Examen Partiel

Intégration, 25 Novembre 2009

(2 heures)

Exercice 1

On pose pour tout $x \in]-\infty,1[$

$$F(x) = \int_{1}^{\infty} \frac{t^x}{1 + t^2} dt.$$

- (a) Déterminer $\lim_{x\to-\infty} F(x)$ et $\lim_{x\to 1^-} F(x)$.
- (b) Montrer que la fonction F est de classe \mathcal{C}^{∞} sur $]-\infty,1[$ et que sa dérivée d'ordre k est donnée par

$$F^{(k)}(x) = \int_1^\infty \frac{t^x}{1+t^2} \log^k t \, dt.$$

(c) Montrer que pour tout $x \in]-\infty, 1[$, on a

$$F'(x)^2 \le F(x)F''(x) .$$

En conclure que la fonction $\log F$ est convexe sur $]-\infty,1[$.

Exercice 2

Soit μ une mesure positive sur \mathbb{R}^d muni de sa tribu borélienne \mathcal{B} . On introduit le support topologique de μ

$$\operatorname{Supp}(\mu) = \left\{ x \in \mathbb{R}^d : \mu(B(x,r)) > 0 \text{ pour tout } r > 0 \right\},$$

- où $B(x,r) = \{y \in \mathbb{R}^d : |x-y| < r\}$ désigne la boule de centre x et de rayon r.
- (a) Montrer que si $x \notin \operatorname{Supp}(\mu)$, alors il existe un point à coordonnées rationnelles $y \in \mathbb{Q}^d$ et un rationnel r > 0 tels que $x \in B(y,r)$ et $\mu(B(y,r)) = 0$.
- (b) Montrer que:
 - Supp (μ) est un fermé,
 - $\mu(\mathbb{R}^d \backslash \operatorname{Supp}(\mu)) = 0$,
 - $\mu(\operatorname{Supp}(\mu)\backslash F) > 0$ pour tout fermé F strictement contenu dans $\operatorname{Supp}(\mu)$.
- (c) Montrer que si deux mesures μ et ν sur \mathbb{R}^d ont des supports topologiques disjoints, i.e. Supp $(\mu) \cap$ Supp $(\nu) = \emptyset$, alors μ et ν sont étrangères.

Donner un exemple de deux mesures finies non nulles qui sont étrangères et ont le même support topologique.

T.S.V.P

Exercice 3

On considère deux mesures positives finies μ et ν sur $\mathbb{R}_+^* =]0, \infty[$ muni de la tribu borélienne $\mathcal{B}(\mathbb{R}_+^*)$. Pour toute partie $A \subseteq \mathbb{R}_+^*$ et tout $x \in \mathbb{R}_+^*$, on pose $A^x = \{a^x : a \in A\} \subseteq \mathbb{R}_+^*$.

(a) Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ une fonction continue bornée. Montrer que l'application

$$x \mapsto \int_{\mathbb{R}^*_+} f(y^{1/x}) \nu(\mathrm{d}y)$$

est continue sur \mathbb{R}_+^*

En déduire que si $\Theta \subseteq \mathbb{R}_+^*$ est un ouvert, alors l'application $x \mapsto \nu(\Theta^x)$ est mesurable sur \mathbb{R}_+^* .

Indication. On pourra utiliser le résultat suivant qui a été vu en cours : il existe une suite croissante de fonctions continues $f_n : \mathbb{R}_+^* \to [0,1]$ telle que $\lim_{n\to\infty} f_n(y) = \mathbf{1}_{\Theta}(y)$ pour tout $y \in \mathbb{R}_+^*$.

(b) On note \mathcal{M} la famille des boréliens $A \in \mathcal{B}(\mathbb{R}_+^*)$ pour lesquels l'application $x \mapsto \nu(A^x)$ est mesurable sur \mathbb{R}_+^* .

Vérifier que si $A, A' \in \mathcal{M}$ avec $A \subseteq A'$, alors $A' \setminus A \in \mathcal{M}$.

Montrer ensuite que si $(A_n)_{n\in\mathbb{N}}$ est une suite croissante dans \mathcal{M} , alors $\bigcup A_n \in \mathcal{M}$.

En conclure que $\mathcal{M} = \mathcal{B}(\mathbb{R}_+^*)$.

(c) On définit pour tout borélien $A \in \mathcal{B}(\mathbb{R}_+^*)$

$$\mu \odot \nu(A) = \int_{\mathbb{R}_+^*} \nu(A^x) \mu(\mathrm{d}x) .$$

Montrer que $\mu \odot \nu$ est une mesure finie sur \mathbb{R}_{+}^{*} .

(d) Soit $f: \mathbb{R}_+^* \to \mathbb{R}_+$ une fonction mesurable. Montrer que la fonction $F: \mathbb{R}_+^* \times \mathbb{R}_+^* \to \mathbb{R}_+$ définie par $F(x,y) = f(y^{1/x})$ est elle aussi mesurable, et qu'on a

$$\int_{\mathbb{R}_+^*} f d(\mu \odot \nu) = \int_{\mathbb{R}_+^* \times \mathbb{R}_+^*} F d(\mu \otimes \nu).$$