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Abstract

This paper is concerned with projective surfaces X with canonical singu-
larities and having non-zero pluri-forms, i.e. H0(X, (Ω1

X)[m]) 6= {0} for some
m > 0, where (Ω1

X)[m] is the reflexive hull of (Ω1
X)⊗m. For such a surface,

we can find a non-constant morphism from X to P1 which is a fibration.
At the same time, we will obtain a method to construct all surfaces of this
kind. Moreover, we can find a smooth curve E with positive genus such that
P1 = E/G, where G = Z/2Z×Z/2Z. Then X is just the quotient Y/G where
Y is the normalization of X ×P1 E and H0(X, (Ω1

X)[m]) ∼= H0(E, (Ω1
E)⊗m)G,

the G-invariant part of H0(E, (Ω1
E)⊗m). The proof relies on methods of the

minimal model program for surfaces.

Contents

1 Introduction and notation 3

2 Preparation for the proof of Theorem 1.16 9

1



3 Proof of Theorem 1.16 11
3.1 Source of non-zero reflexive pluri-forms . . . . . . . . . . . . . 11
3.2 Back to the initial variety . . . . . . . . . . . . . . . . . . . . 12

2



1 Introduction and notation

Throughout this paper, we will work over C, the field of complex num-
bers. Unless otherwise specified, every variety is an integral C-scheme of
finite type. A curve is a variety of dimension 1 and a surface is a variety of
dimension 2. For a variety X, we denote the sheaf of Kähler differentials by
Ω1

X . Denote
∧p Ω1

X by Ωp
X for p ∈ N.

For a coherent sheaf F on a variety X, we denote by F ∗∗ the reflexive
hull of F . There is an important property for reflexive sheaves.

Proposition 1.1. [Har80, Prop.1.6]. Let F be a coherent sheaf on a normal
variety V . Then F is reflexive if and only if F is torsion-free and for each
open U ⊆ X and each closed subset Y ⊆ U of codimension at least 2,
F (U) ∼= j∗F (U \ Y ), where j : U \ Y → U is the inclusion map.

If V is a normal variety, let Vns be its smooth locus. We denote a canonical
divisor by KV . Moreover, let Ω

[p]
V (resp. (Ω1

V )[p]) be the reflexive hull of Ωp
V

(resp. (Ω1
V )⊗p). By Proposition 1.1, it’s just the push-forward of the locally

free sheaf Ωp
Vns

(resp. (Ω1
Vns

)⊗p) to V since V is smooth in codimension 1. If V
is not normal, (Ω1

V )⊗p is not a locally free sheaf and it may contain some tor-
sion. Thus, it is more interesting to study H0(V, (Ω1

V )[p]) than H0(V, (Ω1
V )⊗p).

Definition 1.2. Consider a morphisme f : X → Y . A Cartier divisor C in
X is nef if its intersection number with any effective curve is non negative,
it’s f -nef if its intersection number with any effective curve contracted by f
is non negative. A Weil divisor D is a Q-Cartier divisor if there is an positive
integer r such that rD is a Cartier divisor, and it’s nef (resp.f -nef) if rD is
a nef (resp.f -nef) Cartier divisor.

Definition 1.3. Let S be a normal surface. A morphism r : S̃ → S is called
the minimal resolution of singularities (or minimal resolution for short) if S̃
is smooth and KS̃ is r-nef.

Remark 1.4. There is a unique minimal resolution of singularities for a nor-
mal surface and any resolution of singularities factors through the minimal
resolution.
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Definition 1.5. Let S be a normal surface and r : S̃ → S be the minimal
resolution of singularities of S. We say that S has canonical singularities if
the intersection number KS̃ · C is zero for every r-exceptional curve C.

Remark 1.6. In [KM98, Def.4.4], Definition 1.5 is the definition for Du Val
singularities. However, by [KM98, Prop.4.11 and Prop.4.20] if S only has
Du Val singularities, it has canonical singularities and it’s automatically Q-
factorial (i.e. for every Weil divisor D on S there is an m ∈ N such that mD
is a Cartier divisor). Thus these two definitions coincide and we have, in this
case, KS̃ = r∗KS.

Definition 1.7. Let p : S → B be a fibration from a normal surface to
a smooth curve. If the non-reduced fibers of p are p∗z1,..., p

∗zr, then the
ramification divisor R of p is the divisor p∗z1 + · · ·+p∗zr−Supp(p∗z1 + · · ·+
p∗zr).

Definition 1.8. [KM98, Def.4.6]. Let C =
⋃
Ci be a collection of proper

curves on a smooth surface S. The dual graph Γ of C is defined as follow:
(1) The vertices of Γ are the curves Ci.
(2) Two vertices Ci 6= Cj are connected with Ci · Cj edges.
For example,

1
1 2

2

3

3

4

4

5

5

collection of curves dual graph

Theorem 1.9. Let (0 ∈ S) be the germ of a Du Val singularity and r : S̃ → S
be the minimal resolution of S, then we have a table as below (cf. [Reid] for
more details)
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Type of singularity Dual graph of the exceptional divisor of r

Ai

Di

Ei

· · ·

· · ·

· · ·

Definition 1.10. A curve C is a rational curve if there exists a non-constant
morphism f : P1 → C. A variety V is called rationally connected if for any
two general points x1, x2, there exists a rational curve C ⊆ V such that
x1, x2 ∈ C, cf. [Kol96, Def.3.2 and Prop.3.6]. A variety V is called rationally
chain connected if any two general points x1, x2 are connected by a chain of
rational curves.

Remark 1.11. If V is a smooth variety, then V is rationally connected if and
only if it’s rationally chain connected (cf. [Kol96, IV,Thm.3.10]). In fact,
a smooth rationally connected variety is firstly defined by connectedness by
chain (cf. [KMM92] or [Cam91]). In [HM07], Hacon and McKernan prove
the same equivalence for dlt pairs.
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Definition 1.12. [Kol96, IV.Cor.3.8]. If X is a smooth projective rationally
connected variety then H0(X, (Ω1

X)⊗m) = {0} for m > 0.

There is a conjectured numerical criterion for rational connectivity, which
is the converse of the previous theorem. We call it Mumford’s conjecture,
although it is not clear when and how Mumford formulated it...

Conjecture 1.13. A smooth projective variety X is rationally connected if
and only if H0(X, (Ω1

X)⊗m) = {0} for all m > 0.

There are some version of Theorem 1.12 for singular rationnally connected
varieties. In [GKKP11, Thm.5.1], it’s shown that if a pair (X,D) is klt and

X is rationally connected, then H0(X,Ω
[m]
X ) = {0} for m > 0, where Ω

[m]
X

is the reflexive hull of Ωm
X . On the other hand, by [GKP12, Thm.3.3], if

X is factorial, rationally connected and with canonical singularities, then
H0(X, (Ω1

X)[m]) = {0} for m > 0, where (Ω1
X)[m] is the reflexive hull of

(Ω1
X)⊗m. However, this will not be true without the assumption of being

factorial. There is an example given in [GKP12, example 3.7]. In this paper,
our aim is to classify rationally connected surfaces with canonical singulari-
ties which have non-zero reflexive pluri-forms.

The following example is the one given in [GKP12, example 3.7].

Example 1.14. Let π′ : X ′ → P1 be any smooth ruled surface. Choose four
distinct points q1, q2, q3, q4 in P1. For each point qi, perform the following
sequence of birational transformations of the ruled surface:

(i) Blow up a point xi in the fiber over qi. Then we get two (−1)-curves
which meet transversely at x′i.

(ii) Blow up the point x′i. Over qi, we get two disjoint (−2)-curves and one
(−1)-curve. The (−1)-curve appears in the fiber with multiplicity two.

(iii) Blow down the two (−2)-curves. We get two singular points on the
fiber, each of them is of type A1.

In the end, we get a rationally connected surface π : X → P1 with canonical
singularities such that H0(X, (Ω1

X)[2]) 6= {0}.
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In fact, we will prove that every projective rationally connected surface
X with canonical singularities and having non-zero pluri-forms can be con-
structed by similar methods from a smooth ruled surface over P1. We have
several steps:

(i) Take a smooth ruled surface π0 : X0 → P1 and choose distinct points
q1, ..., qr in P1 with r ≥ 4.

(ii) For each qi, perform the same sequence of birational transformations
as in Example 1.14. We get a fibered surface π1 : X1 → P1. The
non-reduced fibers of π1 are π∗1q1, ..., π

∗
1qr

(iii) Perform finitely many times this birational transformation: blow up
a smooth point on a non-reduced fiber and then blow down the strict
transform of the initial fiber. We obtain another fibered surface p :
Xf → P1.

(iv) Starting from Xf , perform a sequence of blow-ups of smooth points,
we get a surface Xaux.

(v) Blow down some exceptional (−2)-curves for Xf → Xaux, we get the
wanted surface X.

We have a theorem:

Theorem 1.15. If X is a projective rationally connected surface with canon-
ical singularities such that H0(X, (Ω1

X)[m]) 6= {0} for some m > 0, then X
can be constructed by the method described above.

Note that we may produce some non-reduced fibers over P1 during the
process above. In fact, they are the source of non-zero forms. We will prove
the theorem below.

Theorem 1.16. Let X be a projective rationally connected surface with
canonical singularities and having non-zero reflexive pluri-forms. Let Xf be
a result of the MMP, then Xf is a Mori fiber space over P1. Let p : Xf → P1

be the fibration. If r is the number of points over which p has non-reduced
fibers, we have r ≥ 4 and

H0(X, (Ω1
X)[m]) ∼= H0(Xf , (Ω

1
Xf

)[m]) ∼= H0(P1,OP1(−2m+ [
m

2
]r))
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for m > 0.

We note that both in Theorem 1.16 and in the construction of Theorem
1.15, we meet a surface named Xf . In fact, these two surfaces can be iden-
tical. On the other hand, there is a projective surface Y and a 4 : 1 cover
Γ : Y → X. More precisely, we will prove the theorem below.

Theorem 1.17. Let X be a projective rationally connected surface with
canonical singularities and having non-zero pluri-forms, then we have a fi-
bration X → P1 given by Theorem 1.16. There is a smooth curve E with
positive genus, a normal projective surface Y with canonical singularities
and an action on E of the group G := Z/2Z × Z/2Z such that Y is the
normalization of X ×P1 E and X ∼= Y/G, P1 ∼= E/G.

Remark 1.18. With the notation in Theorem 1.17, we note that Y is not
rationally connected. Moreover, if rY : Ỹ → Y is the minimal resolution
of Y , then H0(Ỹ , (Ω1

Ỹ
)⊗m) ∼= H0(Y, (Ω1

Y )[m]), and the G-invariant part is

isomorphic to H0(X, (Ω1
X)[m]). We have a diagram:

Ỹ

Y X

E P1

rY

γ

Γ

ππ′

4 : 1 cover

4 : 1 cover
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2 Preparation for the proof of Theorem 1.16

Minimal model program In algebraic geometry, the minimal model
program is part of the birational classification of algebraic varieties. Its goal
is to construct a birational model of any complex projective variety which
is as simple as possible. Form a variety X, perform a sequence of birational
applications X = X0 99K X1 99K · · · , and the aim is to obtain a variety Xf

(if we can) in the end, such that either KXf
is nef, or we have a fibration

Xf → Y such that −KXf
is ample on general fibers (for more details of

MMP, cf. [KM98, §1.4 and §3.7]).

Let S be a projective rationally connected surface with canonical singu-
larities, then we can run the minimal model program for S . We obtain a
sequence of extremal contractions

S = S0 → S1 · · · → Sn.

Proposition 2.1. With the notations above, Sn is a Mori fiber space, i.e.
KSn is not nef.

Proof. Since S is rationally connected and has canonical singularities, so is
Sn. Assume that KSn is nef. Let r : Y → Sn be its minimal resolution of
singularities, then KY = r∗KSn is nef and Y is also rationally connected.
But this contradicts [Kol96, IV. Cor.3.8].

By Proposition 2.1, we have a Mori fibration p : Sn → B. Therefore we
have two possibilities: either dimB = 0 or dimB = 1. Since Sn is rationally
connected, so is B. Thus, if dimB = 1, then B ∼= P1.

A Fano surface S is a normal projective surface such that −KS is an
ample Q-Cartier divisor. Our aim is to prove the proposition below.

Proposition 2.2. Let S be a Fano surface with canonical singularities and
with Picard number 1, then H0(S, (Ω1

S)[m]) = {0} for any m > 0.
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Theorem 2.3. Let S be a quasi-projective surface with canonical singular-
ities and B be a smooth curve such that there is a Mori fibration p : S → B
which has non-reduced fiber over 0 ∈ B. Let r : S̃ → S be the minimal
resolution and p̃ be p ◦ r, then we have a table

Type of fiber Dual graph

(A1 + A1)

(D3)

(Di)

· · ·

1 2s

1
2

3

s

1
2

3 s

4
i

where the dual graph is the one of the support of p̃∗0 ⊆ S̃ and s corresponds
to C̃.
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3 Proof of Theorem 1.16

We will first prove Theorem 1.16. Let X be a rationally connected projec-
tive normal surface such thatX has canonical singularities andH0(X,Ω

[m]
X ) 6=

{0} for some m > 0. Run a MMP for X and we will get a sequence of divi-
sorial contractions

X = X0 → X1 · · · → Xn = Xf .

Let Xi,ns be the smooth locus of Xi.

Proposition 3.1. For m ∈ N, there is an injection

H0(X, (Ω1
X)[m]) ↪→ H0(Xf , (Ω

1
Xf

)[m]).

Let f : X → Xf be the composition of the sequence of the MMP, then
H0(Xf , (Ω

1
Xf

)[m]) 6= {0}. By Proposition 2.1, Xf is a Mori fiber space and

we have a fibration p : Xf → P1. Let π = p ◦ f : X → P1.

3.1 Source of non-zero reflexive pluri-forms

In this subsection, we will find out the source of non-zero pluri-forms on
Xf . By Proposition 1.1, we have

H0(Xf , (Ω
1
Xf

)[m]) ∼= H0(U, (Ω1
U)⊗m),

where m ∈ N and U is any open subset of Xf,ns, the smooth locus of Xf ,
such that Xf \ U has codimension at least 2 in Xf .

On the other hand, we have a natural morphism of locally free sheaves
on Xf,ns:

(p|Xf,ns
)∗Ω1

P1 −→ Ω1
Xf,ns

.

Furthermore, if R is the ramification divisor of p|Xf,ns there exist a fac-
torisation:
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(p|Xf,ns
)∗Ω1

P1 −→ ((p|Xf,ns
)∗Ω1

P1)⊗ OXf ,ns(R) −→ Ω1
Xf,ns

ρ

Moreover, ρ⊗ kx is injective for x in an open subset V ⊆ Xf,ns such that
Xf,ns \ V is a finite set of points, where kx is the residue field of x.

Thus we have an exact sequence

0 −→ ((p|V )∗Ω1
P1)⊗ OV ((R|V )) −→ Ω1

V −→ G −→ 0,

where G = Ω1
V/P1/(torsion of Ω1

V/P1) is an invertible sheaf on V , for G ⊗ kx
is of rank 1 at every point x of V , where kx is the residue field of x.

Proposition 3.1.1. With the notations above, we have a natural isomor-
phism H0(Xf , (Ω

1
Xf

)[m]) ∼= H0(P1,OP1(−2m)⊗ (p|Xf,ns
)∗OXf,ns

(mR)).

Remark 3.1.2. (p|Xf,ns
)∗OXf,ns

(mR) is a torsion-free sheaf of rank 1 over P1,
thus it is an invertible sheaf and there is a k ∈ Z such that OP1(k) ∼=
(p|Xf,ns

)∗OXf,ns
(mR). If this k is not less than 2m, H0(P1,OP1(−2m) ⊗

OP1(k)) 6= {0} and there exist non-zero reflexive pluri-forms over Xf .

3.2 Back to the initial variety

We have studied Xf and now we have to reverse the MMP and pull back
reflexive pluri-forms to the initial variety X. In this subsection, we will prove
that H0(X, (Ω1

X)[m]) ∼= H0(Xf , (Ω
1
Xf

)[m]) which ends the proof of Theorem
1.16.

Let f : X → Xf be the composition of the sequence in the MMP and
π = p◦f : X → P1. Assume that the non-reduced fibers of p are p∗z1, ..., p

∗zr
and the ones of π are π∗z1, ..., π

∗zr, π
∗z′1, ..., π

∗z′t.

Proposition 3.2.1. For m ∈ N, we have

(p|Xf,ns
)∗OXf,ns

(mR) ∼= OP1([
m

2
](z1 + ...+ zr)) ∼= OP1([

m

2
]r)

where [ ] is the integer part. In particular,

H0(Xf , (Ω
1
Xf

)[m]) ∼= H0(P1,OP1(−2m+ [
m

2
]r)).
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We note that the fibers of π : X → P1 have reduced components over
z′1,..., z

′
t ∈ P1 since p : Xf → P1 has reduced fibers over these points. Thus

the ramification divisor over these points will not give contribution to non-
zero reflexive pluri-forms. Our aim is now to prove that H0(X, (Ω1

X)[m]) ∼=
H0(Xf , (Ω

1
Xf

)[m]). To achieve this, it’s enough to prove that the fibers of

π : X → P1 over z1,..., zr are non-reduced along each of their components,
i.e. the coefficient of any component in π∗(z1 + · · ·+ zr) is larger than 1.

Proposition 3.2.2. The birational morphism f : X → Xf is an isomor-
phism around every singular point of Xf .

From Proposition 3.2.2, every exceptional divisor of f : X → Xf is over
a smooth point of Xf .

Proposition 3.2.3. The fibers of π : X → P1 over z1, ..., zr ∈ P1 are non-
reduced along each of their components.

From Proposition 3.2.3, we obtain Theorem 1.16
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