}^{\mathbb{N}}$ où K_k' est un compact de \mathbb{R}^{n_k} et $K_{k+1}' \subset K_k' \times \mathbb{R}^{n_{k+1}-n_k}$. Soit $(x_0^k,..,x_{n_k}^k) \in K_k'$, on pose $x^k = (x_0^k,..,x_{n_k}^k,0,..)$. Pour tout n, $\{x_n^k, k \geq 0\}$ est relativement compact donc (compacité d'un produit quelconque de compacts) $(x^k)_{k \geq 0} \longrightarrow x$: comme $\forall 0 \leq l \leq k, x^k \in L^l$ on en déduit $x \in \bigcap_k L^k \subset \bigcap_k A^k \neq \emptyset$.

Ainsi, \mathbb{P} vérifie les propriétés d'une mesure sur la classe \mathcal{C} , qui est stable par intersections et engendre \mathcal{F} comme tribu : on en déduit que \mathbb{P} est une probabilité sur \mathcal{F} , qui vérifie

$$\mu_{t_1,y..,t_k}(B_1 \times ... \times B_k) = \mathbb{P}(\{f \in \mathbb{R}^I : f(t_1) \in B_1,...,f(t_k) \in B_k\})$$

- Cas général : la tribu \mathcal{F} est constituée exactement d'ensembles de la forme $\{f \in \mathbb{R}^I \text{ tq } (f(t_n))_{n \in \mathbb{N}} \in H\}$ pour $(t_n) \in \mathbb{R}^{\mathbb{N}}, H \in \mathcal{F}_{\mathbb{N}}$ (les ensembles de cette forme forment une tribu, qui contient les cylindres et qui est engendrée par eux). Si on nomme $\mathbb{P}_{(t_n)}$ la mesure sur $\mathbb{R}^{\mathbb{N}}$ que l'on peut construire à partir de la famille de mesures $(\mu_{t_{s_1},\dots,t_{s_k}})_{s_1,\dots,s_k \in \mathbb{N},k \geq 1}$, on peut poser

$$\mathbb{P}(\{f \in \mathbb{R}^I \text{ tq } (f(t_n))_{i \in \mathbb{N}} \in H\}) = \mathbb{P}_{(t_n)}(H)$$

La condition de compatibilité garantissant que cette définition ne dépend pas de la suite (t_n) décrivant correctement l'ensemble choisi, il est alors facile de vérifier que \mathbb{P} est une probabilité sur $(\mathbb{R}^I, \mathcal{F})$, et qu'elle est unique (elle est définie de manière unique sur la classe monotone des cylindres). \square

1.2.2 Convergences de mesures et théorème de Paul-Lévy

Définition 1.5. Soient $(\mu_n)_{n\in\mathbb{N}}$, μ des mesures positives sur $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$. On dit que :

- (μ_n) converge étroitement vers μ (notation $(\mu_n) \xrightarrow{(e)} \mu$) si

$$\forall f \in \mathcal{C}_b(\mathbb{R}^d), \int f d\mu_n \xrightarrow[n \to \infty]{} \int f d\mu$$

- (μ_n) converge vaguement vers μ (notation $(\mu_n) \xrightarrow{(v)} \mu$) si

$$\forall f \in \mathcal{C}_C(\mathbb{R}^d), \int f d\mu_n \underset{n \to \infty}{\longrightarrow} \int f d\mu$$

Ici, $C_b(\mathbb{R}^d)$ (resp. $C_C(\mathbb{R}^d)$) désigne l'ensemble des fonctions continues bornées (resp. à support compact) de \mathbb{R}^d dans \mathbb{R} .

Remarque. Dans le cas présent (mesures signées sur \mathbb{R}^d), il est facile de montrer que

$$(\mu_n) \xrightarrow{(v)} \mu \Leftrightarrow \forall f \in \mathcal{C}_0(\mathbb{R}^d), \int f d\mu_n \xrightarrow[n \to \infty]{} \int f d\mu$$

où $\mathcal{C}_0(\mathbb{R}^d)$ désigne l'ensemble des fonctions continues sur \mathbb{R}^d tendant vers 0 à l'infini.

Définition 1.6. Soit $\{\mu_i, i \in I\}$ un ensemble de mesures positives sur $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. On dit que :

- $\{\mu_i\}$ est borné si $\sup_{i\in I} \mu_i(\mathbb{R}^d) < \infty$
- $-\{\mu_i\}$ est tendu si

 $\forall \varepsilon > 0, \exists K \ compact \ tq \ \sup_{i \in I} \mu_i(K^C) < \varepsilon$

ou encore

$$\lim_{t \to +\infty} \left(\sup_{i \in I} \mu_i \left(\left(B(0, t) \right)^C \right) \right) = 0$$

Propriétés 1.3. Sur l'ensemble des mesures positives sur $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$:

- (i) La convergence étroite est plus forte que la convergence vague;
- (ii) Tout ensemble borné de mesures positives $\{\mu_i, i \in I\}$ est séquentiellement relativement compact pour la convergence vague;
- (iii) Si $\{\mu_n, n \in \mathbb{N}\}$ est un ensemble tendu de mesures de probabilité et si $(\mu_n) \stackrel{(v)}{\to} \mu$, alors $(\mu_n) \stackrel{(e)}{\to} \mu$;

 $D\'{e}monstration.$

- -(i): évident
- Preuve de (ii):

Considérons une suite $\{f_k\}$ de fonctions continues à support compact qui soit dense dans $C_c(\mathbb{R}^d)$. Une telle suite existe par séparabilité de $C_c(\mathbb{R}^d)$. En effet, notons C_n le sous-ensemble de $\mathcal{C}_C(\mathbb{R}^d)$ des fonctions continues à support sur B(0,n). C_n est séparable : soit D_n une partie dénombrable dense de C_n . Comme $\mathcal{C}_C(\mathbb{R}^d) = \bigcup_{n\geq 0} C_n$, $D = \bigcup_{n\geq 0} D_n$ est une partie dénombrable dense de $\mathcal{C}_C(\mathbb{R}^d)$ (pour $\|.\|_{\infty}$)

Soit $(\mu_n)_{n\in\mathbb{N}}$ une suite d'éléments de l'ensemble $\{\mu_i\}$. Pour chaque k, la suite $(\int f_k d\mu_n)_{n\geq 0}$ est bornée par $M||f_k||_{\infty}$. On peut donc extraire de μ_n par procédé diagonal une sous-suite μ_{n_j} telle

que pour tout k la suite $(\int f_k d\mu_{n_j})_{j\geq 0}$ converge vers un complexe que l'on notera $I(f_k)$. $f\to I(f)$ est une forme linéaire (par linéarité de l'intégrale) continue (et de norme $||I||\leq M$) sur le sous-espace vectoriel dense F engendré par la famille $\{f_k,k\geq 0\}$ (car $|I(f_k)|\leq M||f_k||_{\infty}$, les μ_n étant des mesures bornées), donc uniformément continue. Il existe donc un unique prolongement de I au Banach \bar{F} donc à $C_c(\mathbb{R}^d)$. I est alors une forme linéaire continue positive sur $C_c(\mathbb{R}^d)$ (et $||I||\leq M$). Par le théorème de représentation de Riesz, à la forme linéaire continue positive I sur $C_c(\mathbb{R}^d)$ correspond une unique mesure de Radon positive μ .

$$\forall f \in C_c(\mathbb{R}^d), I(f) = \mu(f) = \int f d\mu$$

Et par densité des f_k :

$$\forall f \in C_c(\mathbb{R}^d), \int f d\mu_{n_j} \to I(f) = \int f d\mu$$

donc μ_{n_j} converge vaguement vers $\mu.$

En effet pour $\varepsilon > 0$ et $f \in C_c(\mathbb{R}^d)$, il existe k tel que $||f_k - f||_{\infty} \le \varepsilon$. Il existe alors N tel que pour j > N $|\int f_k d\mu_{n_j} - I(f_k)| \le \varepsilon$. Alors

$$\left| \int f d\mu_{n_{j}} - I(f) \right| \leq \left| \int f_{k} d\mu_{n_{j}} - \int f d\mu_{n_{j}} \right| + \left| \int f_{k} d\mu_{n_{j}} - I(f_{k}) \right| + \left| I(f_{k}) - I(f) \right|$$

$$\leq ||f_{k} - f||_{\infty} \int d\mu_{n_{j}} + \varepsilon + |I(f_{k} - f)|$$

$$\leq \varepsilon + 2M||f_{k} - f||_{\infty} \leq (2M + 1)\varepsilon$$

- Preuve de (iii) :
 - (1) Montrons que $\mu_n(\mathbb{R}^d) \to \mu(\mathbb{R}^d)$. Considérons une suite de fonctions $\phi_l \in \mathcal{C}_c(\mathbb{R}^d)$ qui converge en croissant vers 1 et vaut 1 sur la boule de rayon l. Par Fatou

$$\mu(1) = \mu(\lim \phi_l) \le \liminf \mu(\phi_l) \le 1$$

(en effet $\mu(\phi_l) = \lim_{n\to\infty} \mu_n(\phi_l) \le 1$ car les ϕ_l sont dans $C_c(\mathbb{R}^d)$ et les μ_n sont des mesures de probabilité).

D'autre part, par hypothèse sur μ_n ($\{\mu_n\}$ est tendu), pour $\varepsilon > 0$, il existe M tel que

$$\sup_{n} \mu_n \left(([-M; M]^d)^c \right) \le \varepsilon.$$

Or pour l assez grand $\phi_l \geq \mathbf{1}_{[-M;M]^d}$. donc

$$1 - \mu_n(\phi_l) = \mu_n(1 - \phi_l) \le \mu_n(1 - 1_{\lceil -M:M \rceil^d}) \le \varepsilon$$

soit

$$\mu_n(\phi_l) \ge 1 - \varepsilon$$

donc

$$\mu(1) = \mu(\lim \phi_l) \ge \limsup_{l} \mu(\phi_l)$$

$$= \limsup_{l} \lim_{n \to \infty} \mu_n(\phi_l) \ge 1 - \varepsilon$$

Donc $\mu(1) = 1 = \lim \mu_n(1)$ (car $\mu_n(1) = 1$).

(2)Sachant que μ_n converge vaguement vers μ et que $\mu_n(\mathbb{R}^d) \to \mu(\mathbb{R}^d)$, montrons que μ_n converge étroitement vers μ .

Soit f une fonction continue bornée. Soit $\phi_l \in \mathcal{C}_C(\mathbb{R}^d)$ définie comme précédemment. $f\phi_l$ est alors une fonction de $C_c(\mathbb{R}^d)$ et

$$\lim_{n \to \infty} \mu_n(f\phi_l) = \mu(f\phi_l)$$

$$\lim_{n \to \infty} \mu_n(\phi_l) = \mu(\phi_l)$$

$$\lim_{l} \mu(\phi_l) = \mu(1) = 1$$

Soit $\varepsilon > 0$. Il existe L tel que pour $l \geq L$

$$|\mu(\phi_l) - \mu(1)| \le \varepsilon$$

On fixe l = L. Il existe alors N tel que pour n > N on ait

$$|\mu_n(1) - \mu(1)| \le \varepsilon$$
, $|\mu_n(f\phi_l) - \mu(f\phi_l)| \le \varepsilon$ et $|\mu_n(\phi_l) - \mu(\phi_l)| \le \varepsilon$

Pour l = L et n > N on a donc

$$\begin{aligned} |\mu_{n}(f) - \mu_{l}(f)| & \leq |\mu_{n}(f) - \mu_{n}(f\phi_{l})| + |\mu_{n}(f\phi_{l}) - \mu(f\phi_{l})| + |\mu(f\phi_{l}) - \mu(f)| \\ & \leq ||f||_{\infty} \left[|\mu_{n}(1) - \mu_{n}(\phi_{l})| + |\mu(1) - \mu(\phi_{l})| \right] + |\mu_{n}(f\phi_{l}) - \mu(f\phi_{l})| \\ & \leq \varepsilon ||f||_{\infty} + \varepsilon + ||f||_{\infty} \left[|\mu_{n}(1) - \mu(1)| + |\mu(\phi_{l}) - \mu(1)| + |\mu_{n}(\phi_{l}) - \mu(\phi_{l})| \right] \\ & \leq (4||f||_{\infty} + 1)\varepsilon \end{aligned}$$

Donc μ_n converge étroitement vers μ .

Corollaire 1.4.

(i) Si $\{\mu_n\}$ est une suite tendue de mesures de probabilité sur \mathbb{R}^d ie telle que

$$\lim_{M \to \infty} \sup_{n} \mu_n \left(([-M; M]^d)^c \right) = 0,$$

alors $\{\mu_n\}$ possède une sous-suite qui converge étroitement.

(ii) Si $\{\rho_n\}$ est une suite bornée tendue de mesures positives \mathbb{R}^d alors $\{\rho_n\}$ possède une sous-suite qui converge étroitement.

Démonstration.

- (i) : On applique successivement les propriétés (ii) et (iii) précédentes.
- (ii): Premier cas: $\rho_n(\mathbb{R}^d) \to 0$. Le résultat est évident.

Deuxième cas : quitte à extraire une première fois, on peut supposer que $m_0 = \inf_n \rho_n(\mathbb{R}^d) > 0$. Posons $\mu_n(dx) = \frac{\rho_n(dx)}{\rho_n(\mathbb{R}^d)}$. Les μ_n sont des mesures de probabilité telles que

$$\lim_{M \to \infty} \sup_{n} \mu_n \left(([-M; M]^d)^c \right) = 0$$

car $\mu_n\left(([-M;M]^d)^c\right) \leq \frac{\rho_n\left(([-M;M]^d)^c\right)}{m_0}$ et la famille $\{\rho_n\}$ est tendue. Par le corollaire (i) on en déduit qu'on peut extraire des μ_n une sous-suite convergeante μ_{n_k} (au

Par le corollaire (i) on en déduit qu'on peut extraire des μ_n une sous-suite convergeante μ_{n_k} (au sens de la convergence étroite). Or la suite réelle des $\rho_{n_k}(\mathbb{R}^d)$ est bornée, donc quitte à extraire encore une fois, on peut la supposer convergente (étroitement). Ainsi $\rho_{n_k}(dx) = \mu_{n_k}(dx)\rho_{n_k}(\mathbb{R}^d)$ converge étroitement vers une mesure finie ρ .

Théorème 1.5 (Paul-Lévy). Soit $(\mu_n)_{n\in\mathbb{N}}$ une suite de mesures de probabilités. Si $\widehat{\mu_n}(z)$ converge simplement vers une fonction $\phi(z)$ et si $\phi(z)$ est continue en 0, alors $\phi(z)$ est la fonction caractéristique d'une loi μ avec $\mu_n \stackrel{(e)}{\longrightarrow} \mu$.

Démonstration.

Lemme 1.6. $\{\mu_n\}$ est tendue :

$$\lim_{M \to \infty} \sup_{n} \mu_n \left(([-M; M]^d)^c \right) = 0$$

 $Preuve\ du\ lemme$

Pour u > 0, par Fubini,

$$\frac{1}{u^{d}} \int_{[-u;u]^{d}} (1 - \widehat{\mu_{n}}(z)) dz = \frac{1}{u^{d}} \int_{\mathbb{R}^{d}} \left[\int_{[-u;u]^{d}} (1 - e^{i} < z, x >) dz \right] \mu_{n}(dx)$$

$$= \frac{1}{u^{d}} \int_{\mathbb{R}^{d}} \left[2^{d} u^{d} - \prod_{k=1}^{d} \left(\frac{2 \sin(ux_{k})}{x_{k}} \right) \right] \mu_{n}(dx)$$

$$= 2^{d} \int_{\mathbb{R}^{d}} \left(1 - \prod_{k=1}^{d} \left(\frac{\sin(ux_{k})}{ux_{k}} \right) \right) \mu_{n}(dx)$$

$$\geq 2^{d} \int_{\{\exists j, |ux_{j}| \ge 2\}} \left(1 - \prod_{k=1}^{d} \left(\frac{\sin(ux_{k})}{ux_{k}} \right) \right) \mu_{n}(dx)$$

$$\geq 2^{d} \int_{\{\exists j, |ux_{j}| \ge 2\}} \left(1 - \frac{1}{2} \right) \mu_{n}(dx)$$

$$\geq 2^{d-1} \mu_{n} \left(\bigcup_{j=1}^{d} \{ |ux_{j}| \ge 2 \} \right) = 2^{d-1} \mu_{n} \left(\left([-2/u; 2/u]^{d} \right)^{c} \right)$$

Posons $T_{n,u} = \frac{1}{u^d} \int_{[-u;u]^d} (1-\widehat{\mu_n}(z)) dz$. Effectuons le changement de variable z=ux:

$$T_{n,u} = \int_{[-1;1]^d} (1 - \widehat{\mu}_n(ux)) dx$$

 $(1-\widehat{\mu_n}(ux))$ converge simplement vers $1-\phi(ux)$ quand $n\to\infty$. Or $|1-\widehat{\mu_n}(ux)|\leq 2$ (car μ_n est une mesure de probabilité). Donc par convergence dominée, pour $u>0:T_{n,u}\to\int_{[-1;1]^d}(1-\phi(ux))dx$ quand $n\to\infty$.

D'autre part $\phi(ux)$ converge simplement vers $\phi(0)$ quand $u \to 0$ par continuité de ϕ en 0. Or $|1 - \phi(ux)| \le 2$ (car ϕ est la limite des $\widehat{\mu_n}$ et $|\widehat{\mu_n}| \le 1$). Donc par convergence dominée :

$$\int_{[-1;1]^d} (1 - \phi(ux)) dx \to \int_{[-1;1]^d} (1 - \phi(0)) dx = 0$$

(pour tout $n \widehat{\mu}_n(0) = \mu_n(\mathbb{R}^d) = 1 \text{ donc } \phi(0) = 1$).

Soit $\varepsilon > 0$. Il existe donc $\eta > 0$ tel que pour tout $0 < u \le \eta$

$$\left| \int_{[-1;1]^d} (1 - \phi(ux)) dx \right| \le \varepsilon.$$

On fixe $u = \eta$. Par ce qui précède, on sait qu'il existe N tel que pour $n \ge N$

$$\left| T_{n,\eta} - \int_{[-1;1]^d} (1 - \phi(\eta x)) \, dx \right| \le \varepsilon$$

Finalement, on obtient que pour tout $\varepsilon > 0$ il existe $\eta > 0$ et N tel que pour tout $n \ge N$ et pour tout $0 < u \le \eta$ on ait

$$\mu_n\left(\left(\left[-\frac{2}{u};\frac{2}{u}\right]^d\right)^c\right) \le \mu_n\left(\left(\left[-\frac{2}{\eta};\frac{2}{\eta}\right]^d\right)^c\right) \le \frac{1}{2^{d-1}}T_{n,\eta} \le \frac{1}{2^{d-1}}2\varepsilon$$

soit

$$\lim_{u\to 0}\sup_n \mu_n \big(([-2/u;2/u]^d)^c\big) \leq 2^{1-d}2\varepsilon.$$

 $Preuve\ du\ th\'eor\`eme$

on applique le lemme ci-dessus et le corollaire (i) à μ_n . On en déduit que $\{\mu_n\}$ possède une sous-suite μ_{n_j} qui converge étroitement vers une mesure μ , soit pour tout z

$$\widehat{\mu}_{n_i}(z) \to \widehat{\mu}(z)$$

Or par hypothèse $\widehat{\mu}_{n_j}(z) \to \phi(z),$ donc par unicité de la limite, pour tout z

$$\phi(z) = \widehat{\mu}(z)$$

Et alors $\phi(z)$ est la fonction caractéristique de la loi μ : celle-ci vérifie $\mu_n \stackrel{(e)}{\to} \mu$ car $(\widehat{\mu_n}) \to \widehat{\mu}$ simplement.

2 Lois indéfiniment divisibles

Définition 2.1. Une mesure de probabilités μ sur \mathbb{R}^d est dite indéfiniment divisible si, pour tout $n \in \mathbb{N}$, il existe une mesure de probabilités ν telle que

$$\mu = \underbrace{\nu * .. * \nu}_{n \text{ fois}} = \nu^{*n}$$

Remarque. Comme $\widehat{\nu^{*n}} = \widehat{\nu}^n$, cette définition équivant à ce que $\widehat{\mu}$ soit la puissance n-ième d'une fonction caractéristique pour tout n.

Exemples.

- Les distributions de Dirac en un point sont indéfiniment divisibles $(\delta_a^{*n} = \delta_{na})$
- Les lois gaussiennes et les lois de Poisson (simples ou composées) sont indéfiniment divisibles : en effet, on obtient leurs racines n-ièmes pour la convolution en divisant leur paramètre par n.
- Les lois uniformes ne le sont pas : en effet, leurs fonctions caractéristiques s'annulent. Ceci est impossible pour une loi indéfiniment divisible, comme on va le voir ci-dessous...

Propriétés 2.1.

- (i) Si μ , ν sont indéfiniment divisibles, alors $\mu * \nu$ l'est également.
- (ii) Si μ est indéfiniment divisible, alors $\hat{\mu}$ ne s'annule pas sur \mathbb{R}^d .

Démonstration.

- -(i): si, $\forall n \in \mathbb{N}, \mu = \mu_n^{*n}, \nu = \nu_n^{*n}$, alors $\mu * \nu = (\mu_n * \nu_n)^{*n}$ par commutativité de la convolution.
- (ii) : si μ est indéfiniment divisible, il est évident que la mesure symétrique de μ , μ^{\vee} , définie par $\mu^{\vee}(A) = \mu(-A)$, l'est aussi : $\mu * \mu^{\vee}$ l'est donc également. Or $\widehat{\mu^{\vee}}(\xi) = \overline{\widehat{\mu}}(\xi)$ donc $\widehat{\mu} * \widehat{\mu^{\vee}}(\xi) = |\widehat{\mu}(\xi)|^2$.

Soit $n \in \mathbb{N}$ et μ_n telle que $\mu_n^{*n} = \mu$. On a $(\mu_n * \mu_n^{\vee})^{*n} = \mu * \mu^{\vee}$, soit $|\widehat{\mu_n}(\xi)|^{2n} = |\widehat{\mu}(\xi)|^2$. Ainsi,

$$|\widehat{\mu}|^{\frac{2}{n}} = \widehat{\mu_n * \mu_n^{\vee}}$$

Par conséquent, $(|\widehat{\mu}|^{\frac{2}{n}})_{n\in\mathbb{N}}$ est une suite de fonctions caractéristiques. Or elle converge simplement vers $\mathbf{1}_{\{\widehat{\mu}\neq 0\}}$ sur \mathbb{R}^d : d'après le théorème de Paul-Lévy, $\mathbf{1}_{\{\widehat{\mu}\neq 0\}}$ est donc une fonction caractéristique. En particulier, elle est continue, ce qui, comme $\widehat{\mu}(0) = 1 \neq 0$, nécessite que $\widehat{\mu}\neq 0$ partout.

Théorème 2.2. Soit $\varphi : \mathbb{R}^d \to \mathbb{C}^*$ continue, telle que $\varphi(0) = 1$. Alors :

- (i) Il existe une unique fonction $\log \varphi \in \mathcal{C}(\mathbb{R}^d, \mathbb{C})$ telle que $\varphi = e^{\log \varphi}$ et $(\log \varphi)(0) = 0$.
- (ii) Pour tout $n \in \mathbb{N}$, il existe une unique fonction $\varphi^{\frac{1}{n}} \in \mathcal{C}(\mathbb{R}^d, \mathbb{C}^*)$ telle que $\varphi^{\frac{1}{n}}(0) = 1$, $\varphi = (\varphi^{\frac{1}{n}})^n$: elle vérifie $\varphi^{\frac{1}{n}} = e^{\frac{\log \varphi}{n}}$.
- (iii) Si une suite $\varphi_m \in \mathcal{C}(\mathbb{R}^d, \mathbb{C}^*)$ vérifie $\varphi_m(0) = 1$ et $\varphi_m \to \varphi$ uniformément sur tout compact, alors $\log \varphi_m \to \log \varphi$ uniformément sur tout compact.

Remarque. En prenant pour φ la fonction caractéristique $\widehat{\mu}$ d'une mesure indéfiniment divisible, on en déduit que, pour tout $n \in \mathbb{N}$, il existe une unique mesure de probabilités μ_n telle que $\mu_n^{*n} = \mu$: c'est l'unique mesure de fonction caractéristique $(\widehat{\mu})^{\frac{1}{n}}$.

12

Démonstration.

- Unicité dans (i) et (ii) :

Supposons que, sur un connexe D de \mathbb{R}^d contenant 0, on ait $\varphi = e^f = e^{f'}$ avec f(0) = f'(0) = 0. Alors $e^{f-f'} = 1$ sur D donc $f - f' \in \mathcal{C}(D, 2i\pi\mathbb{Z})$. Comme (f - f')(0) = 0 et comme f' - f est continue sur D connexe, à valeurs dans $2i\pi\mathbb{Z}$ discret, on en déduit f = f' sur D.

De même, si $\varphi=g^n={g'}^n$ avec g(0)=g'(0)=1 sur D, alors $\frac{g'}{g}$ est continue sur D (g ne s'annule pas) et vérifie $(\frac{g'}{g})^n=1$ donc $\frac{g'}{g}\in \mathcal{C}(D,e^{\frac{2i\pi}{n}\mathbb{Z}})$. $\frac{g'}{g}$ est continue sur D connexe, à valeurs dans $e^{\frac{2i\pi}{n}\mathbb{Z}}$ discret et vérifie $(\frac{g'}{g})(0)=1$: par conséquent, g'=g sur D.

- Existence dans (i) et (ii) :

Montrons que $\log \varphi$ peut être définie sur $\overline{B}(0,R)$ pour tout R>0. Pour cela, appliquons le lemme d'inversion locale à $z\mapsto e^z$ en 0 (son jacobien en 0 vaut I_2) : il existe des ouverts U et V, voisinages de 0 et 1 respectivement, tels que

$$\psi: U \longrightarrow V$$

$$z \longmapsto e^z$$

soit un homéomorphisme. Considérons aussi la fonction

$$f: \overline{B}(0,R+1) \times [0,R+1] \longrightarrow \mathbb{C}^*$$

$$(x,r) \longmapsto \frac{\varphi(x)}{\varphi(\frac{r}{\|x\|}x)}$$

f étant continue sur un compact, elle est uniformément continue : de plus, $\forall x, f(x, ||x||) = 1$. Comme V est un voisinage de 1, cela garantit que

$$\exists \delta > 0 : \forall x \in \overline{B}(0, R+1), |r - ||x||| \le \delta \Longrightarrow \frac{\varphi(x)}{\varphi\left(\frac{r}{||x|}x\right)} \in V$$

Quitte à remplacer δ par $\delta \wedge 1$, on peut supposer $\delta < 1$. Montrons alors par récurrence que $\log \varphi$ est définie sur toutes les $\overline{B}(0, n\delta)$ pour $n \in \mathbb{N}$ vérifiant $n\delta < R+1$:

- $-\underline{n=0}$ Faisons r=0: comme $\varphi(0)=1$, on obtient $\forall x\in \overline{B}(0,\delta), \varphi(x)\in V$. Cela permet de définir $\log \varphi=\psi^{-1}\circ \varphi$ sur $\overline{B}(0,\delta)$.
- $-\underline{n} \Rightarrow n+\underline{1}$ Pour $n\delta \leq ||x|| \leq (n+1)\delta$, considérons

$$f(x) = (\log \varphi) \left(\frac{n\delta}{\|x\|} x \right) + \psi^{-1} \left(\frac{\varphi(x)}{\varphi\left(\frac{n\delta}{\|x\|} x \right)} \right)$$

Par définition de δ , f est bien définie puisque $|||x|| - n\delta| \le \delta$: de plus, f est continue, coïncide avec $\log \varphi$ sur $\partial B(0, n\delta)$, et vérifie de manière évidente $e^f = \varphi$ sur son domaine de définition. On peut donc prolonger $\log \varphi$ par f sur $\overline{B}(0, (n+1)\delta)$.

Remarquons alors que, pour $n = \lfloor \frac{R+1}{\delta} \rfloor$, on a $n\delta > R$: par conséquent, il est possible de définir $\log \varphi$ sur $\overline{B}(0,R)$. Ceci étant valable pour tout R, on peut définir sans peine $\log \varphi$ sur \mathbb{R}^d en utilisant la propriété d'unicité montrée plus haut.

- Preuve de (iii) :

Supposons que $\varphi_m \to \varphi$ uniformément sur tout compact. Alors, comme φ ne s'annule pas, $\frac{\varphi_m}{\varphi} \to 1$ uniformément sur tout compact, soit $e^{\log \varphi_m - \log \varphi} \to 1$. Soient $\alpha > 0$ et V un ouvert contenant 1 tels que, de $B(0,\alpha)$ sur $V, \psi: z \mapsto e^z$ soit un homéomorphisme (leur existence est garantie par le lemme d'inversion locale).

Soit K un compact contenant 0: d'après ce qui précède, les $(e^{\log \varphi_m - \log \varphi})_{\backslash K}$ sont à valeur dans V à partir d'un rang M. Par conséquent, les $(\log \varphi_m - \log \varphi)_{\backslash K}$ sont à valeurs dans $\bigcup_{n \in \mathbb{Z}} B(2i\pi n, \alpha)$.

13

Si on a pris α plus petit que π , la continuité des $\log \varphi_m - \log \varphi$ et la contrainte $(\log \varphi_m - \log \varphi)(0) = 0$ impliquent que ces fonctions soient à valeur dans $B(0, \alpha)$. Par conséquent, on peut écrire

$$\forall m \ge M, \forall x \in K, (\log \varphi_m)(x) - (\log \varphi)(x) = \psi^{-1} \left(\frac{\varphi_m(x)}{\varphi(x)}\right)$$

Montrons alors que $\log \varphi_m \to \log \varphi$ unformément sur K. ψ^{-1} est continue en 0: pour tout $\varepsilon > 0$, il existe donc $\eta > 0$ tel que

$$|x-1| < \eta \Rightarrow |\psi^{-1}(x)| < \varepsilon$$

Or, il existe $M' \in \mathbb{N}$ tel que

$$\forall x \in K, \forall m \ge M', \left| \frac{\varphi_m(x)}{\varphi(x)} - 1 \right| < \eta \Rightarrow \left| (\log \varphi_m)(x) - (\log \varphi)(x) \right| < \varepsilon$$

On obtient bien la convergence uniforme sur K.

Corollaire 2.3. Soit $(\mu_k)_{k\in\mathbb{N}}$ une suite de mesures indéfiniment divisibles convergeant étroitement vers une limite μ . Alors μ est elle-même indéfiniment divisible.

Démonstration.

– Montrons que $\widehat{\mu}$ ne s'annule pas sur \mathbb{R}^d :

Soit $n \in \mathbb{N}$. On sait (cf. ci-dessus) que les fonctions $|\widehat{\mu_k}|^{\frac{2}{n}}$ sont des fonctions caractéristiques : de plus, comme $(\mu_k) \stackrel{(e)}{\to} \mu$, $\widehat{\mu_k} \to \widehat{\mu}$ simplement donc $|\widehat{\mu_k}|^{\frac{2}{n}} \to |\widehat{\mu}|^{\frac{2}{n}}$ simplement. $\widehat{\mu}$ étant continue, $|\widehat{\mu}|^{\frac{2}{n}}$ l'est aussi : ainsi, d'après le théorème de Paul-Lévy, c'est une fonction caractéristique.

Or $(|\widehat{\mu}|^{\frac{2}{n}})^n = |\widehat{\mu}|^2 = \widehat{\mu * \mu^{\vee}}$: on en déduit que $\mu * \mu^{\vee}$ est indéfiniment divisible. Appliquant la 2e des propriétés, on obtient que $\widehat{\mu * \mu^{\vee}} = |\widehat{\mu}|^2$ ne s'annule pas : ainsi, $\widehat{\mu}$ ne s'annule pas non plus.

– Montrons que $\widehat{\mu_k} \to \widehat{\mu}$ uniformément sur tout compact. Pour $\xi \in \mathbb{R}^d$, $\delta \in \mathbb{R}^d$, on peut écrire

$$|\widehat{\mu_n}(\xi + \delta) - \widehat{\mu_n}(\xi)| \le \int_{\mathbb{R}^d} \left| e^{i < x, \delta > -1} \right| \mu_n(dx) \to \int_{\mathbb{R}^d} \left| e^{i < x, \delta > -1} \right| \mu(dx)$$

à cause de $(\mu_n) \stackrel{(e)}{\to} \mu$. Soit $\varepsilon > 0$: par convergence (dominée par 2) de $|e^{i < x, \delta} > -1|$ vers 0, il existe $\delta, \delta_n > 0$ tel que

$$\forall h \in \mathbb{R}^d, |h| < \delta \quad \Rightarrow \quad \int_{\mathbb{R}^d} \left| e^{i < x, \delta >} - 1 \right| \mu(dx) < \frac{\varepsilon}{2}$$
$$|h| < \delta_n \quad \Rightarrow \quad \int_{\mathbb{R}^d} \left| e^{i < x, \delta >} - 1 \right| \mu_n(dx) < \varepsilon$$

Or, si $|h| < \delta$, alors il existe $N \in \mathbb{N}$ tel que, pour $n \ge N$, $|\widehat{\mu_n}(\xi+h) - \widehat{\mu_n}(\xi)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$ pour tout $\xi \in \mathbb{R}^d$: ainsi, si $h < \min(\delta_0, ..., \delta_N, \delta)$ alors $|\widehat{\mu_n}(\xi+h) - \widehat{\mu_n}(\xi)| < \varepsilon$ pour tous n, ξ .

 $\{\widehat{\mu_n}\}\$ est donc équi-uniformément continue : par le théorème d'Ascoli, et comme $\mathbb R$ possède une suite exhaustive de compacts, elle est donc relativement compacte pour la convergence uniforme sur tout compact. Or sa seule valeur d'adhérence possible pour cette convergence est $\widehat{\mu}$: par conséquent, $\widehat{\mu_n} \to \widehat{\mu}$ uniformément sur tout compact.

– On peut donc appliquer le (iii) du théorème et obtenir $\log \widehat{\mu_k} \to \log \widehat{\mu}$ uniformément sur tout compact : en particulier, pour tout $n \in \mathbb{N}$, $\widehat{\mu_k}^{\frac{1}{n}} \to \widehat{\mu}^{\frac{1}{n}}$ simplement. $\widehat{\mu}^{\frac{1}{n}}$ est donc la fonction caractéristique d'une mesure ν_n comme limite simple, continue de fonctions caractéristiques : ν_n vérifie $\nu_n^{*n} = \mu$, et μ est donc indéfiniment divisible.

Lemme 2.4. Si μ est indéfiniment divisible, il existe une unique famille $(\mu^t)_{t \in \mathbb{R}_+}$ de mesures indéfiniment divisibles telle que

- (i) $\mu^1 = \mu \ et \ \forall s, t \in \mathbb{R}_+, \mu^t * \mu^s = \mu^{t+s}$;
- (ii) $t \mapsto \mu^t$ est continue, c'est à dire : $(t_n) \to t \Rightarrow \mu^{t_n} \stackrel{(e)}{\to} \mu^t$.

Démonstration. D'après la remarque du théorème 1.2, pour tout $n \in \mathbb{N}$, il existe une seule mesure "candidate" pour $\mu^{\frac{1}{n}}$: de plus, comme $(\mu^{\frac{1}{nm}})^{*m} = \mu^{\frac{1}{n}}$, $\mu^{\frac{1}{n}}$ est indéfiniment divisible, ce qui montre bien l'existence-unicité de μ^t pour $t = \frac{1}{n}$.

Ensuite, pour $t = \frac{p}{q} \in \mathbb{Q}_+$, la formule $\mu^t = (\mu^{\frac{1}{q}})^{*p}$, associée à la propriété 1.1(2) permet de définir de manière unique μ^t .

Enfin, pour $t \in \mathbb{R}_+$, posons $\varphi^t(\xi) = e^{t(\log \widehat{\mu})(\xi)}$: d'après la remarque de 1.2, φ^t est la fonction caractéristique de μ^t pour tout $t \in \mathbb{Q}_+$. Pour $t \notin \mathbb{Q}_+$, soit (r_n) une suite de rationnels tendant vers t: on a $\widehat{\mu^{r_n}} = \varphi^{r_n} \to \varphi^t$ simplement, donc φ^t est la fonction caractéristique d'une (unique) mesure μ^t d'après le théorème de Paul-Lévy.

Puis, les μ^{r_n} étant indéfiniment divisibles, μ^t l'est également d'après 1.3 : on a donc défini de manière unique μ^t pour $t \in \mathbb{R}_+$. La formule $\mu^{t+s} = \mu^t * \mu^s$ se déduit alors simplement de la forme des fonctions caractéristiques φ^t .

Théorème 2.5.

- (i) Soit $(X_t)_{t\geq 0}$ un processus de Lévy en loi. Alors, pour tout $t\geq 0$, la loi de X_t , \mathbb{P}_{X_t} , est indéfiniment divisible et, si on pose $\mu = \mathbb{P}_{X_1}$, alors $\mathbb{P}_{X_t} = \mu^t$.
- (ii) Réciproquement, si μ est une mesure indéfiniment divisible, alors il existe un processus de Lévy en loi (X_t) tel que, pour tout $t \geq 0$, $\mathbb{P}_{X_t} = \mu^t$.
- (iii) Si (X_t) et (X'_t) sont deux processus de Lévy en loi tels que $X_1 \stackrel{(loi)}{=} X'_1$, alors $(X_t) \stackrel{(loi)}{=} (X'_t)$.

Démonstration.

– Preuve de (i) : soient $t \in \mathbb{R}_+$, $n \in \mathbb{N}^*$. On peut écrire, comme $X_0 = 0$,

$$X_{t} = (X_{t} - X_{t - \frac{t}{n}}) + \dots + (X_{\frac{t}{n}} - X_{0}) = \sum_{i=1}^{n} (X_{\frac{i}{n}t} - X_{\frac{i-1}{n}t})$$

Or, (X_t) étant un processus de Lévy, les variables $(X_{\frac{i}{n}t}-X_{\frac{i-1}{n}t})$ sont indépendantes et de même loi $\mathbb{P}_{X_{\frac{t}{n}}}$: ainsi, $\mathbb{P}_{X_t}=\mathbb{P}_{X_{\frac{t}{n}}}^{*n}$.

De plus, si on pose $\mathbb{P}_{X_1} = \mu$, alors μ est indéfiniment divisible et la famille $(\mathbb{P}_{X_t})_{t \in \mathbb{R}_+}$ est une famille de mesures indéfiniment divisibles vérifiant $\mathbb{P}_{X_{t+s}} = \mathbb{P}_{X_t} * \mathbb{P}_{X_s}$ (en effet, $X_{t+s} = (X_{t+s} - X_s) + X_s$, avec $(X_{t+s} - X_s)$ indépendante de X_s , de même loi que X_t).

De plus, par continuité stochastique de (X_t) , $t \mapsto \mathbb{P}_{X_t}$ est continue : appliquant la propriété d'unicité du lemme 2.4, on en déduit $\mathbb{P}_{X_t} = \mu^t$ pour tout $t \ge 0$.

- Preuve de (ii):

Utilisons le théorème d'extension de Kolmogorov pour construire un processus de Lévy en loi correspondant à μ sur l'espace mesurable $((\mathbb{R}^d)^{\mathbb{R}_+}, \mathcal{C})$ (\mathcal{C} est la tribu engendrée par les cylindres). μ étant indéfiniment divisible, on a accès à la famille des $(\mu^t)_{t\geq 0}$; pour $n\geq 0$, et $0\leq t_0< t_1<\ldots< t_n$, on pose

$$\nu_{t_0,\dots,t_n}(B_0\times\dots\times B_n) = \int_{(\mathbb{R}^d)^{n+1}} \mathbf{1}_{B_0}(y_0)\mathbf{1}_{B_1}(y_0+y_1)\dots\mathbf{1}_{B_n}(y_0+\dots+y_n)\mu^{t_0}(dy_0)\mu^{t_1-t_0}(dy_1)\dots\mu^{t_n-t_{n-1}}(dy_n)$$

Cette formule définit bien une mesure sur $(\mathbb{R}^d)^{n+1}$ $(\nu_{t_0,...,t_n}$ est la mesure-image de $\mu^{t_0} \otimes \mu^{t_1-t_0} \otimes ... \otimes \mu^{t_n-t_{n-1}}$ par $(x_0,...,x_n) \mapsto (x_0,x_0+x_1,...,x_0+...+x_n)$ mesurable). De plus, pour tout $k \in [1,n]$,

$$\nu_{t_0,...,t_n}(B_1 \times ... \times B_{k-1} \times \mathbb{R}^d \times B_{k+1} \times ... \times B_n) = \nu_{t_0,...,t_{k-1},t_{k+1},...,t_n}(B_0 \times ... \times B_{k-1} \times B_{k+1} \times ... \times B_n)$$

En effet, si on prend $B_k = \mathbb{R}^d$ dans la formule ci-dessus, on obtient, en utilisant $(\nu * \nu')(B) = \int \mathbf{1}_B(x+y)\nu(dx)\nu'(dy)$,

$$\nu_{t_0,...,t_n}(B_1 \times ... \times B_{k-1} \times \mathbb{R}^d \times B_{k+1} \times ... \times B_n) =$$

$$\int_{(\mathbb{R}^d)^n} \mathbf{1}_{B_0}(y_0) \mathbf{1}_{B_1}(y_0 + y_1) ... \mathbf{1}_{B_{k-1}}(y_0 + ... + y_{k-1}) \mathbf{1}_{B_{k+1}}(y_0 + ... + y_{k-1} + y_{k+1}) ... \mathbf{1}_{B_n}(y_0 + ... + y_{k-1} + y_{k+1} + ... + y_n)$$

$$\mu^{t_0}(dy_0) \mu^{t_1 - t_0}(dy_1) ... \mu^{t_{k-1} - t_{k-2}}(dy_{k-1}) (\mu^{t_{k+1} - t_k} * \mu^{t_k - t_{k-1}}) (dy_{k+1}) ... \mu^{t_n - t_{n-1}}(dy_n)$$

ce qui donne la formule désirée en remarquant $\mu^{t_{k+1}-t_k}*\mu^{t_k-t_{k-1}}=\mu^{t_{k+1}-t_{k-1}}$.

On peut donc bien appliquer le théorème d'extension : il existe sur $((\mathbb{R}^d)^{\mathbb{R}_+}, \mathcal{C})$ une mesure de probabilités ν telle que

$$\nu_{t_0,..,t_n}(B_1 \times ... \times B_n) = \nu(\{\omega : \mathbb{R}_+ \to \mathbb{R}^d \text{ tq } \omega(t_0) \in B_0,..,\omega(t_n) \in B_n\})$$

Soit (X_t) le processus canonique sur $((\mathbb{R}^d)^{\mathbb{R}_+}, \mathcal{C}): X_t(\omega) = \omega(t)$. A cause de la définition par mesure-image ci-dessus, on a pour tout f mesurable bornée

$$\mathbb{E}[f(X_{t_0},..,X_{t_n})] = \int_{(\mathbb{R}^d)^{n+1}} f(y_0,y_0+y_1,..,y_0+..+y_n) \mu^{t_0}(dy_0) \mu^{t_1-t_0}(dy_1)..\mu^{t_n-t_{n-1}}(dy_n)$$

En particulier, la loi de X_t est bien μ^t . De plus,

$$\mathbb{E}[f(X_{t_1} - X_{t_0}, ..., X_{t_n} - X_{t_{n-1}})] = \int_{(\mathbb{R}^d)^n} f(y_0, y_1, ..., y_n) \mu^{t_0}(dy_0) \mu^{t_1 - t_0}(dy_1) ... \mu^{t_n - t_{n-1}}(dy_n)$$

Ainsi, la loi de $(X_{t_i} - X_{t_{i-1}})_{1 \geq i < n}$ est $\bigotimes_{i=1}^n \mu^{t_i - t_{i-1}}$, ce qui montre la propriété des incréments indépendants des processus de Lévy.

Il reste à montrer que (X_t) est stochastiquement continu : soit $t \in \mathbb{R}_+$ et $(t_n) \to t$. On sait que $|X_t - X_{t_n}| \stackrel{(loi)}{=} |X_{|t-t_n|}|$ (on distingue les cas $t < t_n, t \ge t_n$); ainsi,

$$\forall \varepsilon > 0, \mathbb{P}[|X_t - X_{t_n}| > \varepsilon] = \mathbb{P}[|X_{|t-t_n|}| > \varepsilon]$$

Or, pour $s_n \geq 0, s_n \to 0$, $\widehat{\mathbb{P}_{X_{s_n}}} = \widehat{\mu^{s_n}} = e^{s_n(\log \widehat{\mu})} \to 1$ simplement donc $\mathbb{P}_{X_{s_n}} \stackrel{(e)}{\to} \delta_0$. Cela implique $X_{s_n} \stackrel{(P)}{\to} 0$: en effet, $\mathbb{P}[|(X_{s_n})_1| + ... + |(X_{s_n})_d| > \varepsilon] \leq \mathbb{E}[\sum_{i=1}^d f_{\varepsilon}((X_{s_n})_i)]$ où

$$f_{\varepsilon}: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \in]-\infty, -\varepsilon] \longmapsto -1$$

$$x \in [\varepsilon, +\infty[\longmapsto 1]$$

$$x \in [-\varepsilon, \varepsilon] \longmapsto \frac{x}{\varepsilon}$$

 f_{ε} étant continue, de valeur 0 en 0, on a $\mathbb{E}[f((X_{s_n})_i)] \to 0$, ce dont on déduit $\mathbb{P}[|(X_{s_n})_1| + ... + |(X_{s_n})_d| > \varepsilon] \to 0$ soit $(X_{s_n}) \stackrel{(P)}{\to} 0$ et $(X_{t_n}) \stackrel{(P)}{\to} X_t$. Ainsi, (X_t) est stochastiquement continu : c'est donc bien un processus de Lévy en loi.

- Preuve de (iii):

Soient (X_t) et (X_t') deux processus de Lévy en loi tels que $X_1 \stackrel{(loi)}{=} X_1'$. Alors, d'après (i), $X_t \stackrel{(loi)}{=} X_t'$ pour tout $t \ge 0$; il en découle que pour tous $0 \le t_0 < t_1 < ... < t_n$,

$$(X_{t_0}, X_{t_1} - X_{t_0}, .., X_{t_n} - X_{t_{n-1}}) \stackrel{(loi)}{=} (X'_{t_0}, X'_{t_1} - X'_{t_0}, .., X't_n - X'_{t_{n-1}})$$

puisque $\mathbb{P}_{(X_{t_0},X_{t_1}-X_{t_0},...,X_{t_n}-X_{t_{n-1}})} = \mathbb{P}_{X_1}^{t_0} \otimes \mathbb{P}_{X_1}^{t_1-t_0} \otimes ... \otimes \mathbb{P}_{X_1}^{t_n-t_{n-1}}$. Ainsi, comme $(X_{t_0},...,X_{t_n})$ est fonction de $(X_{t_0},X_{t_1}-X_{t_0},...,X_{t_n}-X_{t_{n-1}})$, on en déduit

$$\forall 0 \le t_0 < t_1 < ... < t_n, (X_{t_0}, ..., X_{t_n}) \stackrel{(loi)}{=} (X'_{t_0}, ..., X'_{t_n})$$

ce qui assure l'égalité en loi de (X_t) et de (X'_t) .

Remarque. Si l'on n'exige pas que (X_t) soit stochastiquement continu, $\mu = \mathbb{P}_{X_1}$ est toujours indéfiniment divisible, mais il est possible que $\mathbb{P}_{X_t} \neq \mu^t$.

Soit $(t_i)_{i\in I}$ une base algébrique de $\mathbb R$ comme $\mathbb Q$ -espace vectoriel (le lemme de Zorn assure son existence) avec $t_{i_0}=1$. On définit une application linéaire f sur $\mathbb R$ par f(1)=1, $f(t_i)=0$ si $i\neq i_0$. f vérifie donc $\forall s,t\in\mathbb R^+$, f(t+s)=f(t)+f(s). Posons $X_t=f(t)$. (X_t) , par construction, est à accroissements indépendants; de plus, $\mathbb P_{X_1}=\delta_1$ donc $(\mathbb P_{X_1})^t=\delta_t$. Mais, si $t\in \mathrm{Vect}(e_i)_{i\neq i_0},\, X_t=0$, soit $\mathbb P_{X_t}\neq \delta_t$ dès que t>0.

3 Des processus de Lévy en loi aux processus de Lévy

Théorème 3.1. Soit $(X_t)_{t\geq 0}$ un processus de Lévy en loi. Il existe un processus de Lévy $(Y_t)_{t\geq 0}$ tel que $\forall t\geq 0, X_t\stackrel{p.s.}{=} Y_t$.

$D\'{e}monstration$

Nous allons commencer par exprimer la condition de continuité en termes de nombres d'oscillations, à l'aide des deux lemmes suivants.

Lemme 3.2. Soit

$$\Omega_2 = \left\{ \omega \in \Omega : \forall t > 0, \lim_{s \in \mathbb{Q}, s \uparrow t} X_s(\omega) \text{ existe et } \forall t \geq 0, \lim_{s \in \mathbb{Q}, s \downarrow t} X_s(\omega) \text{ existe} \right\}$$

 $Si \mathbb{P}[\Omega_2] = 1 \ alors \ il \ existe \ (Y_t)_{t \geq 0} \ continu \ à \ droite \ avec \ limites \ à gauche, \ tel \ que \ \forall t \geq 0, X_t \stackrel{p.s.}{=} Y_t.$

Démonstration.

Pour $\omega \in \Omega_2$, on pose $Y_t(\omega) = \lim_{s \in \mathbb{Q}, s \downarrow t} X_s(\omega)$, et $Y_t(\omega) = 0$ pour $\omega \notin \Omega_2$. $Y_t(\omega)$ est continu pour $\omega \notin \Omega_2$; pour $\omega \in \Omega_2$, il est continu à droite.

En effet, soit $t \geq 0$ et $\varepsilon > 0$, il existe $\eta_t > 0$ tel que $\forall s \in [t, t + \eta_t] \cap \mathbb{Q}, |Y_t(\omega) - X_s(\omega)| < \frac{\varepsilon}{2}$. De plus, si $s \in [t, t + \eta_t[$, il existe $\eta_s \in]0, |s - (t + \eta_t)|]$ tel que $\forall s' \in [s, s + \eta_s] \cap \mathbb{Q}, |Y_s(\omega) - X_{s'}(\omega)| < \frac{\varepsilon}{2}$. Ainsi, on obtient

$$\forall s \in [t, t + \eta_t] \cap \mathbb{Q}, |Y_t(\omega) - Y_s(\omega)| < \varepsilon$$

Par le même raisonnement, on obtient l'existence de limites à gauches.

Enfin, si $t \geq 0, s_n \in \mathbb{Q}, (s_n) \downarrow t$, on sait que $(X_{s_n}) \xrightarrow{p.s.} Y_t$ (par déf. de Y_t) et $(X_{s_n}) \xrightarrow{(P)} X_t$ (par continuité stochastique). Ainsi, $X_t \stackrel{p.s.}{=} Y_t$.

Lemme 3.3. Soit $M \in \mathcal{P}(\mathbb{R}^+)$ et $\omega \in \Omega$. Si $\varepsilon > 0, n \in \mathbb{N}^*$, on dit que $Y_t(\omega)$ ε -oscille n fois sur M si

$$\exists t_0 < ... < t_n \in M \ tq \ \forall i \in [1, n], |Y_{t_i}(\omega) - Y_{t_{i-1}}(\omega)| > \varepsilon$$

et que $Y_t(\omega)$ ε -oscille infiniment sur M si $Y_t(\omega)$ ε -oscille n fois sur M pour tout n. On pose

$$\Omega_1 = \bigcap_{N \in \mathbb{N}, k \geq 1} \underbrace{\left\{ w \in \Omega \ tq \ X_t(\omega) \ n'\frac{1}{k} \text{-oscille pas infiniment sur } [0, N] \cap \mathbb{Q} \right\}}_{A_{N,k}}$$

Alors $\Omega_1 \subset \Omega_2$.

Démonstration.

Si $\omega \in \Omega_1$, si $t_n \in \mathbb{Q}$, $(t_n) \downarrow t$, alors $\forall k \in \mathbb{N}^*$, $\exists n_0 \in \mathbb{N}$ tq $\forall n \geq n_0, |X_{t_n}(\omega) - X_{t_{n_0}}(\omega)| \leq \frac{1}{k}$ (sinon, $t \mapsto X_t(\omega) \frac{1}{k}$ -oscillerait infiniment sur $[0, t_0] \cap \mathbb{Q}$). Le critère de Cauchy est donc satisfait par $X_{t_n}(\omega)$, puis $\lim_{s \in \mathbb{Q}, s \downarrow t} X_s(\omega)$ existe. De même, on montre l'existence de $\lim_{s \in \mathbb{Q}, s \uparrow t} X_s(\omega)$.

On montre alors que, si (X_t) est un processus de Lévy, $\mathbb{P}[A_{N_0,k_0}^C] = 0 \ \forall N_0, k_0$. Pour cela, soit μ la loi de X_1 . On sait que μ est indéfiniment divisible et que, pour tous s < t, la loi de $X_t - X_s$ est μ^{t-s} . On sait aussi que $X_t \xrightarrow[t \to 0]{(P)} X_0$ (continuité stochastique), soit $\lim_{t \to 0} \mu^t(B(0, \frac{1}{4k_0})^C) = 0$. Ainsi,

$$\exists L \in \mathbb{N}^* \text{ tq } \forall t \in \left[0, \frac{N_0}{L}\right], \mu^t \left(B\left(0, \frac{1}{4k_0}\right)^C\right) < \frac{1}{4}$$

Remarquons:

$$A_{N_0,k_0}^C \subset \bigcup_{l=1}^L \underbrace{\left\{\omega \in \Omega \text{ tq } X_t(\omega) \text{ } \frac{1}{k_0} \text{-oscille infiniment sur } \left[\frac{(l-1)N_0}{L},\frac{lN_0}{L}\right] \cap \mathbb{Q}\right\}}_{B_l}$$

car si $X_t(\omega)$ n' $\frac{1}{k_0}$ -oscille au plus n_l fois sur $\left[\frac{(l-1)N_0}{L}, \frac{lN_0}{L}\right]$ alors il $\frac{1}{k_0}$ -oscille au plus $\sum_l n_l + (L-1)$ fois sur $[0, N_0] \cap \mathbb{Q}$.

Il est évident que $B_l = \bigcap_{p \geq 1} B_{l,p}$ où $B_{l,p} = \{ \omega \in \Omega \text{ tq } X_t(\omega) \text{ } \frac{1}{k_0} \text{-oscille p fois sur } [\frac{(l-1)N_0}{L}, \frac{lN_0}{L}] \cap \mathbb{Q} \} ;$ comme $B_{l,p+1} \subset B_{l,p}$, on obtient en fin de compte

$$\mathbb{P}[A_{N_0,k_0}^C] \le \sum_{l=1}^L \lim_{p \to \infty} \downarrow \mathbb{P}[B_{l,p}]$$

Or, on dispose du

Lemme 3.4. À l fixé, posons $\left[\frac{(l-1)N_0}{L}, \frac{lN_0}{L}\right] \cap \mathbb{Q} = \{\alpha_n, n \in \mathbb{N}\}$ et

$$B_{l,p,n} = \left\{ \omega \in \Omega \ tq \ X_t(\omega) \ \frac{1}{k_0} \text{-oscille } p \text{ fois } sur \left\{ \alpha_m, m \le n \right\} \right\}$$

Alors $\mathbb{P}[B_{l,p,n}] \leq \frac{1}{2^p}$.

 $B_{l,p}$ est l'union croissante des $B_{l,p,n}$ de manière évidente, on obtient $\mathbb{P}[B_{l,p}] \leq \frac{1}{2^p}$, d'où $\mathbb{P}[A_{N_0,k_0}^C] = 0$, ce qui termine la preuve du théorème.

Démonstration. Posons $\{\alpha_m, m \leq n\} = \{\beta_1 < ... < \beta_n\}, \ u = \frac{(l-1)N_0}{L}$ et $v = \frac{lN_0}{L}$. Prouvons cette assertion par récurrence sur p :

-p = 1 Posons:

$$C_k = \left\{ \forall i \in [1, k-1], |X_{\beta_i} - X_u| \le \frac{1}{2k_0} \text{ et } |X_{\beta_k} - X_u| > \frac{1}{2k_0} \right\}$$

$$D_k = \left\{ |X_{\beta_k} - X_v| > \frac{1}{4k_0} \right\}$$

Les $(C_k)_{1 \leq k \leq n}$ sont, par construction, disjoints et $B_{l,1,n} \subset \bigcup_{k=1}^n \{|X_{\beta_k} - X_u| > \frac{1}{2k_0}\}$: en effet, si $|X_{\beta_k} - X_{\beta_l}| > \frac{1}{k_0}$, alors, soit $|X_{\beta_k} - X_u| > \frac{1}{2k_0}$, soit $|X_{\beta_l} - X_u| > \frac{1}{2k_0}$. On en déduit (on considère $\min\{k: |X_{\beta_k} - X_u| > \frac{1}{2k_0}\}$) que $B_{l,1,n} \subset \bigcup_{k=1}^n C_k$. Ainsi,

$$B_{l,1,n} \subset \bigcup_{k=1}^{n} (C_k \cap D_k) \cup \bigcup_{k=1}^{n} \left(\left\{ |X_{\beta_k} - X_u| > \frac{1}{2k_0} \right\} \cup \left\{ |X_{\beta_k} - X_v| \le \frac{1}{4k_0} \right\} \right)$$

Comme $(|X_{\beta_k} - X_u| > \frac{1}{2k_0}) \wedge (|X_{\beta_k} - X_v| \leq \frac{1}{4k_0}) \Rightarrow |X_u - X_v| > \frac{1}{4k_0}$, on obtient

$$B_{l,1,n} \subset \left\{ |X_u - X_v| > \frac{1}{4k_0} \right\} \cup \bigcup_{k=1}^n (C_k \cap D_k)$$

Ainsi, $\mathbb{P}[B_{l,1,n}] \leq \mathbb{P}[|X_u - X_v| > \frac{1}{4k_0}] + \sum_{k=1}^n \mathbb{P}[C_k \cap D_k]$. Comme $C_k \in \sigma(X_{\beta_1} - X_u, ..., X_{\beta_1} - X_{\beta_{k-1}})$ alors que $D_k \in \sigma(X_v - X_{\beta_k})$, on a donc

$$\mathbb{P}[B_{l,1,n}] \leq \mathbb{P}\left[|X_u - X_v| > \frac{1}{4k_0}\right] + \sum_{k=1}^n \mathbb{P}[C_k]\mathbb{P}[D_k] \\
\leq \mu^{v-u} \left(B\left(0, \frac{1}{4k_0}\right)^C\right) + \sum_{k=1}^n \mathbb{P}[C_k]\mu^{v-\beta_k} \left(B\left(0, \frac{1}{4k_0}\right)^C\right) \\
\leq \frac{1}{4} + \sum_{k=1}^n \mathbb{P}[C_k] \frac{1}{4} \leq \frac{1}{2}$$

puisque $0 \le v - \beta_k \le v - u = \frac{N_0}{L}$.

- <u>p</u> − 1 \Rightarrow <u>p</u> On pose :

$$F_k = \left\{ X_t \ \frac{1}{k_0} \text{-oscille } (p-1) \text{ fois sur } \{\beta_1,..,\beta_k\}, \text{ mais n'} \frac{1}{k_0} \text{-oscille pas } (p-1) \text{ fois sur } \{\beta_1,..,\beta_{k-1}\} \right\}$$

$$G_k = \left\{ X_t \ \frac{1}{k_0} \text{-oscille une fois sur } \{\beta_k,..,\beta_n\} \right\}$$

On a $B_{l,p-1,n} = \bigcup_{k=1}^n F_k$, et $B_{l,p,n} \subset \bigcup_{k=1}^n (F_k \cap G_k)$ (on coupe entre l'avant-dernière et la dernière oscillation). Comme $F_k \in \sigma(X_{\beta_2} - X_{\beta_1}, ..., X_{\beta_k} - X_{\beta_{k-1}})$ et $G_k \in \sigma(X_{\beta_{k+1}} - X_{\beta_k}, ..., X_{\beta_n} - X_{\beta_{n-1}})$ sont indépendants, et comme $\mathbb{P}[G_k] \leq \frac{1}{2}$ (on utilise le cas p=1), on en déduit

$$\mathbb{P}[B_{l,p,n}] \leq \sum_{k=1}^n \mathbb{P}[F_k \cap G_k] = \sum_{k=1}^n \mathbb{P}[F_k] \mathbb{P}[G_k] \leq \frac{1}{2} \sum_{k=1}^n \mathbb{P}[F_k] = \frac{1}{2} \mathbb{P}\left[\bigcup_{k=1}^n F_k\right] = \frac{1}{2} \mathbb{P}[B_{l,p-1,n}]$$
 d'où $\mathbb{P}[B_{l,p-1,n}] \leq \frac{1}{2^p}$.

4 Représentation des mesures indéfiniment divisibles : théorème de Lévy-Khintchine

Théorème 4.1.

(i) Si μ est une loi indéfiniment divisible sur \mathbb{R}^d alors sa fonction caractéristique vérifie

$$\widehat{\mu}(z) = \exp\left[-\frac{1}{2} < z, Az > +i < \gamma, z > + \int_{\mathbb{R}^d} (e^{i < z, x >} -1 - i < z, x > \mathbf{1}_{\{|x| \le 1\}}(x)) \nu(dx)\right], \forall z \in \mathbb{R}^d$$

où A est une matrice $d \times d$ symétrique positive, $\gamma \in \mathbb{R}^d$ et ν est une mesure sur \mathbb{R}^d telle que

$$\nu(\{0\}) = 0 \ et \ \int_{\mathbb{P}^d} (|x|^2 \wedge 1)\nu(dx) < \infty \tag{1}$$

- (ii) La représentation de μ donnée en (i) par A, ν et γ est unique.
- (iii) Réciproquement, si A est une matrice $d \times d$ symétrique définie positive, si ν est une mesure sur \mathbb{R}^d satisfaisant (1) et $\gamma \in \mathbb{R}^d$, alors il existe une loi indéfiniment divisible μ dont la fonction caractéristique est donnée par (1).

Définition 4.1. Le triplet (A, ν, γ) associé à μ est appelé le triplet générateur de μ . A est la matrice de covariance gaussienne de μ , et ν sa mesure de Lévy.

4.1 Preuve de l'unicité

Supposons que μ est une mesure de probabilité dont la transformée de Fourier vérifie (1) avec A, ν et γ . Pour $z \in \mathbb{R}^d$ et $s \in \mathbb{R}$, s > 1, on a :

$$\frac{1}{s^2} \left| e^{i < sz, x >} - 1 - i < sz, x > \mathbf{1}_{\{|x| \le 1\}}(x) \right| \le |z|^2 |x|^2 \mathbf{1}_{\{|x| \le 1\}}(x) + 2.\mathbf{1}_{\{|x| > 1\}}(x)$$

Or $\frac{1}{s^2} |e^{i < sz, x>} - 1 - i < sz, x> \mathbf{1}_{\{|x| \le 1\}}(x)| \to 0$ quand $s \to \infty$. Donc, par convergence dominée :

$$\frac{1}{s^2}\log\widehat{\mu}(sz)\underset{s\to\infty}{\longrightarrow} -\frac{1}{2} < z, Az >$$

A est ainsi déterminée de manière unique par μ .

Posons alors
$$\psi(z) = (\log \widehat{\mu})(z) + \frac{1}{2} \langle z, Az \rangle$$
 et $\rho(dx) = 2^d (1 - \prod_{j=1}^d \frac{\sin x_j}{x_j}) \nu(dx)$.

 ρ est une mesure finie. En effet :

$$\left| 2^d \left(1 - \prod_{j=1}^d \frac{\sin x_j}{x_j} \right) \right| \le 2^{(d+1)} \text{ et } 2^d \left(1 - \prod_{j=1}^d \frac{\sin x_j}{x_j} \right) = O\left(|x|^2\right) \text{ pour } x \to 0$$

car

$$\frac{\sin x_j}{x_j} = 1 - \frac{1}{6}(x_j)^2 + O(|x|^4) \text{ et } \prod_{j=1}^d \frac{\sin x_j}{x_j} = 1 - \frac{1}{6} \left[\sum_{j=1}^d (x_j)^2 \right] + O(|x|^4) = 1 - \frac{1}{6}|x|^2 + O(|x|^4)$$

On a alors:

$$\psi(z) - \psi(z+w) = \int_{\mathbb{R}^d} \left(e^{i < z, x > -e^{i < z+w, x > +i} < w, x > \mathbf{1}_{\{|x| \le 1\}}(x) \right) \nu(dx) - i < \gamma, w > 0$$

Lemme 4.2.

$$\int_{[-1;1]^d} (\psi(z) - \psi(z+w)) dw = \widehat{\rho}(z)$$

Démonstration. Comme

$$|e^{i < z, x>} - e^{i < z+w, x>} + i < w, x > \mathbf{1}_{\{|x| < 1\}}(x)|$$

$$\leq \left(\left| 1 - e^{i < w, x >} + i < w, x > \right| + \left| < w, x > \right| \left| 1 - e^{i < z, x >} \right| \right) \mathbf{1}_{\{|x| \le 1\}}(x) + 2.\mathbf{1}_{\{|x| > 1\}}(x)$$

$$\leq \left(|w|^2 |x|^2 + |w||x| \left| \sum_{k=1}^{\infty} \frac{(i < z, x >)^k}{k!} \right| \right) \mathbf{1}_{\{|x| \le 1\}}(x) + 2.\mathbf{1}_{\{|x| > 1\}}(x)$$

$$\leq \left(|w|^2 |x|^2 + |w||x||i < z, x > |(e-1)\right) \mathbf{1}_{\{|x| \le 1\}}(x) + 2.\mathbf{1}_{\{|x| > 1\}}(x)$$

$$\leq \left(|w|^2 |x|^2 + 2|w||x|^2 |z| \right) \mathbf{1}_{\{|x| \le 1\}}(x) + 2.\mathbf{1}_{\{|x| > 1\}}(x)$$

qui est intégrable, pour un z fixé, sur $(w,x) \in [-1;1]^d \times \mathbb{R}^d$ (pour la mesure produit $dw \otimes \nu(dx)$), on peut appliquer Fubini :

$$\int_{[-1;1]^d} (\psi(z) - \psi(z+w)) dw = \int_{[-1;1]^d} \left[\int_{\mathbb{R}^d} \left(e^{i < z, x >} - e^{i < z + w, x >} + i < w, x > \mathbf{1}_{\{|x| \le 1\}}(x) \right) \nu(dx) \right] dw$$

$$= \int_{\mathbb{R}^d} e^{i < z, x >} \left[\int_{[-1;1]^d} (1 - e^{i < w, x >}) dw \right] \nu(dx)$$

$$= \int_{\mathbb{R}^d} e^{i < z, x >} \left[2^d \left(1 - \prod_{j=1}^d \frac{\sin x_j}{x_j} \right) \right] \nu(dx)$$

$$= \widehat{\rho}(z)$$

 ρ , mesure finie, est donc (d'aprés le lemme) déterminée de manière unique par μ (car la transformée de Fourier caractérise la mesure). Or, si A est un borélien de \mathbb{R}^d ne contenant pas 0:

$$\nu(A) = \int_{\mathbb{R}^d} 1_A(x) \nu(dx) = \int_{\mathbb{R}^d} 1_A(x) \left[2^d \left(1 - \prod_{j=1}^d \frac{\sin x_j}{x_j} \right) \right]^{-1} \rho(dx)$$

Comme on impose dans l'énoncé du théorème $\nu(\{0\}) = 0$, on en déduit que ν est également déterminée de manière unique par μ . L'unicité de γ en découle (sa valeur est fixée par l'expression de $\widehat{\mu}$ dans (1) du (i) du théorème).

4.2 Preuve de la réciproque

Soient A, ν et γ donnés avec les hypothèses du théorème. Considérons la convolution d'un loi gaussienne de matrice de covariance A et de moyenne $\delta = \gamma - \int_{|x|>1/n} x \mathbf{1}_{\{|x|\leq 1\}}(x)) \nu(dx)$ (l'intégrale converge par hypothèse sur ν) avec une loi de Poisson composée de paramètres $c=M_n$ et $\sigma(dx) = \frac{1}{M_n} \mathbf{1}_{\{|x|>1/n\}} \nu(dx)$ avec $M_n = \int_{\{|x|>1/n\}} \nu(dx) > 0$ (on a bien $M_n < \infty$ par hypothèse sur ν , σ vérifie bien $\sigma(\{0\}) = 0$ et σ est une mesure de probabilité).

La loi de Poisson composée de paramètres c>0 et σ (avec σ mesure de probabilité sur \mathbb{R}^d telle que $\sigma(\{0\})=0$) est la mesure de probabilité sur \mathbb{R}^d de transformée de Fourier $\widehat{\mu}(z)=\exp\left[c(\widehat{\sigma}(z)-1)\right]$.

La loi μ_n ainsi obtenue est donc indéfiniment divisible et vérifie :

$$\widehat{\mu_n}(z) = \phi_n(z) = \exp\left[-\frac{1}{2} < z, Az > +i < \delta, z > +(\widehat{\nu}(z) - 1)\right]$$

$$= \exp\left[-\frac{1}{2} < z, Az > +i < \delta, z > +\int_{|x| > \frac{1}{n}} \left(e^{i < z, x > -1}\right) \nu(dx)\right]$$

$$= \exp\left[-\frac{1}{2} < z, Az > +i < \gamma, z > +\int_{|x| > \frac{1}{n}} \left(e^{i < z, x > -1} - i < z, x > \mathbf{1}_{\{|x| \le 1\}}(x)\right) \nu(dx)\right]$$

Pour tout z, pour $n \to \infty$, on a :

$$\phi_n(z) \to \phi(z) = \exp\left[-\frac{1}{2} < z, Az > +i < \gamma, z > + \int_{\mathbb{R}^d} \left(e^{i < z, x > -1} - i < z, x > \mathbf{1}_{\{|x| \le 1\}}(x)\right) \nu(dx)\right]$$

Remarquons que $z \mapsto \phi(z)$ est continue sur \mathbb{R}^d : en effet, on a

$$\forall u \in \mathbb{C} \text{ tq } |u| \le 1, |e^u - 1 - u| = \left| \sum_{k=2}^{\infty} \frac{u^k}{k!} \right| \le |u|^2 (e - 1) \le |u|^2$$

d'où:

$$\left| e^{i < z, x > } - 1 - i < z, x > \mathbf{1}_{\{|x| \le 1\}}(x) \right| \le |z|^2 |x|^2 \mathbf{1}_{\{|x| \le 1\}}(x) + 2.\mathbf{1}_{\{|x| > 1\}}(x)$$

Pour tout a>0, posons $M=a^2\vee 2>0$: pour tout $|z|\leq a$, ce qui précède permet d'écrire

$$|e^{i < z, x>} - 1 - i < z, x > \mathbf{1}_{\{|x| \le 1\}}(x)| \le M(|x|^2 \wedge 1)$$

Par (1) et par le théorème de convergence dominée, on en déduit la continuité de ϕ sur \mathbb{R}^d . ϕ est donc une fonction continue, limite simple de fonctions caractéristiques : d'après le théorème de Paul-Lévy, c'est donc la fonction caractéristique d'une probabilité μ .

Celle-ci est alors la limite étroite de la suite de mesures indéfiniment divisibles (μ_n) : d'après le corollaire 2.3, μ est donc indéfiniment divisible.

4.3 Preuve de l'existence

On part d'une loi μ indéfiniment divisible. On cherche à montrer que $\hat{\mu}$ prend la valeur donnée dans (1) du théorème. Pour cela on va exprimer μ comme limite de lois de Poisson composées (dont on sait qu'elles sont indéfiniment divisibles). Il est alors plus pratique de travailler avec des fonctions continues : dans l'expression (1) , on peut remplacer la fonction $\mathbf{1}_{\{|x|\leq 1\}}(x)$ par une fonction c(x) continue bornée de \mathbb{R}^d dans \mathbb{R} (on notera $c(x) \in C_b(\mathbb{R}^d)$), à condition de modifier également la valeur de γ . Pour c(x) continue bornée telle que c(x) = 1 + o(|x|) pour $x \to 0$ et c(x) = O(1/|x|) pour $|x| \to \infty$ on a :

$$i < \gamma, z > + \int_{\mathbb{R}^d} \left(e^{i < z, x > -1} - i < z, x > \mathbf{1}_{\{|x| \le 1\}}(x) \right) \nu(dx)$$

$$= i < \gamma_c, z > + \int_{\mathbb{R}^d} \left(e^{i < z, x > -1} - i < z, x > c(x) \right) \nu(dx)$$

avec $\gamma_c = \gamma + \int_{\mathbb{R}^d} x \left(c(x) - \mathbf{1}_{\{|x| \leq 1\}}(x)\right) \nu(dx)$. En effet $g(z,x) = e^{i < z,x} > -1 - i < z, x > c(x)$ vérifie $g(z,x) \sim i < z, x > (1-c(x)) = o(|x|^2) = O(|x|^2)$ pour $x \to 0$ et g(z,x) = O(1) pour $|x| \to \infty$. Elle est donc est intégrable par rapport à $\nu(dx)$; de même pour $x(c(x) - \mathbf{1}_{\{|x| \leq 1\}}(x))$.

Théorème 4.3. Soit $c(x) \in C_b(\mathbb{R}^d)$ telle que c(x) = 1 + o(|x|) pour $x \to 0$ et c(x) = O(1/|x|) pour $|x| \to \infty$.

Supposons que $(\mu_n)_{n\in\mathbb{N}}$ (pour n=1,2...) soit une suite de mesures de probabilité indéfiniment divisibles sur \mathbb{R}^d telles que pour tout n, $\hat{\mu}_n$ ait une représentation de Lévy-Khintchine de triplet générateur $(A_n,\nu_n,\beta_n)_c$. Supposons que μ_n converge étroitement vers μ (avec μ une mesure de probabilité sur \mathbb{R}^d).

Alors μ est indéfiniment divisible et $\hat{\mu}$ a la représentation de Lévy-Khintchine de triplet générateur $(A, \nu, \beta)_c$ vérifiant les conditions suivantes :

(i) $\forall f \in C_0(\mathbb{R}^d)$, (avec $C_0(\mathbb{R}^d)$ l'ensemble des fonctions continues bornées de \mathbb{R}^d dans \mathbb{R} tendant vers 0 à l'infini)

$$\lim_{n \to \infty} \int_{\mathbb{R}^d} f(x) \nu_n(dx) = \int_{\mathbb{R}^d} f(x) \nu(dx)$$

(ii) Si $A_{n,\varepsilon}$ désignent les matrices symétriques positives vérifiant

$$\langle z, A_{n,\varepsilon}z \rangle = \langle z, A_nz \rangle + \int_{|x| \le \varepsilon} \langle z, x \rangle^2 \nu_n(dx)$$

(la forme quadratique $z \to < z, A_{n,\varepsilon}z > est$ en effet symétrique positive car A_n est symétrique positive, elle définit donc une unique matrice symétrique positive $A_{n,\varepsilon}$) alors pour $z \in \mathbb{R}^d$

$$\lim_{\varepsilon \to 0} \limsup_{n \to \infty} |\langle z, A_{n,\varepsilon} z \rangle - \langle z, Az \rangle| = 0.$$

(iii)
$$\beta_n \to \beta$$
.

Preuve du théorème 4.3

Les μ_n sont indéfiniment divisibles et $\mu_n \to \mu$ donc μ est indéfiniment divisible et $\hat{\mu}$ ne s'annule pas. Or, comme $\mu_n \to \mu$, on en déduit que $\widehat{\mu}_n(z)$ converge vers $\widehat{\mu}(z)$ uniformément sur tout compact, donc $\log \widehat{\mu}_n \to \log \widehat{\mu}$ uniformément sur tout compact.

Lemme 4.4. La mesure $\rho_n(dx) = (|x|^2 \wedge 1)\nu_n(dx)$ est tendue, c'est-à-dire qu'elle est telle que :

- (a) $\sup_{n} \rho_n(\mathbb{R}^d) < \infty$
- (b) $\lim_{l\to\infty} \sup_n \int_{|x|>l} \rho_n(dx) = 0$

 $D\'{e}monstration.$

- Preuve de (a): on pose $g(z,x)=e^{i < z,x>}-1-i < z,x>c(x)$. Comme c est continue bornée, g est continue en (z,x). De plus, on a déjà vu que g(z,x) est intégrable par rapport à $\nu(dx)$. Donc $(z,x)\to g(z,x)$ est intégrable sur $[-h;h]^d\times\mathbb{R}^d$ (pour la mesure produit $dz\otimes\nu(dx)$). On applique donc Fubini (en remarquant que par imparité : $\int_{[-h;h]^d}i<\gamma_c,z>dz=0=\int_{[-h;h]^d}i< z,x>c(x)dz$) :

$$-\int_{[-h;h]^d} \log \widehat{\mu_n}(z) dz = \frac{1}{2} \int_{[-h;h]^d} \langle z, A_n z \rangle dz - \int_{\mathbb{R}^d} \nu_n(dx) \int_{[-h;h]^d} g(z,x) dz$$

or $-\int_{[-h;h]^d} g(z,x)dz = \int_{[-h;h]^d} (1-e^{i\langle z,x\rangle})dz = 1-\prod_{j=1}^d \frac{\sin hx_j}{hx_j}$ donc comme A_n est une matrice symétrique positive :

$$-\int_{[-h;h]^d} \log \widehat{\mu_n}(z) dz \ge (2h)^d \int_{\mathbb{R}^d} \left(1 - \prod_{j=1}^d \frac{\sin hx_j}{hx_j} \right) \nu_n(dx)$$

Or $\log \widehat{\mu_n} \to \log \widehat{\mu}$ uniformément sur tout compact donc sur $[-h;h]^d$, ainsi le membre de gauche de l'inégalité converge vers $-\int_{[-1;1]^d} \log \widehat{\mu}(z) dz$ quand $n \to \infty$.

Soit $m = \inf_x [(1 - \prod_{j=1}^d \frac{\sin x_j}{x_j})(|x|^2 \wedge 1)^{-1}]$. On a m > 0: en effet, on a déjà vu que pour $x \to 0$, $(1-\prod_{j=1}^d \frac{\sin hx_j}{hx_j}) = \frac{1}{6}|x|^2 + O(|x|^4)$. Pour h=1 on a donc $-\int_{[-h;h]^d} \log \widehat{\mu_n}(z)dz \ge 2^d m\rho_n(\mathbb{R}^d)$. En découle le (a) du lemme.

- Preuve de (b):

 $z \to \widehat{\mu}(z)$ est continue et ne s'annule pas donc $z \to \log \widehat{\mu}(z)$ est bien définie et continue, donc continue en 0. Pour $\varepsilon > 0$ il existe donc $\eta > 0$ tel que pour $z \in [-\eta; \eta]^d |\log \widehat{\mu}(z)| < \varepsilon$.

Alors $\left|\frac{1}{(2h)^d}\int_{[-h;h]^d}\log\widehat{\mu}(z)dz\right| \leq \varepsilon$ pour $h < \eta$. Donc pour $\varepsilon > 0$, il existe n_0 et h_0 tels que pour $n > n_0$:

$$0 \le \int_{\mathbb{R}^d} \left(1 - \prod_{j=1}^d \frac{\sin h_0 x_j}{h_0 x_j} \right) \nu_n(dx) \le \varepsilon$$

Comme $|x|^2 = \sum |x_j|^2 \le d \sup_j (|x_j|^2)$, pour $|x| > 2 \frac{d^{1/2}}{h_0}$ il existe donc un j_0 tel que $|x_{j_0}| > 2/h_0$.

$$1 - \prod_{j=1}^{d} \frac{\sin h_0 x_j}{h_0 x_j} \ge 1 - \left| \frac{\sin h_0 x_{j_0}}{h_0 x_{j_0}} \right| \ge 1 - \frac{1}{h_0 |x_j|} > \frac{1}{2}$$

on intègre l'inégalité ci-dessus par rapport à ν_n sur $\{|x|>2\frac{d^{1/2}}{h_0}\}$:

$$\frac{1}{2} \int_{|x|>2\frac{d^{1/2}}{h_0}} \nu_n(dx) \leq \int_{|x|>2\frac{d^{1/2}}{h_0}} \left(1 - \prod_{j=1}^d \frac{\sin h_0 x_j}{h_0 x_j}\right) \nu_n(dx) \\
\leq \int_{\mathbb{R}^d} \left(1 - \prod_{j=1}^d \frac{\sin h_0 x_j}{h_0 x_j}\right) \nu_n(dx) \leq \varepsilon$$

Donc pour $r = \sup(2\frac{d^{1/2}}{h_0}, 1)$ et pour $n > n_0$ on a $|x|^2 \wedge 1 = 1$ pour |x| > r et

$$\frac{1}{2} \int_{|x| > r} \rho_n(dx) = \frac{1}{2} \int_{|x| > r} \nu_n(dx) \le \frac{1}{2} \int_{|x| > 2\frac{d^{1/2}}{h_0}} \nu_n(dx) \le \varepsilon$$

D'autre part, comme ρ_n est intégrable sur \mathbb{R}^d , pour tout n il existe l_n tel que

$$\int_{|x|>l_n} \rho_n(dx) < \varepsilon.$$

Pour $l = \sup(l_1, ..., l_{n_0}, r)$ on a donc $\int_{|x|>l} \rho_n(dx) < 2\varepsilon$ pour tout n, ce qui prouve le (b) du lemme.

Fin de la preuve du théorème 4.3

L'ensemble ρ_n étant borné et tendu, il est relativement compact pour la convergence étroite (voir le Corollaire 1.4). On peut donc en extraire une sous-suite

$$\left(\rho_{n_k}\right) \stackrel{(e)}{\to} \rho$$

Posons $\nu(dx) = (|x|^2 \wedge 1)^{-1} \rho(dx)$ avec $\nu(\{0\}) = 0$.

Les μ_n ont par hypothèse une représentation de Lévy-Khintchine de triplet (A_n, ν_n, β_n) ; elles sont indéfiniment divisibles donc $\widehat{\mu}_n$ ne s'annule pas et on a

(E1)
$$(\log \widehat{\mu}_n)(z) = -\frac{1}{2} \langle z, A_n z \rangle + i \langle \beta_n, z \rangle + \int g(z, x) \nu_n(dx)$$

= $-\frac{1}{2} \langle z, A_{n,\varepsilon} z \rangle + i \langle \beta_n, z \rangle + I_{n,\varepsilon} + J_{n,\varepsilon}$

avec

$$I_{n,\varepsilon} = \int_{|x| < \varepsilon} (g(z,x) + \frac{1}{2} < z, x >^2) (|x|^2 \wedge 1)^{-1} \rho_n(dx)$$

$$J_{n,\varepsilon} = \int_{|x| > \varepsilon} g(z,x) (|x|^2 \wedge 1)^{-1} \rho_n(dx).$$

Soit $E=\{\varepsilon>0, \int_{|x|=\varepsilon}\rho(dx)=0\}$. Alors pour $\varepsilon\in E$:

$$\lim_{k \to \infty} J_{n_k, \varepsilon} = \int_{|x| > \varepsilon} g(z, x) (|x|^2 \wedge 1)^{-1} \rho(dx).$$

En effet, pour z fixé, g(z,x) est continue bornée en x. Et $|1_{|x|>\varepsilon}(|x|^2\wedge 1)^{-1}|\leq 1\vee\frac{1}{\varepsilon^2}$. Donc

$$\lim_{E\ni\varepsilon\downarrow 0}\lim_{k\to\infty}J_{n_k,\varepsilon}=\int_{\mathbb{R}^d-\{0\}}g(z,x)\nu(dx)=\int_{\mathbb{R}^d}g(z,x)\nu(dx).$$

D'autre part : $g(z,x) + \frac{1}{2} < z, x^2 > = o(|x|^2)$ pour $x \to 0$. Donc pour $\varepsilon \to 0$

$$|I_{n,\varepsilon}| \le \sup_{|x| \le \varepsilon} \left[\left(g(z,x) + \frac{1}{2} < z, x >^2 \right) \frac{1}{|x|^2 \wedge 1} \right] \sup_n \rho_n(\mathbb{R}^d) \to 0$$

donc

$$\lim_{\varepsilon \downarrow 0} \sup_{n} |I_{n,\varepsilon}| = 0.$$

De plus, on a vu que $\log \widehat{\mu}_n \to \log \widehat{\mu}$, donc en considérant dans (E1) séparément les parties réelle et imaginaire, on obtient que, pour tout z,

$$\lim_{E\ni\varepsilon\downarrow0}\lim_{k\to\infty} \langle z, A_{n_k,\varepsilon} \rangle$$

et

$$\lim_{k \to \infty} <\beta_{n_k}, z >$$

existent et sont finies.

$$L: z \longrightarrow \lim_{k \to \infty} \langle \beta_{n_k}, z \rangle$$

est (par passage à la limite simple) une forme linéaire sur \mathbb{R}^d , donc il existe un unique β tel que pour tout z $L(z) = < \beta, z >$. Ainsi

$$\beta = \lim_{k \to \infty} \beta_{n_k}.$$

De même,

$$\Phi: z \longrightarrow \lim_{E \ni \varepsilon \downarrow 0} \lim_{k \to \infty} \langle z, A_{n_k, \varepsilon} \rangle$$

est une forme quadratique positive, donc il existe une unique matrice A symétrique positive telle que pour tout $z, \Phi(z) = < z, Az >$.

En outre, $\varepsilon \to \langle z, A_{n,\varepsilon}z \rangle$ est croissante, donc on peut dans la limite s'affranchir de la contrainte $\varepsilon \in E$. En effet, E contient bien une suite tendant vers 0 puisque E^c est au plus dénombrable car ρ est finie $(\operatorname{Card}\{x, \rho(\{x\}) > 1/n\} \le n\rho(\mathbb{R}^d) < \infty$ donc $E^c = \bigcup_n \{x, \rho(\{x\}) > 1/n\}$ est dénombrable). Ainsi

$$A = \lim_{\varepsilon \downarrow 0} \lim_{k \to \infty} A_{n_k, \varepsilon}$$

On a donc obtenu

$$\log \widehat{\mu}(z) = -\frac{1}{2} \langle z, A \rangle + i \langle \beta, z \rangle + \int g(z, x) \nu(dx).$$

 μ a donc la représentation cherchée et (1), (2) et (3) sont vérifiés.

Fin de la preuve du théorème 4.1 (i)

 μ est une mesure de probabilité indéfiniment divisible. Soit t_n une suite de réels positifs strictement tendant vers 0. Soit μ_n la loi de Poisson composée de paramètres $c=t_n^{-1}$ et $\sigma=\mu^{t_n}$.

$$\widehat{\sigma}(z) = \widehat{\mu}(z)^{t_n} = \int_{\mathbb{R}^d - \{0\}} (e^{i < z, x > -1}) \mu^{t_n}(dx).$$

$$\widehat{\mu}_n(z) = \exp\left[\frac{1}{t_n} \left(\widehat{\mu}(z)^{t_n} - 1\right)\right]$$

Pour $n \to \infty$ on a :

$$\widehat{\mu}_n(z) = \exp\left[\frac{1}{t_n} \left[e^{t_n \log \widehat{\mu}(z)} - 1 \right] \right] = \exp\left[\frac{1}{t_n} \left[t_n \log \widehat{\mu}(z) + O(t_n^2) \right] \right] \rightarrow e^{\log \widehat{\mu}(z)} = \widehat{\mu}(z)$$

donc μ_n converge étroitement vers μ .

 μ_n , loi de Poisson composée, a une représentation de Lévy-Khintchine

$$(A_n, \nu_n, \gamma_n) = (0, \frac{1}{t_n} \mu^{t_n}, 0)$$

donc μ a une représentation de Lévy-Khintchine de triplet générateur $(A, \nu, \beta)_c$ donné par le théorème 4.3. On peut réécrire cette représentation sous la forme cherchée.

Références

- [1] Ken-Iti Sato, **Indefinitely divisible laws and Lévy processes**, Cambridge Studies in Advanced Mathematics 68, Cambridge University Press, 1999.
- [2] P. Billingsley, Convergence of probability measures, Wiley series in Probability and Mathematical Statistics, 1968.
- [3] J.Lacroix, Chaînes de Markov et processus de Poisson, DEA Probabilités et applications (univ. Paris VI), 2001-2002, www.proba.jussieu.fr/cours/dea/telehtml/telehtml.html
- [4] Chung, Kai Lai, A Course in probability theory, Harcourt, Brace and World, 1968