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Summary

In this report, our main purpose is to present a relatively recent theo-
rem due to Richard Kenyon which states that the scaling limit of the height
function defined by domino tilings of simply connected domains of R2 with
smooth boundary is the Gaussian free field [3, 5].

In the introduction, we first present domino tilings of polyomino and we
define the height function. Then, we give a concise definition of the Gaussian
free field.

The proof of the theorem is divided in two parts. In the first part, more
combinatorial, we construct the coupling function which allows to compute
probabilities of domino tilings. We describe the combinatorial assumption
we use on the boundary of polyominos to approximate simply connected do-
mains in R2 and which allow us to see the coupling function as a boundary
value problem. In the second part, more analytical, we compute the scaling
limit of the coupling function as the lattice size tends to zero. We then show
that the scaling limit of the multi-point expectation of the height function
is conformally invariant and that the scaling limit of the height function is
the Gaussian free field.

Finally, we discuss the impact this work has had on the field and we
mention some open questions.

Disclaimer: This report mostly presents work by Kenyon published in
[3, 5]. To make the text easier to read, we do not cite this two papers each
time we present a result from them. When no citation is mentioned, reference
to [3, 5] is assumed.

1



Contents

1 Introduction 3
1.1 Domino tilings and height function . . . . . . . . . . . . . . . 3

1.1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Tileability of polyominos by dominos . . . . . . . . . . 4
1.1.3 Height function . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Gaussian free field . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Constructing the coupling function 10
2.1 Kasteleyn theorem . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Temperley domains . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Discrete analytic functions . . . . . . . . . . . . . . . . . . . . 15
2.4 Properties of the coupling function . . . . . . . . . . . . . . . 17
2.5 Approximating bounded simply connected domains with Tem-

perley domains . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Scaling limit of the coupling function 22
3.1 On the whole plane . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 On bounded regions . . . . . . . . . . . . . . . . . . . . . . . 25

4 Scaling limit of the height function 30
4.1 Multi-point expectation . . . . . . . . . . . . . . . . . . . . . 30
4.2 Convergence to the Gaussian free field . . . . . . . . . . . . . 37

5 Conclusion 42

2



Chapter 1

Introduction

1.1 Domino tilings and height function

1.1.1 Basic definitions

Definition 1.1.1. A polyomino is a connected union of unit squares (faces)
in Z2. Two squares are connected if they share one common edge. Polyominos
are colored in black and white in a checkerboard fashion.

Figure 1.1: Example of polyomino and its tiling with dominos

Definition 1.1.2. A domino tiling of a polyomino 𝑃 is a tiling of P with
2 × 1 and 1 × 2 rectangles (each face of the polyomino belongs to exactly
one domino). We say that a polyomino is tileable if there exist a domino
tiling of the polyomino.

For each finite polyomino 𝑃 , there is a dual graph 𝑃 * : vertices of 𝑃 * are
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1. Introduction 4

the unit squares (faces) of 𝑃 and two vertices in 𝑃 * are connected by an edge
if and only if the two corresponding unit squares in 𝑃 share a common edge.
When we say domino tiling of 𝑃 *, we refer to the corresponding domino
tiling of 𝑃 .

Figure 1.2: Example of polyomino (in grey) and its dual graph (in black)
which black and white vertices define black and white faces of the polyomino

1.1.2 Tileability of polyominos by dominos

Not all polyominos are tileable. For example, a polyomino where the
number of black faces differ from the number of white faces is clearly not
tileable as each domino occupies a black and a white square. On the other
hand, a polyomino with a number of white faces equal to the number of
black faces is not always tileable. A tileable polyomino may have one or
more possible tiling. In the example below (figure 1.3), the two polyomino
have the same number of faces but the one on the left has a unique possible
tiling while the one on the right has five. This illustrates the fact that the
number of possible tilings of a polyomino depends on the shape of its bound-
ary. In this report, we are interested in polyominos which are tileable and
which have numerous possible tilings. In section 2.2, we will see that certain
boundary conditions on the finite polyominos guarantee these properties. In
this report, all polyominos are assumed to have an equal number of black
and white faces as it is a necessary condition for tileability.

1.1.3 Height function

For a tileable polyomino, we can use a tiling to define a height function on
the vertices of the polyomino. Furthermore, when the polyomino has multiple
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Figure 1.3: Two polyominos with different number of possible tilings by
dominos (one on the left, five on the right)

possible tilings and if we assume that all tilings have uniform probability,
this gives us a way to construct a discrete random surface.

Given a tiling of a simply connected finite polyomino, we define the height
function ℎ on the vertices to Z as following. We first choose a reference vertex
𝑉0 to which we assign the value 𝑐. The height of a vertex 𝑉 is obtained by
choosing a path on the edges of the tiling (i.e. on the edges of the polyomino
with no crossing of dominos) starting from the reference vertex and ending
on 𝑉 and computing the height along the path according to the following
rule : let’s 𝑉0, 𝑉1, ..., 𝑉𝑛 = 𝑉 be the sequence of vertices encountered along
the path, for 𝑖 ∈ 1, ..., 𝑛, ℎ(𝑉𝑖) = ℎ(𝑉𝑖−1) + 1 if the edge going from 𝑉𝑖−1 to
𝑉𝑖 has a white face on the left and ℎ(𝑉𝑖) = ℎ(𝑉𝑖−1)−1 if the edge going from
𝑉𝑖−1 to 𝑉𝑖 has a black face on the left. The height of 𝑉 does not depend on
the path chosen because the polyomino is simply connected. This can easily
be seen using the following fact : given two vertices 𝐴 and 𝐵 on a domino
(a domino has six vertices), the two paths going from 𝐴 to 𝐵 on the edges
of the domino give the same height difference between 𝐴 and 𝐵. Thus the
height function is well defined.
Remarks:

1. At every boundary vertex, the value of ℎ does not depend on the tiling
because for any two vertices on the boundary, the height difference
between them can be computed using the path following the boundary
which does not cross any domino.

2. At every vertex, the value mod 4 is fixed and does not depend on
the tiling. Moreover, when going along an edge 𝑉1𝑉2, the difference
ℎ(𝑉2) − ℎ(𝑉1) is 1 mod 4 if a white face is on the left and −1 mod 4
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h(V0) = 0

h(V1) = 1 h(V2) = 2 h(V3) = 1 h(V4) = 2

h(V) = 3

Figure 1.4: Height function : computation of the height in 𝑉 with an ex-
ample path

if a black face is on the left.
3. Assuming ℎ defined on the vertices of a polyomino Ω with correct

values ℎ mod 4 and such that at every pair of neighboring vertices 𝐴
and 𝐵 with a white face to the left of 𝐴𝐵, either ℎ(𝑏) = ℎ(𝑎) + 1 or
ℎ(𝑏) = ℎ(𝑎)−3, there is a tiling which corresponds to ℎ. This can easily
be seen by noticing that with these conditions, each face belongs to
exactly one domino. Thus we have a bijection between such function
ℎ and the set of tilings.

4. If the polyomino is not simply connected, the height function is not
necessarily defined (see fig 1.5).

Figure 1.5: Example of a tiling of a not simply connected polyomino where
the height function is not defined

If a polyomino is tileable and has multiple possible tilings, we have seen
that each tiling define a height function. If we assign a probability to each
tiling, we have constructed a discrete random surface.

On a simply connected domain polyomino, once we know the value of ℎ
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Figure 1.6: Two tilings of the same polyomino defining two height function.

at one vertex, we know the value of ℎ on all vertices. Thus ℎ is determined
by its values on the boundary. We give a criteria for the tileability with
respect to the boundary values here:

Theorem 1.1.3. Let the domain Ω be a simply connected finite graph in Z2

and ℎ be a function on the boundary vertices to Z such that for a checkerboard
coloring of Ω, the number of black squares is equal to the number of white
squares. Then, the following statement are equivalent:

1. There exists a domino tiling of Ω,
2. For all boundary vertices 𝑢 and 𝑣, ℎ(𝑣) ≤ ℎ(𝑢)+length of the shortest

path from 𝑢 to 𝑣 inside Ω such that it has black squares to the right.

Proof. If there exists a tiling and if ℎ is its height function, for all boundary
vertices 𝑢 and 𝑣, ℎ(𝑣) = ℎ(𝑢)+length of the shortest path from 𝑢 to 𝑣 inside
the tiling such that it has black squares to the right.

Reciprocally, if we assume (2.), we can construct a well-defined height
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function based on the boundary values of ℎ.
Given values of ℎ on the boundary of Ω, for an inner vertex 𝑣, let 𝐻(𝑥) :=

min
𝑎∈𝜕Ω

{ℎ(𝑎)+length of the shortest path from 𝑢 to 𝑣 inside Ω such that it has
black squares to the right}. We just need to verify Remark (c). We define
𝐻 by breadth-first-search so that it satisfies the condition. Here is how we
proceed:

First, we mark the vertices on the boundary and define 𝐻(𝑥) := ℎ(𝑥)
for all vertices 𝑥 on the boundary. Then each time, we choose a vertex 𝑢
with the smallest 𝐻 from the marked vertices. Then we extend the path we
have found from 𝑢 by one such that the extended path has a black face to
the right. If the path reaches a vertex that has not been marked, we can
define 𝐻 to be 𝐻(𝑢) + 1 at this vertex and mark it. If the path reaches a
vertex that has been marked, from the way we define 𝐻 and (2.), this value
is either 𝐻(𝑢) + 1 or 𝐻(𝑢) − 3. Then 𝐻 modulo 4 is defined correctly. This
completes the proof.
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1.2 Gaussian free field
In this section, we will present a concise construction of the Gaussian

free field given by Scott Sheffield in [6].
Let 𝑣 be a measurable random variable in R𝑑. 𝑣 is called the standard

Gaussian variable in R𝑑 if the distribution of 𝑣 is the same with
∑︀𝑑

𝑖 𝛼𝑗𝑣𝑗 ,
where 𝑣1, · · · , 𝑣𝑑 is an orthonormal basis in R𝑑, 𝛼𝑗 , 𝑗 = 1, · · · , 𝑑 are inde-
pendent identical Gaussian variables with mean 0 and variance 1.

Consider 𝐻𝑐(𝑈) formed by the smooth functions with compact support
in a domain 𝑈 ⊂ R2 (so that their fist-order derivatives are in 𝐿2(𝑈)), which
has the 𝐿2 norm. Denote Hilbert space 𝐻(𝑈) the completion of 𝐻𝑐(𝑈). This
is a Sobelev space (real vector space). In particular, the function in 𝐻(𝑈)
can be a Schwartz distribution, which is a continuous linear functional on
𝐶∞(𝑈). To be more precise, the Gaussian free field is the Gaussian variables
on 𝐻(𝑈), whose dimension is infinite. To define the Gaussian variable on
such a space, we need to express it on an orthonormal basis.

If 𝑈 is a Jordan region with smooth boundary, the eigenvectors of the
Laplacian on 𝑈 with Dirichlet boundary conditions (𝑓𝑖(𝑥) ≡ 0, 𝑥 ∈ 𝜕𝑈)
form an orthonormal basis for 𝐻(𝑈). Let 𝜆𝑖 be the eigenvalue of 𝑓𝑖, then
the Gaussian free field 𝐹 has the form:

𝐹 =
∑︁
𝑖≥1

𝛼𝑖𝑓𝑖

(−𝜆𝑖)1/2 ,

where 𝛼𝑗 are i.i.d. Gaussian random variables of mean 0 and variance 1.
However, this expression is meaningless, because it diverges almost ev-

erywhere. In fact, In [2], R. Kenyon has proved that for 𝑥 in 𝑃𝜖, the height
ℎ(𝑥) converges to a Gaussian random variable with variance 𝑐

log( 1
𝜖

) , where 𝑐

is a constant. So here, this expression should be interpreted as a Schwartz
distribution, which is a generalized function satisfying, for any function
𝜙 ∈ 𝐶1

𝑐 (𝑈), ∫︁
𝑈

𝜙𝐹 =
∑︁
𝑖≥1

𝛼𝑖

(𝜆𝑖)1/2

∫︁
𝑈

𝜙𝑓𝑖

which converges almost surely. Recall that by Weyl’s formula, 𝑖2/𝑑/(−𝜆𝑖)
converges to a constant as 𝑖 tends to infinity.



Chapter 2

Constructing the coupling
function

2.1 Kasteleyn theorem
For a given finite polyomino 𝑃 , Kastelelyn’s theorem gives the number

of possible tilings by dominos. Let 𝜇 be the uniform probability measure on
domino tilings of 𝑃 , Kasteleyn’s theorem allows as to compute the proba-
bility of a particular tiling. In addition, from a corollary of the theorem, the
𝜇-measures of cylinder sets are determined by the inverse of the Kasteleyn
matrix of the polyomino.

Definition 2.1.1. A Kasteleyn weighting of 𝑃 * (dual graph of 𝑃 ) is a
function 𝛼 which assigns to each edge in 𝑃 * a value in {±1, ±𝑖} such that
for every cycle in 𝑃 *, 𝑏1𝑤1, 𝑤1𝑏2, · · · , 𝑏𝑘𝑤𝑘, 𝑤𝑘𝑏1 (𝑏𝑖, ∀𝑖 ∈ 1, · · · , 𝑘 are black
vertices and 𝑤𝑖, ∀𝑖 ∈ 1, · · · , 𝑘 are white vertices), we have :

𝛼(𝑏1, 𝑤1) · · · 𝛼(𝑏𝑘, 𝑤𝑘)
𝛼(𝑏2, 𝑤1) · · · 𝛼(𝑏1, 𝑤𝑘) = (−1)𝑘−1 (2.1)

The existence of a Kasteleyn weighting can be established using spanning
trees: once allocating required values of 𝛼 for a square, we can inductively
allocate values of other three edges sharing the same square such that the
condition is satisfied.

Definition 2.1.2. A Kasteleyn matrix 𝐾 of a domino tiling on a bipartite
planar graph 𝐺* is a Kasteleyn weighted adjacency matrix. Let 𝐾 ′ be defined
as following : each row 𝑏 representing a black vertex and each column 𝑤
representing a white vertex, 𝐾 ′(𝑏, 𝑤) = 0 if 𝑏 is not adjacent to 𝑤 and
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2. Constructing the coupling function 11

𝐾 ′(𝑏, 𝑤) = 𝛼(𝑏, 𝑤) if 𝑏 is adjacent to 𝑤, 𝛼 being the Kasteleyn weighting of
the edges.

𝐾 =
(︂

0 𝐾 ′𝑇

𝐾 ′ 0

)︂
(2.2)

Theorem 2.1.3 (Kasteleyn). Let 𝐺* be a bipartite planar graph with equal
number of black and white vertices and 𝐾 its associated Kasteleyn matrix.
Then,

number of domino tilings of 𝐺* =
√︀

|det(𝐾)| (2.3)

Proof. Let 𝐾 ′ be defined as in 2.1.2.

det 𝐾 ′ =
∑︁

𝜎:permutations
sgn(𝜎)

∏︁
𝑗

𝐾(𝑏𝑗 , 𝜎(𝑤𝑗))

=
∑︁

𝜎:domino tilings s
sgn(𝜎)

∏︁
𝑗

𝛼(𝑏𝑗 , 𝜎(𝑤𝑗))

The second equality is obtained by noticing that only permutations corre-
sponding to a domino tiling give non-zero products.
To complete the proof, we have to show that the terms in the sum are all
equal and of module 1. Given two domino tilings 𝜎1 and𝜎2, we can draw
them simultaneously on 𝐺*: we obtain a set of cycles. On a cycle of 2𝑘
edges, the difference between 𝜎1 and 𝜎2 is 𝑘 −1 transpositions ; on the other
hand, (2.1) tell us that the ratio of the Kasteleyn weights on this cycle is
(−1)(𝑘−1). Multiplying all the cycles together, we get :

sgn(𝜎1)
∏︀
𝑗

𝛼(𝑏𝑗 , 𝜎1(𝑏𝑗))

sgn(𝜎2)
∏︀
𝑗

𝛼(𝑏𝑗 , 𝜎2(𝑏𝑗)) = 1 (2.4)

If 𝑃 is a tileable polyomino and 𝐾 its associated Kasteleyn matrix,
let us assign a uniform probability measure 𝜇 on all possible tilings. Each
tiling thus has probability 1/

√︀
|det𝐾|. Furthermore, we have the following

corollary :

Corollary 2.1.4. For a uniformly chosen domino tiling of 𝐺 and a collec-
tion of edges 𝑤1𝑏1, · · · , 𝑤𝑘𝑏𝑘, the probability of 𝑤1𝑏1, · · · , 𝑤𝑘𝑏𝑘 belonging to
a domino tiling is

| det 𝐾−1(𝑤𝑖, 𝑏𝑗)1≤𝑖,𝑗≤𝑘|
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Proof. Let 𝐾 ′ be defined as in 2.1.2.

Pr(all 𝑤1𝑏1, · · · , 𝑤𝑘𝑏𝑘 belong to a domino tiling) (2.5)

= #{domino tilings with 𝑤1𝑏1, · · · , 𝑤𝑘𝑏𝑘}
#{domino tilings} (2.6)

= | det 𝐾 ′(𝑤𝑖, 𝑏𝑗)𝑖,𝑗>𝑘|
| det 𝐾 ′|

(2.7)

= | det 𝐾 ′−1(𝑤𝑖, 𝑏𝑗)1≤𝑖,𝑗≤𝑘| (2.8)

= | det 𝐾−1(𝑤𝑖, 𝑏𝑗)1≤𝑖,𝑗≤𝑘| (2.9)

The last equality is given by Jacobi’s equality.

2.2 Temperley domains
Given a simply connected polyomino 𝑃 , let us consider its dual graph

𝑃 * which can be seen as a subgraph of Z2. we are going to refine the black
and white coloring of 𝑃 * with the following rule :

• if the coordinate of a vertex is (0, 0) mod 2, it has color 𝑊0
• if the coordinate of a vertex is (1, 1) mod 2, it has color 𝑊1
• if the coordinate of a vertex is (1, 0) mod 2, it has color 𝐵0
• if the coordinate of a vertex is (0, 1) mod 2, it has color 𝐵1

For clarity, we will use the following notation. For any subset 𝐷 of Z2,
B0(𝐷), B1(𝐷), W0(𝐷), W1(𝐷) are the B0, B1, W0 and W1 vertices in
𝐷 respectively. B(𝐷) = B0(𝐷) ∪ B1(𝐷) and W(𝐷) = W0(𝐷) ∪ W1(𝐷).

Definition 2.2.1. A Temperley domain is a polyomino with specific
boundary combinatorics. It is a polyomino where all convex corners are
around a 𝐵1 face and all concave corners are opposed to a 𝐵1 face. One 𝐵1
face at a corner is removed so that the number of white (𝑊0 and 𝑊1) and
blacked faces (𝐵0 and 𝐵1) is equal (the bottom right face in the example).
This removed corner is called the root.

Proposition 2.2.2 (Temperley bijection). Let polyomino 𝑃 be a Temperley
domain. A spanning tree on the black squares is a tree whose vertices are all
the black squares and the edges connect black squares are separated horizon-
tally or vertically by a single white square. There is a bijection between the
spanning trees on black squares and the domino tilings of 𝑃 .
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Figure 2.1: Coloring of Z2

B0

B1

Figure 2.2: An example of Temperley domain. 𝐵0 faces are grey, 𝐵1 faces
are black, 𝑊0 and 𝑊1 faces are white. The 𝐵1 face on the bottom right is
the root.

Proof. Consider the following mapping from the domino tilings of 𝑃 to the
spanning trees on black squares of 𝑃 : two black squares separated horizon-
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Figure 2.3: An example of spanning tree on black squares in green and the
corresponding domino tiling in red

tally or vertically by a single white square are connected by an edge if and
only if the white square belongs to a domino which direction is aligned with
the edge.

Let us show that this mapping is injective and surjective. In other words,
let us show that for each spanning tree, there is a unique corresponding
domino tiling. Let us partition 𝑃 in two parts : the first part is made of all
the squares through which the spanning tree goes; the second part is made
of the remaining squares.

We show that the first part has a unique tiling. Consider a terminal chain
of a spanning tree, i.e. the chain starting at an extreme black square of the
tree and ending at the first branching encountered (the branching square
not included). This is a chain of squares with an equal number of white and
colored squares and has thus a unique domino tiling. We can thus tile all
the terminal chains of the tree. Then, removing the already tiled extreme
chains, we get a smaller tree and we repeat the procedure. This gives us a
unique domino tiling of the first part.

The second part consists of disconnected chains, each having an equal
number of white and colored squares. These chains have thus a unique tiling.

Corollary 2.2.3. A Temperley domain is tileable.

Proof. It suffices to show that for all Temperley domain, there is a spanning
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tree on the black squares. Let 𝑃 be a Temperley domain. Let us define the
graph 𝐺 as follows : the vertices are the black squares and two black squares
are connected by en edge if and only if they are separated horizontally or
vertically by a single white square. 𝐺 is a connected graph. If 𝐺 contains a
cycle, we remove one edge of the cycle. If the remaining graph contains a
cycle, we repeat the procedure until the graph contains no cycle. The graph
we get is a spanning tree on the black squares.

Remarks:
1. The definition of Temperley domains implies that the boundary has no

"staircase" or "zigzag". These motifs tend to impose a unique tiling near
them which we would like to avoid as we are interested in constructing
a random object.

Figure 2.4: Examples of non Temperley domain with "staircase" and
"zigzag" motifs on the boundary. Both have a unique tiling.

2. Temperley domains guarantee certain boundary combinatorics which
are going to be used in the next section.

2.3 Discrete analytic functions
Before defining discrete analytic functions, let us first define some oper-

ators CZ2 → CZ2 :
• 𝜕𝑥𝑓(𝑣) = 𝑓(𝑣 + 1) − 𝑓(𝑣 − 1)
• 𝜕𝑦𝑓(𝑣) = 𝑓(𝑣 + 𝑖) − 𝑓(𝑣 − 𝑖)
• 𝜕𝑧 = 𝜕𝑥 − 𝑖𝜕𝑦

• 𝜕𝑧 = 𝜕𝑥 + 𝑖𝜕𝑦

Definition 2.3.1. Using the same coloring as for Temperley domains, a
function 𝐹 is discrete analytic on Z2 if it is real on B0(Z2) vertices,
purely imaginary on B1(Z2) vertices, null on W(Z2), and if 𝜕𝑧𝐹 = 0.
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Remarks:
1. Let 𝐹 be a discrete analytic function. 𝐹 = 𝑓 + 𝑖𝑔, 𝑓 and 𝑔 being the

real and purely imaginary part of 𝐹 respectively. By definition, 𝑓 is
real on B0(Z2) and null everywhere else whereas 𝑔 is real B1(Z2) and
null everywhere else.

2. An equivalent definition for discrete analytic functions is obtained by
replacing the condition 𝜕𝑧𝐹 = 0 by the discrete Cauchy-Riemann
equations :

𝜕𝑥𝑓(𝑣) = 𝜕𝑦𝑔(𝑣) for 𝑣 ∈ 𝑊0 (2.10)

𝜕𝑦𝑓(𝑣) = −𝜕𝑥𝑔(𝑣) for 𝑣 ∈ 𝑊1 (2.11)

3. Let 𝐷 be a subset of Z2. The operators 𝜕𝑥, 𝜕𝑦, 𝜕𝑧, 𝜕𝑧 we defined on CZ2

can be defined on C𝐷 using the convention that all elements outside
of 𝐷 have value 0 : we compute the value of the operator on CZ2 and
then take the restriction on C𝐷.

4. If 𝑃 is a finite subset of 𝐷 such that 𝐹 is discrete harmonic on 𝐷 ∖ 𝑃 ,
we say that 𝐹 is discrete harmonic with poles in 𝑃 .

Let 𝐴 be a function Z2 → C, we define the discrete Laplacian operator :

Δ𝐴 = −𝜕𝑧𝜕𝑧𝐴 = 4𝐴(𝑣) − 𝐴(𝑣 + 2) − 𝐴(𝑣 + 2𝑖) − 𝐴(𝑣 − 2) − 𝐴(𝑣 − 2𝑖)

Proposition 2.3.2. Let 𝐹 be a discrete analytic function. 𝐹 = 𝑓 + 𝑖𝑔, 𝑓
and 𝑔 being the real and purely imaginary part of 𝐹 respectively. Then,

∀𝑣 ∈ B0(Z2), Δ𝑓(𝑣) = 0

∀𝑣 ∈ B1(Z2), Δ𝑔(𝑣) = 0

Consequently,
∀𝑣 ∈ Z2, Δ𝐹 (𝑣) = 0

Proof. This results from simple computations.

Remarks:
1. Let 𝐹 be a discrete analytic function on a bounded subset 𝐷 of Z2

and 𝑓 and 𝑔 its real and purely imaginary parts respectively. As a
direct consequence of the proposition, we have {𝑤 ∈ B0(𝐷) | 𝑤 =
max𝑣∈B0(𝐷)𝑓(𝑣)} ⊂ 𝜕B0(𝐷) and {𝑤 ∈ B1(𝐷) | 𝑤 = max𝑣∈B1(𝐷)𝑔(𝑣)} ⊂
𝜕B1(𝐷). A similar result holds for the minimal value.
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2. Let 𝐷 be a bounded subset of Z2. Let 𝑎 and 𝑏 be two functions 𝐷 → R
such that ∀𝑣 ∈ 𝐷, Δ𝑎(𝑣) = 0 and Δ𝑏(𝑣) = 0 and ∀𝑣 ∈ 𝜕𝐷, 𝑎(𝑣) = 𝑏(𝑣).
Then 𝑎 = 𝑏. This results from the previous remark considering the
function 𝑎 − 𝑏 which is null on 𝜕𝐷 and which has Laplacian zero on
𝐷.

2.4 Properties of the coupling function
Let 𝐷 be a dual graph of a tileable subset of Z2. The coupling function

𝐶 is a complex-valued function on 𝐷 × 𝐷 which allows to compute the
probability of a finite set of dominos being present in a tiling if the tiling
is uniformly chosen among all possible tilings, for any set of dominos in 𝐷.
We have seen in section 2 that if 𝐷 is bounded, the coupling function is
related to the inverse Kasteleyn matrix. Precisely, if we order the vertices
of 𝐷 placing all the white vertices before the black vertices and if 𝐾 is the
Kasteleyn matrix associated with 𝐷, Then 𝐶 = 𝐾−1.

We are going to show that on the dual graph of Temperley domains,
the coupling function has certain properties which allows it to be seen as a
boundary value problem.

First, we are going to choose Kasteleyn weights as in figure 2.5. Let 𝐷

1 -1 1

-1 1 -1

1 -1 1

-i

i

i

-i

-i

i

i

-i

Figure 2.5: Kasteleyn weights

be the dual graph of a Temperley domain and 𝐾 its associated Kasteleyn
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matrix. 𝐾 can be seen as on operator on C𝐷 which is equivalent to −𝜕𝑧 on
B(𝐷) and equivalent to 𝜕𝑧 on W(𝐷). In addition, on 𝐷, 𝐾*𝐾 is equivalent
to the Laplacian (𝐾* being the Hermitian conjugate of 𝐾).
For a continuous analytic functions, we know that the imaginary part of the
function is determined, up to a constant, by its real part. We have a similar
result for discrete analytic function on simply connected Temperley domains
:

Lemma 2.4.1. Let 𝐷 be the dual graph of a simply connected Temperley
domain and 𝐹 a discrete analytic function on 𝐷. The imaginary part of 𝐹
is determined, up to an imaginary constant, by the real part of 𝐹 .

Proof. Let 𝑓 be the real part of a discrete analytic function 𝐹 on 𝐷. We
know that 𝑓 is real-valued on B0(𝐷), null everywhere else and ∀𝑣 ∈ B0(𝐷),
Δ𝑓(𝑣) = 0. We are going to compute 𝑔, the purely imaginary part of 𝐹 .
Let us take a reference vertex 𝑣0 ∈ B1(𝐷) and assign a real value 𝑐 to it.
∀𝑣 ∈ B1(𝐷), we choose a path in B1(𝐷) going from 𝑣0 to 𝑣. Along the path,
at each crossing of an edge of B0(𝐷), we add what is given by the discrete
Cauchy-Riemann equations (2.10) and (2.11). This gives us the value of 𝑔
at 𝑣 as this process does not depend on the path chosen because Δ𝑓 = 0 on
B0(𝐷).

As mentioned earlier, on tileable polyomino, the coupling function 𝐶 is
equal to the inverse Kasteleyn matrix 𝐾−1. This gives us immediately a
crucial property :

Lemma 2.4.2. Let 𝐷 be the dual graph of a finite tileable polyomino and
𝐾 its associated Kasteleyn matrix. Let us define the delta function :

∀(𝑣1, 𝑣2) ∈ 𝐷2, 𝛿𝑣1(𝑣2) =
{︂

1 if 𝑣1 = 𝑣2
0 otherwise

Then,
∀(𝑣1, 𝑣2) ∈ 𝐷2, 𝐾𝐶(𝑣1, 𝑣2) = 𝛿𝑣1(𝑣2)

Proof. 𝐾𝐶 = 𝐼

Lemma 2.4.3. Let 𝐷 be the dual graph of a finite tileable polyomino and
𝐶 its associated coupling function. We have the following properties :

1. ∀(𝑣1, 𝑣2) ∈ 𝐷2, 𝐶(𝑣1, 𝑣2) = 𝐶(𝑣2, 𝑣1)
2. If (𝑣1, 𝑣2) ∈ B(𝐷) or (𝑣1, 𝑣2) ∈ W(𝐷), 𝐶(𝑣1, 𝑣2) = 0.
3. If 𝑣1 ∈ W0(𝐷), 𝐶(𝑣1, 𝑣2) is a discrete analytic function of 𝑣2 with a

pole at 𝑣1.
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Proof. Let 𝐾 be the Kasteleyn matrix associated with 𝐷. By definition, 𝐾
can be seen as a symmetrical matrix of size |𝐷|. If the indices of the matrix
are ordered such that the W0(𝐷) are first, followed by the W1(𝐷), followed
by the B0(𝐷) and finally the B1(𝐷), then 𝐾 can be written as :

𝐾 =

⎛⎜⎜⎝
0 0 𝐾1 𝑖𝐾2
0 0 𝑖𝐾3 𝐾4

𝐾𝑇
1 𝑖𝐾𝑇

3 0 0
𝑖𝐾𝑇

2 𝐾𝑇
4 0 0

⎞⎟⎟⎠
Where 𝐾1, 𝐾2, 𝐾3 and 𝐾4 are real-valued square matrices. This follows
directly from our choice of Kasteleyn weights (figure 2.5). From block matrix
multiplication, we deduce that

𝐶 = 𝐾−1 =

⎛⎜⎜⎜⎝
0

(︂
𝐾𝑇

1 𝑖𝐾𝑇
3

𝑖𝐾𝑇
2 𝐾𝑇

4

)︂−1

(︂
𝐾1 𝑖𝐾2
𝑖𝐾3 𝐾4

)︂−1
0

⎞⎟⎟⎟⎠
The formula for block matrix inversion gives us :(︂

𝐾1 𝑖𝐾2
𝑖𝐾3 𝐾4

)︂−1
=

(︂
(𝐾1 + 𝐾2𝐾−1

4 𝐾3)−1 −𝑖(𝐾1 + 𝐾2𝐾−1
4 𝐾3)−1𝐾2𝐾−1

4
−𝑖𝐾−1

4 𝐾3(𝐾1 + 𝐾2𝐾−1
4 𝐾3)−1 𝐾−1

4 − 𝐾−1
4 𝐾3(𝐾1 + 𝐾2𝐾−1

4 𝐾3)−1𝐾2𝐾−1
4

)︂
(1.) and (2.) are thus proven.

For (3.), we first observe that for 𝑣1 ∈ W0(𝐷) fixed, 𝐶(𝑣1, 𝑣2) is real
when 𝑣2 ∈ B0(𝐷) and purely imaginary when 𝑣2 ∈ B1(𝐷). In addition,
𝐾𝐶(𝑣1, 𝑣2) = 𝛿𝑣1(𝑣2). This completes the proof.

Let 𝑃 be the dual graph of a Temperley domain and 𝐶 its associated
coupling function. Let us call 𝑌 the 𝐵0 vertices outside of 𝑃 which are at
a distance of 2 of 𝐵0(𝑃 ) (distance on a graph). We can thus extend 𝐵0(𝑃 )
to 𝐵′

0(𝑃 ) = 𝐵0(𝑃 ) ∪ 𝑌 . The boundary vertices of 𝐵′
0(𝑃 ), noted 𝜕𝐵′

0(𝑃 ),
are the vertices 𝑌 . As mentioned earlier, the operator 𝜕𝑧 is well defined on
𝑃 by computing 𝜕𝑧 in Z2 setting all the values in Z2 ∖ 𝑃 to zero and then
restricting the operator to 𝑃 . Lemma 2.4.3 tells us that if 𝑣1 ∈ 𝑊0(𝑃 ),
𝐶(𝑣1, 𝑣2) is discrete analytic in 𝑣2 and thus, 𝑅𝑒(𝐶(𝑣1, .)) seen as a real
valued function on 𝐵0(𝑃 ) can be extended to 𝐵′

0(𝑃 ) and ∀𝑣2 ∈ 𝜕𝐵′
0(𝑃 ),

𝑅𝑒𝐶(𝑣1, 𝑣2) = 𝐶(𝑣1, 𝑣2) = 0. With some simple calculations we get the
following lemma :

Lemma 2.4.4. For 𝑣1 ∈ 𝑊0(𝑃 ) fixed. Consider 𝐶(𝑣1, 𝑣2) as a function of
𝑣2 on 𝐵0(𝑃 ), extended to be zero on 𝑌 .



2. Constructing the coupling function 20

B0

Y

Figure 2.6: Temperley domain extension on the neighboring 𝐵0 vertices 𝑌

1. 𝐶(𝑣1, .) is discrete harmonic on 𝐵0(𝑃 ) ∖ {𝑣1 + 1, 𝑣1 − 1}
2. Δ𝑅𝑒𝐶(𝑣1, 𝑣1 ± 1) = ±1

For 𝑣1 ∈ 𝑊0(𝑃 ) fixed. Consider 𝐶(𝑣1, 𝑣2) as a function of 𝑣2 on 𝐵0(𝑃 ),
extended to be zero on 𝑌 .

a. 𝐶(𝑣1, .) is discrete harmonic on 𝐵0(𝑇 ) ∖ {𝑣1 + 𝑖, 𝑣1 − 𝑖}
b. Δ𝐼𝑚𝐶(𝑣1, 𝑣1 ± 𝑖) = ∓1

From Lemma 2.4.4, we deduce easily that the coupling function is the
unique solution to the following boundary value problem : 𝑓 is a solution if it
satisfies (1.) and (2.) of the lemma and 𝑅𝑒𝑓 is null on 𝜕𝐵′

0(𝑃 ). To show that
the solution is unique, Let 𝐹 be a solution to the b.v.p. If 𝐺 = 𝐹 −𝑅𝑒𝐶(𝑣1, .),
𝐺 is harmonic on 𝐵0(𝑃 ) and 𝑅𝑒𝐺 is null on 𝜕𝐵′

0(𝑃 ). According to the
remarks on page 16, 𝐹 = 𝑅𝑒𝐶.

2.5 Approximating bounded simply connected do-
mains with Temperley domains

Let 𝑈 be a bounded simply connected domain in R2 with smooth bound-
ary. In order to consider the scaling limit of the height function defined on
polyominos approximating 𝑈 as the lattice size tends to 0, we first need to
define what is an appropriate approximation of 𝑈 . We are going to use Tem-
perley domains to approximate 𝑈 because Temperley domains are always
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tileable (Corollary 2.2.3) and because, on Temperley domains, the coupling
function can be seen as the unique solution to a b.v.p. More precisely, let 𝑑
be a point on 𝜕𝑈 , called the marked point, an appropriate approximation
𝑃𝜖 (polyomino of lattice size 𝜖) of 𝑈 has the satisfy the following conditions
:

• 𝑃𝜖 is a Temperley domain and its root 𝑏𝜖 (see Definition 2.2.1) is at a
distance 𝑂(𝜖) of 𝑑.

• The boundary of 𝑃𝜖 is within 𝑂(𝜖) of 𝜕𝑈 and, locally, the counter-
clockwise path on the boundary of 𝑃𝜖 points in the same half-plane as
the counterclockwise tangent of 𝜕𝑈 .

• The boundary of 𝑃𝜖 contains a straight segment, either vertical or
horizontal, of length 𝛿 such that, when 𝜖 → 0, 𝛿/𝜖 → ∞.



Chapter 3

Scaling limit of the coupling
function

In this section we will show that, as 𝜖 tends to zero, 1
𝜖 𝐶(𝑣1, ·) converges

to a couple of complex analytic functions, 𝐹0 and 𝐹1 (when 𝑣1 ∈ 𝑊0, it
converges to 𝐹0; when 𝑣1 ∈ 𝑊1, it converges to 𝐹1), which transform ana-
lytically under conformal mappings of the domain 𝑈 . In the meantime, we
will show that these functions are solutions to a Dirichlet boundary value
problem.

First, we will introduce a few properties of the discrete Green’s func-
tion on the whole plane to show that the asymptotic values of the function
𝐶0(𝑣1, .) on the whole plane have the same properties as in Lemma 2.4.4 (no-
tice that we haven’t defined the coupling function on an unbounded domain).
We will see in the following part that for any coupling function 𝐶(𝑣1, .) on
a region 𝑈 , the singular part is 𝐶0(𝑣1, .).

3.1 On the whole plane
Consider the Fourier transform of the lattice function 𝐻(𝑛, 𝑚) := 𝐶0(0, 𝑛−

𝑚𝑖) in Z2: �̂�(𝑥, 𝑦) =
∑︀

𝑛,𝑚∈Z
𝐻(𝑛, 𝑚)𝑒−𝑖𝑛𝑥−𝑖𝑚𝑦. It has the following property:

22
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�̂�(𝑥, 𝑦)(𝑒𝑖𝑥 − 𝑒−𝑖𝑥 + 1
𝑖
(𝑒𝑖𝑦 − 𝑒−𝑖𝑦))

=
∑︁

𝑛,𝑚∈Z
(𝐻(𝑛 + 1, 𝑚) − 𝐻(𝑛 − 1, 𝑚) + 1

𝑖
(𝐻(𝑛, 𝑚 + 𝑖) − 𝐻(𝑛, 𝑚 − 𝑖)))𝑒−𝑖𝑛𝑥−𝑖𝑚𝑦

= 1
(3.1)

Where the first equality is obtained by the expression of �̂�, and the
second equality follows from the fact that 𝐻 is analytic with a pole at the
origin. By the reciprocal Fourier transform,

𝐻(𝑚, 𝑛) = 1
4𝜋2

∫︁ 2𝜋

0

∫︁ 2𝜋

0

𝑒𝑖(𝑛𝜃+𝑚𝜑)

2𝑖 sin(𝜃) + 2 sin(𝜑)𝑑𝜃𝑑𝜑.

Nevertheless, this integral diverges, but if we substract 1 in the numera-
tor of the integrand, the integral 𝐻(𝑚, 𝑛) = 1

4𝜋2

∫︀ 2𝜋
0

∫︀ 2𝜋
0

𝑒𝑖(𝑛𝜃+𝑚𝜑)−1
2𝑖 sin(𝜃)+2 sin(𝜑)𝑑𝜃𝑑𝜑

converges and still satisfies the property (3.1). From the uniqueness of the
Green’s function given boundary values we have

𝐶0(0, 𝑛 + 𝑖𝑚) = 1
4𝜋2

∫︁ 2𝜋

0

∫︁ 2𝜋

0

𝑒𝑖(𝑛𝜃−𝑚𝜑) − 1
2𝑖 sin(𝜃) + 2 sin(𝜑)𝑑𝜃𝑑𝜑

.
In [2], there is an alternative method to define the coupling function on

the whole plane: it is the limit of the coupling function on 2𝑛 × 2𝑛 squares
as 𝑛 tends to infinity. Both definitions give the same expression.

Theorem 3.1.1. As |𝑧| → ∞, 𝐶0 tends to 1
𝜋𝑧 asymptotically, that is to say

:

𝐶0(0, 𝑧) =
{︃

𝑅𝑒 1
𝜋𝑧 + 𝑂( 1

|𝑧|2 ) 𝑧 ∈ 𝐵0,

𝑖𝐼𝑚 1
𝜋𝑧 + 𝑂( 1

|𝑧|2 ) 𝑧 ∈ 𝐵1

Proof. Lemma 2.4.4 gives us the relationship between the the real part and
the purely imaginary part of 𝐶0 (real on 𝐵0 vertices and purely imaginary
on 𝐵1 vertices) and Green’s function on the whole plane: the real part of 𝐶0
is the unique function in 𝐵0(Z2) such that Δ𝑅𝑒𝐶0 = 𝛿1 − 𝛿−1 and tends to
zero as |𝑧| → ∞; the imaginary part of 𝐶0 is the unique function in 𝐵1(Z2)
such that Δ𝐼𝑚𝐶0 = 𝛿𝑖 − 𝛿−𝑖 and tends to zero as |𝑧| → ∞.
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Green’s function in Z2, 𝐺0(𝑣, 𝑤), is a symmetric function having the
properties that Δ𝐺0(0, 𝑤) = 𝛿0(𝑤) and for a fixed 𝑣, 𝐺0(0, 𝑤)−𝐺0(𝑣, 𝑤) → 0
as 𝑤 → ∞. Therefore we have

𝑅𝑒𝐶0(0, 𝑤) = 𝐺0(0,
𝑤 − 1

2 ) − 𝐺0(0,
𝑤 + 1

2 )

In order to obtain the asymptotic values of 𝐶0, we need a classical result
about 𝐺0:

Lemma 3.1.2. [9] There exists a constant 𝑐0 such that

𝐺0(0, 𝑣) = − 1
2𝜋

log |𝑣| + 𝑐0 + 𝑂( 1
|𝑣|2

).

Using Lemma 3.1.2 we have

𝑅𝑒𝐶0(0, 𝑤) = 𝐺0(0,
𝑤 − 1

2 ) − 𝐺0(0,
𝑤 + 1

2 )

= 1
2𝜋

log |𝑤 + 1
2 | − 1

2𝜋
log |𝑤 − 1

2 | + 𝑂( 1
|𝑣|2

)

= 1
2𝜋

𝑅𝑒 log(𝑤 + 1
𝑤 − 1) + 𝑂( 1

|𝑣|2
)

= 1
2𝜋

𝑅𝑒
2

𝑤 − 1 + 𝑂( 1
|𝑣|2

)

= 𝑅𝑒
1

𝜋𝑤
+ 𝑂( 1

|𝑣|2
),

where we used log(1 + 𝑤) = 𝑧 + 𝑂(|𝑧|2). Similarly, when 𝑤 ∈ 𝐵1(Z2),

𝐼𝑚𝐶0(0, 𝑤) = 𝐺0(0,
𝑤 − 𝑖

2 ) − 𝐺0(0,
𝑤 + 𝑖

2 )

= 1
2𝜋

log |𝑤 + 𝑖

2 | − 1
2𝜋

log |𝑤 − 𝑖

2 | + 𝑂( 1
|𝑣|2

)

= 1
2𝜋

𝑅𝑒 log(𝑤 + 𝑖

𝑤 − 𝑖
)𝑂( 1

|𝑣|2
)

= 1
2𝜋

𝑅𝑒
2𝑖

𝑤 − 1 + 𝑂( 1
|𝑣|2

)

= 𝐼𝑚
1

𝜋𝑤
+ 𝑂( 1

|𝑣|2
)
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Corollary 3.1.3. As 𝜖 → 0, the scaled function 1
𝜖 𝐶𝜖

0(0, 𝑧) on 𝜖Z2 tends to
1

𝜋𝑧 , that is to say :

𝐶0(0, 𝑧) =
{︃

𝑅𝑒 1
𝜋𝑧 + 𝑂(𝜖) 𝑧 ∈ 𝐵0(𝜖Z2),

𝑖𝐼𝑚 1
𝜋𝑧 + 𝑂(𝜖) 𝑧 ∈ 𝐵1(𝜖Z2)

Proof. On the scaled lattice 𝜖Z2, let us write 𝐶𝜖
0(0, 𝑧) = 𝐶0(0, 𝑧

𝜖 ). Using
Theorem 3.1.1, when 𝑧 ∈ 𝐵0(𝜖Z2),

1
𝜖

𝐶𝜖
0(0, 𝑧) = 1

𝜖
𝑅𝑒( 𝜖

𝜋𝑧
) + 1

𝜖
𝑂( 𝜖2

|𝑧2|
)

= 𝑅𝑒
1

𝜋𝑧
+ 𝑂(𝜖)

When 𝑧 ∈ 𝐵1(𝜖Z2), similarly, we have:

1
𝜖

𝐶𝜖
0(0, 𝑧) = 1

𝜖
𝐼𝑚( 𝜖

𝜋𝑧
) + 1

𝜖
𝑂( 𝜖2

|𝑧2|
)

= 𝑅𝑒
1

𝜋𝑧
+ 𝑂(𝜖)

3.2 On bounded regions
One of the main results in this part is to show that the coupling func-

tion on a finite region converges, as the lattice size 𝜖 tends to zero, to a pair
of analytic functions which transform analytically under conformal maps of
the region. For a fixed bounded region 𝑈 , we are going to prove this conver-
gence when 𝑈 is approximated by the Temperley domains 𝑃𝜖 as described
in 2.5. At the moment, we are not able to prove this convergence when 𝑈 is
approximated by general polyominos because of our lack of understanding
of the asymptotics of the discrete Green’s functions near the boundary of
the polyominos.

Let us define two functions 𝐹0(𝑧1, 𝑧2) and 𝐹1(𝑧1, 𝑧2): for a fixed 𝑧1,
𝐹0(𝑧1, 𝑧2) is an analytic function of 𝑧2 with a simple pole of residue 1

𝜋 at
𝑧2 = 𝑧1 and has real part zero on the boundary of 𝑈 ; for a fixed 𝑧1, 𝐹1(𝑧1, 𝑧2)
is an analytic function of 𝑧2 with a simple pole of residue 1

𝜋 at 𝑧2 = 𝑧1 and
has imaginary part zero on the boundary of 𝑈 . The existence and uniqueness
of the two functions as solutions of boundary value problems will be shown
in the following proof.
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We have a significant result concerning the convergence of the coupling
function.

Theorem 3.2.1. Let 𝑃 *
𝜖 be the dual graph of 𝑃𝜖. For any real 𝜉 > 0, the

coupling function 𝐶(𝑣1, 𝑣2) on 𝑃 *
𝜖 satisfies: for 𝑣1 ∈ 𝑊0 and 𝑣1, 𝑣2 not within

𝜉 of the boundary of 𝑀𝜖 and 𝜖 · |𝑧1 − 𝑧2|−1 = 𝑜(1)

1
𝜖

𝐶(𝑣1, 𝑣2) = 𝐹0(𝑣1, 𝑣2) + 𝑜(1).

If 𝑣1 ∈ 𝑊1, then
1
𝜖

𝐶(𝑣1, 𝑣2) = 𝐹1(𝑣1, 𝑣2) + 𝑜(1).

The equality should be interpreted as following: when 𝑣1 ∈ 𝑊0, 𝑣2 ∈ 𝐵0,
𝐶(𝑣1, 𝑣2) equals the real part of the right-hand side; when 𝑣1 ∈ 𝑊0, 𝑣2 ∈ 𝐵1,
𝐶(𝑣1, 𝑣2) equals the imaginary part of the right-hand side; when 𝑣1 ∈ 𝑊1,
𝑣2 ∈ 𝐵1, 𝐶(𝑣1, 𝑣2) equals the real part of the right-hand side; when 𝑣1 ∈ 𝑊1,
𝑣2 ∈ 𝐵0, 𝐶(𝑣1, 𝑣2) equals the imaginary part of the right-hand side.

When 𝑣1 ∈ 𝑊0, suppose that 𝐺(𝑤1, 𝑤2) is a discrete Green’s function on
𝐵′

0(𝑃𝜖). (Δ𝐺(𝑤1, 𝑤2) = 𝛿𝑤1(𝑤2) and taking value 0 on the boundary 𝑌 ). By
Lemma 2.4.4,

Δ𝑅𝑒𝐶(𝑣1, ·) = 𝛿𝑣1+𝜖 − 𝛿𝑣1−𝜖.

So
𝑅𝑒𝐶(𝑣1, 𝑣2) = 𝐺(𝑣1 + 𝜖, 𝑣2) − 𝐺(𝑣1 − 𝜖, 𝑣2).

Therefore, we need the convergence for Green’s functions. In fact, 1
𝜖 𝑅𝑒𝐶(𝑣1, 𝑣2)

is twice the 𝑥−derivative of the discrete Green’s function. This holds even
when we take the limit. In order to prove the theorem, we need the following
lemma :

Lemma 3.2.2. Let 𝑧1 = 𝑥1 + 𝑖𝑦1 be a point in the interior of 𝑈 and let
𝑧2 ∈ 𝑈 be different from 𝑧1. Let 𝑣1 be a vertex in 𝐵′

0(𝑃𝜖) within 𝑂(𝜖) of 𝑧1,
𝑣2 be a vertex in 𝐵′

0(𝑃𝜖) within 𝑂(𝜖) of 𝑧2 and 𝜖 · |𝑧1 − 𝑧2|−1 = 𝑜(1). Then,
1
𝜖 𝐺(𝑣1 + 𝜖, 𝑣2) − 1

𝜖 𝐺(𝑣1 − 𝜖, 𝑣2) converges to 2𝜕𝑥1𝑔𝑈 (𝑧1, 𝑧2);
1
𝜖 𝐺(𝑣1 + 𝑖𝜖, 𝑣2) − 1

𝜖 𝐺(𝑣1 − 𝑖𝜖, 𝑣2) converges to 2𝜕𝑦1𝑔𝑈 (𝑧1, 𝑧2).

Proof. Let 𝐻(𝑣1, 𝑣2) = 1
𝜖 (𝐺(𝑣1 + 𝜖, 𝑣2) − 𝐺(𝑣1 − 𝜖, 𝑣2)).

For Green’s function on the whole plane, Corollary 3.1.3 tells us that

𝐻0(𝑣1, 𝑣2) := 1
𝜖

(𝐺0(𝑣1+𝜖, 𝑣2)−𝐺0(𝑣1−𝜖, 𝑣2)) = 𝑅𝑒
1

𝜋(𝑣2 − 𝑣1)+𝑂( 𝜖

|𝑣2 − 𝑣1|2
)

(3.2)
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Notice that 𝐻(𝑣1, 𝑣2)−𝐻0(𝑣1, 𝑣2) (considered as a function of 𝑣2) is harmonic
on 𝐵′

0(𝑃𝜖) because we eliminate the singularity at 𝐻(𝑣1, 𝑣2). Meanwhile, the
boundary values are bounded: Corollary 3.1.3 tells us that 𝐻0(𝑣1, 𝑣2) is
bounded on a bounded domain and 𝐻(𝑣1, 𝑣2) has boundary value 0.

Let 𝑔 be a continuous harmonic function with boundary values equal to
the boundary values of the limit

lim
𝜖→0

𝐻(𝑣1, 𝑣2) − 𝐻0(𝑣1, 𝑣2).

According to (3.2), these boundary values converge uniformly (the boundary
values of 𝐻(𝑣1, 𝑣2) − 𝐻0(𝑣1, 𝑣2) are within 𝑂(𝜖) of the limit values), and
the limit of boundary values are continuous. Restrict 𝑔 on the vertices of
𝐵′

0(𝑃𝜖) (notice that this is a lattice function), the discrete Laplacian of 𝑔 on
𝑣 ∈ 𝐵′

0(𝑃𝜖) is:

Δ𝜖𝑔(𝑣1, 𝑣) = 4𝑔(𝑣) − 𝑔(𝑣 + 𝜖) − 𝑔(𝑣 − 𝜖) − 𝑔(𝑣 + 𝑖𝜖) − 𝑔(𝑣 − 𝑖𝜖).

When 𝜖 is sufficiently small, according to the Taylor expansion of 𝑔, the
formula above is approximated by

Δ𝜖 = − 𝜖4

12(𝜕4𝑔(𝑣)
𝜕𝑥4 + 𝜕4𝑔(𝑣)

𝜕𝑦4 ) + 𝑂(𝜖5)

Thus, the discrete Laplacian of 𝐻(𝑣1, 𝑣2)−𝐻0(𝑣1, 𝑣2)−𝑔(𝑣1, 𝑣2) is 𝑂(𝜖4)
on 𝐵′

0(𝑃𝜖), 𝑂(𝜖) on the boundary. Next, we will prove that 𝐻0 −𝐻 converges
to 𝑔. Construct two sequences of functions which are superharmonic and
subharmonic respectively that converge to 0 on the boundary, where by
the discrete version of Harnack’s principle, pointwise convergence is enough.
Since the limit of sub(super)harmonic functions is still sub(super)harmonic,
the limit is 0. Since the discrete Laplacian of 𝑥 + 𝑖𝑦 ↦→ 𝑥2 is a constant, we
can find 𝐵1 and 𝐵2, two constants sufficiently big such that

Δ𝜖(𝐵2𝜖4𝑅𝑒(𝑣2)2 + 𝐻(𝑣1, 𝑣2) − 𝐻0(𝑣1, 𝑣2) − 𝑔(𝑣1, 𝑣2)) ≥ 0,

and
Δ𝜖(𝐵3𝜖4𝑅𝑒(𝑣2)2 + 𝐻(𝑣1, 𝑣2) − 𝐻0(𝑣1, 𝑣2) − 𝑔(𝑣1, 𝑣2)) ≥ 0.

By the maximum principle of superharmonic functions, these functions
must take their maximum value on the boundary of the domain 𝐵′

0(𝑃𝜖).
Since 𝐻(𝑣1, 𝑣2) − 𝐻0(𝑣1, 𝑣2) − 𝑔(𝑣1, 𝑣2) = 𝑂(𝜖) on the boundary of 𝐵′

0(𝑃𝜖),
we have

𝐻(𝑣1, 𝑣2) − 𝐻0(𝑣1, 𝑣2) − 𝑔(𝑣1, 𝑣2) = 𝑂(𝜖).
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Therefore, 𝐻(𝑣1, 𝑣2) converges to the funtion 𝑅𝑒 1
𝜋(𝑧2−𝑧1) + 𝑔(𝑧1, 𝑧2) (the

discretization of 𝐻0 and 𝑔 converge to 𝑅𝑒 1
𝜋(𝑧2−𝑧1) and 𝑔 respectively). Since

𝐻(𝑣1, 𝑣2) is 0 on the boundary of 𝐵′
0(𝑃𝜖), this is exactly 2𝜕𝑥1𝑔𝑈 (𝑧1, 𝑧2).

By the same argument, we have that 1
𝜖 𝐺(𝑣1 + 𝑖𝜖, 𝑣2) − 1

𝜖 𝐺(𝑣1 − 𝑖𝜖, 𝑣2)
converges to 2𝜕𝑦1𝑔𝑈 (𝑧1, 𝑧2).

Now, we can prove Theorem 3.2.1:
1
𝜖 (𝐺(𝑣1 + 𝜖, 𝑣2) − 𝐺(𝑣1 − 𝜖, 𝑣2)) coverge to 2𝜕𝑥1𝑔𝑈 (𝑧1, 𝑧2) on 𝑈 .
The 𝐶0-convergence of 𝑅𝑒𝐶 implies the convergence of its derivative

for harmonic functions. Therefore, if we take a local integration of it on
𝑈∖{𝑣1} with value 0 at 𝑑, the convergence of 𝐼𝑚𝐶 holds. Since 𝐼𝑚𝐶 is the
harmonic conjugate of 𝑅𝑒𝐶, 𝐼𝑚𝐶 = 𝐼𝑚 1

𝜋(𝑧2−𝑧1) + 𝑔′(𝑧1, 𝑧2), where 𝑔′(𝑧1, 𝑧2)
is the harmonic conjugate of 𝑔 on the simply connected domain 𝑈 . Thus,
when 𝑣1 ∈ 𝑊0, 1

𝜖 𝐶(𝑣1, 𝑣2) converges to a complex-valued function of 𝑧2,
having a simple pole of residue 1

𝜋 at 𝑧1 and has real part 0 on the boundary,
which has the same property as the function 𝐹0. The existence of 𝐹0 follows.

The similar result holds for 𝑣1 ∈ 𝑊1 and 𝐹1.
Let 𝐹+ = 𝐹0 + 𝐹1 and 𝐹− = 𝐹0 − 𝐹1. 𝐹+ and 𝐹− depend only on the

conformal type of the domain 𝑈 in the following sense (conformal covari-
ance):
Proposition 3.2.3. The function 𝐹+(𝑧1, 𝑧2) is analytic as a function of 𝑧1
and 𝑧2. The function 𝐹−(𝑧1, 𝑧2) is analytic as a function of 𝑧2 and antiana-
lytic as a function of 𝑧1. If 𝑉 is another domain with smooth boundary and
if 𝑓 : 𝑈 → 𝑉 is a bijective complex analytic map sending the marked point
on 𝑈 to the marked point of 𝑉 , and if 𝐹 𝑉

+ and 𝐹 𝑉
− are the functions defined

as above for the region 𝑉 , then

𝐹 𝑈
+ (𝑧1, 𝑧2) = 𝑓 ′(𝑧1)𝐹 𝑉

+ (𝑓(𝑧1), 𝑓(𝑧2))
𝐹 𝑈

− (𝑧1, 𝑧2) = 𝑓 ′(𝑧1)𝐹 𝑉
− (𝑓(𝑧1), 𝑓(𝑧2))

Proof. From the definition of 𝐹± and the properties of 𝐹0 and 𝐹1, it is
analytic in the second variable.

To show the property in the first variable, we need to go back to the
coupling function. For a fixed black vertex 𝑣2 not adjacent to 𝑣1, we have

−𝐶(𝑣1 + 𝜖, 𝑣2) + 𝐶(𝑣1 − 𝜖, 𝑣2) − 𝑖𝐶(𝑣1 + 𝑖𝜖, 𝑣2) + 𝑖𝐶(𝑣1 − 𝑖𝜖, 𝑣2) = 0.

Write 𝑣1 = 𝑥1 + 𝑖𝑦1. If 𝑣2 ∈ 𝐵0, 𝑣1 ± 𝜖 ∈ 𝑊0, 𝑣1 ± 𝑖𝜖 ∈ 𝑊1 and 𝑣1 and
𝑣2 are within 𝜖 of 𝑧1 and 𝑧2 respectively, by Theorem 3.2.1, multiplying the
equation above with 1

𝜖 gives in the limit

−𝜕𝑥1𝑅𝑒𝐹0(𝑧1, 𝑧2) + 𝜕𝑦1𝐼𝑚𝐹1(𝑧1, 𝑧2) = 0
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and if 𝑣2 ∈ 𝐵1, 𝑣1 ± 𝜖 ∈ 𝑊0, 𝑣1 ± 𝑖𝜖 ∈ 𝑊1 and 𝑣1 and 𝑣2 are within 𝜖 of 𝑧1
and 𝑧2 respectively, this gives

−𝜕𝑥1𝐼𝑚𝐹0(𝑧1, 𝑧2) − 𝜕𝑦1𝑅𝑒𝐹1(𝑧1, 𝑧2) = 0

Combine the two equations above into a single complex-valued equation

−𝜕𝑥1𝐹0(𝑧1, 𝑧2) − 𝑖𝜕𝑦1𝐹1(𝑧1, 𝑧2) = 0.

Similarly, if 𝑣1 ± 𝜖 ∈ 𝐵1 and 𝑣1 ± 𝑖𝜖 ∈ 𝐵0 we have

−𝜕𝑥1𝐹1(𝑧1, 𝑧2) − 𝑖𝜕𝑦1𝐹0(𝑧1, 𝑧2) = 0.

The sum of the two equations gives 𝜕𝑧1(𝐹0 +𝐹1) = 0 and their difference
gives 𝜕𝑧1(𝐹0 − 𝐹1) = 0. This proves the first two statements.

As a function of 𝑧2, 𝐹 𝑣
0 (𝑓(𝑧1), 𝑓(𝑧1)) satisfies all the properties of 𝐹 𝑈

0 ex-
cept that the residue at 𝑧2 = 𝑧1 is 1

𝜋𝑓 ′(𝑧1) . Similarly, the function 𝐹 𝑉
1 (𝑓(𝑧1), 𝑓(𝑧2))

has all the properties of 𝐹 𝑈
1 except that the residue at 𝑧2 = 𝑧1 is 1

𝜋𝑓 ′(𝑧1) .
But, 𝑅𝑒(𝑓 ′(𝑧1))𝐹 𝑉

0 (𝑓(𝑧1), 𝑓(𝑧2))+𝑖𝐼𝑚(𝑓 ′(𝑧1))𝐹 𝑉
1 (𝑓(𝑧1), 𝑓(𝑧2)) has the same

properties as 𝐹 𝑈
0 . We deduce from the uniqueness from 𝐹 𝑈

0 that

𝐹 𝑈
0 = 𝑅𝑒(𝑓 ′(𝑧1))𝐹 𝑉

0 (𝑓(𝑧1), 𝑓(𝑧2)) + 𝑖𝐼𝑚(𝑓 ′(𝑧1))𝐹 𝑉
1 (𝑓(𝑧1), 𝑓(𝑧2))

.
Similarly,

𝐹 𝑈
1 = 𝑖𝐼𝑚(𝑓 ′(𝑧1))𝐹 𝑉

0 (𝑓(𝑧1), 𝑓(𝑧2)) + 𝑅𝑒(𝑓 ′(𝑧1))𝐹 𝑉
1 (𝑓(𝑧1), 𝑓(𝑧2)).

Again, the sum and the difference of 𝐹 𝑈
0 and 𝐹 𝑈

1 completes the proof of the
theorem.



Chapter 4

Scaling limit of the height
function

4.1 Multi-point expectation
Let 𝑈 be a bounded simply connected domain in R2 with smooth bound-

ary. For any 𝜖 > 0, let 𝑃𝜖 be a Temperley domain approximating 𝑈 as de-
fined in 2.5. Attributing uniform probability to all possible domino tilings
of 𝑃𝜖, the height function ℎ can be seen as a random function. Let ℎ be
the mean value of ℎ, we will show that the fluctuations of ℎ − ℎ converge
to the Gaussian free field as 𝜖 tends to zero. It has a well-known one-
dimensional analog: let 𝑋 be the set of all maps from 0, 1

𝑛 , 2
𝑛 , · · · , 1 to Z,

with ℎ(0) = ℎ(1) = 1, |ℎ( 𝑖+1
𝑛 −ℎ( 𝑖

𝑛))| = 1. If we take the uniform distribution
on 𝑋, 𝑋

𝑛 converges to the Brownian bridge (the Brownian bridge on [0, 1] is
the Brownian motion (𝐵𝑡)𝑡∈[0,1] conditioned on the event {𝐵0 = 𝐵1 = 0}).
In the eigenbasis of the one-dimensional Laplacian 𝜕2

𝜕𝑥2 the coefficients of
the Brownian bridge are independent Gaussians. One difference from the
one-dimensional case is that it is not required that height function ℎ is nor-
malized. It is therefore more surprising that the integer-valued function ℎ
converges to a continuous-valued object.

Take any test function 𝜙 ∈ 𝐶∞
0 (𝑈) on the domain, in order to prove that∫︀

𝑈 𝜑(ℎ − ℎ) is a Gaussian, we only need to show that its moments is the

30
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same as the moments of a Gaussian distribution.[3]

E[(
∫︁

𝑈
𝜙(ℎ𝜖 − ℎ𝜖))𝑛] = E[

∫︁
𝑈×···×𝑈

∫︁
𝜙(𝑎1) · · · 𝜙(𝑎𝑛)(ℎ𝜖 − ℎ𝜖)(𝑎1) · · · (ℎ𝜖 − ℎ𝜖)(𝑎𝑛)]

=
∫︁

𝑈×···×𝑈

∫︁
𝜙(𝑎1) · · · 𝜙(𝑎𝑛)E[(ℎ𝜖 − ℎ𝜖)(𝑎1) · · · (ℎ𝜖 − ℎ𝜖)(𝑎𝑛)]

In fact, [2] has proved that for 𝑥 inside 𝑃𝜖, the height ℎ(𝑥) converges to a
Gaussian with variance 𝑐

log( 1
𝜖

) , where 𝑐 is a constant. When 𝑎1 = 𝑎2 = · · · =
𝑎𝐾 , E[(ℎ𝜖 − ℎ𝜖)(𝑎1) · · · (ℎ𝜖 − ℎ𝜖)(𝑎𝑛)] does not converge as 𝜖 → 0, but the
function is still uniformly integrable with respect to 𝜖. Therefore, we want
to get that

E[(ℎ𝜖 − ℎ𝜖)(𝑎1) · · · (ℎ𝜖 − ℎ𝜖)(𝑎𝑛)] (4.1)
converges when {𝑎𝑖} are distinct. In order to know the height at a certain
point 𝑎, we can find a path from the boundary of the domain to 𝑎, then
counting the changes of height along the edges of the path which is deter-
mined by the domino tiling.
Theorem 4.1.1. Let 𝑈 be a bounded simply connected domain with smooth
boundary in the plane, {𝑎1, 𝑎2, · · · , 𝑎𝑘} be distinct points of 𝑈 , and {𝛾1, 𝛾2, · · · , 𝛾𝑘}
disjoint paths running from the boundary of 𝑈 to 𝑎1, 𝑎2, · · · , 𝑎𝑘. Let ℎ(𝑧𝑖)
denote the height of a point of 𝑃𝜖 lying within 𝑂(𝜖) of 𝑎𝑖. As 𝜖 → 0,

E[(ℎ𝜖 − ℎ𝜖)(𝑎1)(ℎ𝜖 − ℎ𝜖)(𝑎2) · · · (ℎ𝜖 − ℎ𝜖)(𝑎𝑘)] converges to

|
∑︁

𝜖1,··· ,𝜖𝑘∈{±1}

𝜖1𝜖2 · · · 𝜖𝑘

∫︁
𝛾1

· · ·
∫︁

𝛾𝑘

det
𝑖,𝑗∈{1,𝑘}

(𝐹𝜖𝑖,𝜖𝑗 (𝑧𝑖, 𝑧𝑗))𝑑𝑧
(𝜖1)
1 · · · 𝑑𝑧

(𝜖𝑘)
𝑘 |.

(4.2)
where 𝑑𝑧

(1)
𝑗 = 𝑑𝑧𝑗 , 𝑑𝑧

(−1)
𝑗 = 𝑧𝑗, and

𝐹𝜖𝑖,𝜖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 𝑖 = 𝑗

𝐹+(𝑧𝑖, 𝑧𝑗) (𝜖𝑖, 𝜖𝑗) = (1, 1)
𝐹−(𝑧𝑖, 𝑧𝑗) (𝜖𝑖, 𝜖𝑗) = (−1, 1)
𝐹−(𝑧𝑖, 𝑧𝑗) (𝜖𝑖, 𝜖𝑗) = (1, −1)
𝐹+(𝑧𝑖, 𝑧𝑗) (𝜖𝑖, 𝜖𝑗) = (−1, −1)

.

Notice that in each of the 2𝐾 multiple integrals in (4.2), by Proposition
3.2.3, each integrand is analytic or antianalytic in 𝑧𝑖 according to 𝜖𝑖 = ±1.
The integrand 𝐼 is conformally invariant, in the sense that∫︁

𝛾
𝐼(𝑧)𝑑𝑧 =

∫︁
𝑓(𝛾)

𝐼(𝑓(𝑧))𝑑𝑧
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Therefore (4.2) is conformally invariant.

Proof. For each 𝜖 sufficiently small, let 𝛾𝜖
1, · · · , 𝛾𝜖

𝑘 be pairwise disjoint lattice
paths in 𝑃𝜖 which start on the flat boundary near 𝑑 (marked point). We
require that each straight edge of 𝛾𝜖

𝑖 has even length (an even multiple of 𝜖).
In a given tiling, the height change on 𝛾𝜖

𝑖 equals 4(𝐴𝑖 − 𝐵𝑖), where 𝐴𝑖 is
the number of dominos crossing 𝛾𝑖 with the black square on the right and
𝐵𝑖 is the number of dominos crossing 𝛾𝑖 with the white square on the right.
This is because, if 𝛾𝑖 does not cross any dominos, the height change is 0:
the straight edges of 𝛾𝑖 have even length along which the number of black
squares and the number of white squares on the right are the same. For each
domino crossed by 𝛾𝑖, the height difference changes along the edge from −1
to +3 if the domino has black square on the right, and from +1 to −3 if the
black square is on the left.

Since ℎ𝑖 = 4(𝐴𝑖 − 𝐵𝑖),

E[(ℎ𝜖−ℎ𝜖)(𝑎1) · · · (ℎ𝜖−ℎ𝜖)(𝑎𝑘)] = 4𝑘E[(𝐴1−𝐵1−𝐴1+𝐵1) · · · (𝐴𝑘−𝐵𝑘−𝐴𝑘+𝐵𝑘)].
(4.3)

The rest of the proof involves expanding this out, cancelling various terms
and recombining them the right way.

Let 𝛼𝑖𝑡 denote the indicator functions of the presence of the 𝑡-th possible
domino crossing 𝛾𝑖 whose black square is right of 𝛾𝑖 and let 𝛽𝑖𝑡 denote the
indicator functions of the presence of the 𝑡-th possible domino crossing 𝛾𝑖

whose black square is left of 𝛾𝑖. Then,

𝐴𝑖 − 𝐵𝑖 =
∑︁

𝑡

𝛼𝑖𝑡 −
∑︁

𝑡′

𝛼𝑖𝑡′ .

Let (𝑤𝑖𝑡, 𝑏𝑖𝑡) be the white and black squares respectively of the domino 𝛼𝑖𝑡

and (𝑤′
𝑖𝑡, 𝑏′

𝑖𝑡) be the white and black squares of the domino 𝛽𝑖𝑡.
Since the straight edges in the path 𝛾𝑖 have even length, we can pair the

𝛼𝑖𝑡 dominos with adjacent 𝛽𝑖𝑡′ dominos which are parallel to 𝛼𝑖𝑡. It is then
convenient to write

𝐴𝑖 − 𝐵𝑖 − 𝐴𝑖 + 𝐵𝑖 =
∑︁

𝑡

(𝛼𝑖𝑡 − 𝛼𝑖𝑡 − 𝛽𝑖𝑡 + 𝛽𝑖𝑡)
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where 𝛼𝑖𝑡 and 𝛽𝑖𝑡 are paired. Thus we can write (4.3) as

E[(𝐴1 − 𝐵1 − 𝐴1 + 𝐵1) · · · (𝐴𝑘 − 𝐵𝑘 − 𝐴𝑘 + 𝐵𝑘)]

=
∑︁

𝑡1,··· ,𝑡𝑘

E[(𝛼1𝑡1 − 𝛼1𝑡1 − 𝛽1𝑡1 + 𝛽1𝑡1) · · · (𝛼𝑘𝑡𝑘
− 𝛼𝑘𝑡𝑘

− 𝛽𝑘𝑡𝑘
+ 𝛽𝑘𝑡𝑘

)]

=
∑︁

𝑡1,··· ,𝑡𝑘

(E[(𝛼1𝑡1 − 𝛼1𝑡1) · · · (𝛼𝑘𝑡𝑘
− 𝛼𝑘𝑡𝑘

)] + · · · + (−1)𝑘E[(𝛽1𝑡1 − 𝛽1𝑡1) · · · (𝛽𝑘𝑡𝑘
− 𝛽𝑘𝑡𝑘

)]).

(4.4)

where the sums are over all the pairs {𝛼1𝑡1 , 𝛽1𝑡1}, · · · , {𝛼𝑘,𝑡𝑘
, 𝛽𝑘𝑡𝑘

}. To ex-
pand this, we need the following lemma.

Lemma 4.1.2. Let 𝑒𝑖 = (𝑤𝑖, 𝑏𝑖), 𝑖 = 1, · · · , 𝑛 be a set of 𝑛 disjoint edges;
then

E[(𝑒1−𝑒𝑖) · · · (𝑒𝑛−𝑒𝑛)] = 𝑎𝐸 det

⎛⎜⎜⎜⎜⎝
0 𝐶(𝑤1, 𝑏2) · · · 𝐶(𝑤1, 𝑏𝑛)

𝐶(𝑤2, 𝑏1) 0
...

... 𝐶(𝑤𝑛−1, 𝑏𝑛)
𝐶(𝑤𝑛, 𝑏1) · · · 𝐶(𝑤𝑛, 𝑏𝑛−1) 0

⎞⎟⎟⎟⎟⎠ .

where 𝑎𝐸 is the product of the edge weights of the 𝑒𝑖.

Proof. We will proceed by induction on 𝑛. When 𝑛 = 1, both sides of the
equation are zero.

Suppose that the equation holds for integers 𝑘 less than 𝑛+1. Note that⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

0 𝑎12 · · · 𝑎1𝑛

𝑎21 𝑎22
... . . .

𝑎𝑛1 𝑎𝑛𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑎11 𝑎12 · · · 𝑎1𝑛

𝑎21 𝑎22
... . . .

𝑎𝑛1 𝑎𝑛𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ −

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑎11 0 · · · 0
0 𝑎22 · · · 𝑎2𝑛
...

...
...

0 𝑎𝑛2 · · · 𝑎𝑛𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ ,
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we have

E[(𝑒1 − 𝑒1) · · · (𝑒𝑛 − 𝑒𝑛)]

= E[𝑒1 · · · 𝑒𝑛] −
∑︁

𝑆⊂{1,··· ,𝑛},𝑆 ̸=∅

∏︁
𝑖∈𝑆

𝑎𝑒𝑖𝑒𝑖E[
∏︁
𝑖 ̸=𝑆

(𝑒𝑖 − 𝑒𝑖)]

= 𝑎𝐸

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑎11 𝑎12 · · · 𝑎1𝑛

𝑎21 𝑎22
... . . .

𝑎𝑛1 𝑎𝑛𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ − 𝑎𝐸

∏︁
𝑖∈𝑆

𝑒𝑖 det
{1,··· ,𝑛}∖𝑆

⎛⎜⎝0 ⋆
. . .

⋆ 0

⎞⎟⎠

= 𝑎𝐸 det

⎛⎜⎜⎜⎜⎝
0 𝑎12 · · · 𝑎1𝑛

𝑎21 0
...

... 𝑎𝑛−1,𝑛

𝑎𝑛,1 · · · 𝑎𝑛,𝑛−1 0

⎞⎟⎟⎟⎟⎠ .

where 𝑎𝑖,𝑗 = 𝐶(𝑤𝑖, 𝑏𝑗), 𝑖, 𝑗 = 1, 2, · · · , 𝑛.

Each terms in the matrix has the form

𝑎𝐸𝑠𝑔𝑛(𝜎)𝐶(𝑤1, 𝑏𝜎(1)𝐶(𝑤2, 𝑏𝜎(2)) · · · 𝐶(𝑤𝑘, 𝑏𝜎(𝑘))). (4.5)

where 𝜎 is a permutation without fixed point.
Reorder the vertices such that (4.5) is of the form

𝑎𝐸𝑠𝑔𝑛(𝜎)𝐶(𝑤1, 𝑏2)𝐶(𝑤2, 𝑏3) · · · 𝐶(𝑤𝑘, 𝑏1) (4.6)

To expand the products of the coupling functions in (4.6), let us define
𝑟𝑖 = ±1 according to whether 𝑤𝑖𝑡𝑖 ∈ 𝑊0 or 𝑤𝑖𝑡𝑖 ∈ 𝑊1, and 𝑠𝑖 = ±1 according
to whether 𝑏𝑖𝑡𝑖 ∈ 𝐵0 or 𝑏𝑖𝑡𝑖 ∈ 𝐵0. If we assume that neither 𝑤1 or 𝑏2 is close
to the boundary, by Theorem 3.2.1,

𝐶(𝑤1, 𝑏2) = 𝜖(1 − 𝑟1𝑠2
2 𝑖𝐼𝑚 + 1 + 𝑟1𝑠2

2 𝑅𝑒)(1 + 𝑟1
2 𝐹0(𝑤1, 𝑏2) + 1 − 𝑟1

2 𝐹1(𝑤1, 𝑏2)) + 𝑜(𝜖)

= 𝜖

4(𝐹+(𝑤1, 𝑏2) + 𝑟1𝐹−(𝑤1, 𝑏2) + 𝑠2𝐹−(𝑤1, 𝑏2) + 𝑟1𝑠2𝐹+(𝑤1, 𝑏2)) + 𝑜(𝜖).

For each fixed 𝜉 > 0, when neither of 𝑤1 and 𝑏2 are within 𝜉 of the boundary,
this approximation holds for sufficiently small 𝜖. Next, we first fix 𝜉, let
𝜖 → 0, then let 𝜉 → 0. When one of 𝑤1, 𝑏2 is within 𝜉 of the boundary,
we need only to show, 1

𝜖 𝐶(𝑤1, 𝑏2) is controlled by a constant irrelevant to 𝜖
and 𝜉. Then in the integral, we can ignore them as it is at most 𝑂(𝜖). By
Theorem 3.2.1, we have the boundedness of 1

𝜖 𝐶(𝑤1, 𝑏2).
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Now we can write (4.6) as:
4−𝑘𝜖𝑘𝑎𝐸𝑠𝑔𝑛(𝜎)((𝐹+(𝑤1, 𝑏2) + 𝑟1𝐹−(𝑤1, 𝑏2) + 𝑠2𝐹−(𝑤1, 𝑏2)+

𝑟1𝑠2𝐹+(𝑤1, 𝑏2)) · · · (𝐹+(𝑤𝑘, 𝑏1)+𝑟𝑘𝐹−(𝑤𝑘, 𝑏1)+𝑠1𝐹−(𝑤𝑘, 𝑏1)+𝑟𝑘𝑠1𝐹+(𝑤𝑘, 𝑏1)))+𝑜(𝜖𝑘).
(4.7)

Replace (𝑤1, 𝑏1) by (𝑤′
1, 𝑏′

1), then a similar expression follows except that the
signs of 𝑟1 and 𝑠1 are reversed. If we sum over all the 2𝑘 choices of 𝛼𝑗 , 𝛽𝑗 ,
we get 2𝑘 times the sum of those terms in (4.7) which have 𝑟𝑖 to the same
power as 𝑠𝑖 (0 or 1) for each 𝑖. Therefore, this sum can be written as an
error 𝑜(𝜖𝑘) plus

2−𝑘𝜖𝑘𝑠𝑔𝑛(𝜎)𝑎𝐸

∑︁
𝜖1,··· ,𝜖𝑘∈{−1,1}

(𝑟1𝑠1)
1−𝜖1

2 · · · (𝑟𝑘𝑠𝑘)
1−𝜖𝑘

2 𝐹𝜖1,𝜖2(𝑧1, 𝑧2)𝐹𝜖2,𝜖3(𝑧2, 𝑧3) · · · 𝐹𝜖𝑘,𝜖1(𝑧𝑘, 𝑧1).

(4.8)
When 𝜖 is sufficiently small, we get an expression in the form of an

integral by replacing 2𝜖 by a certain phase times 𝑑𝑧𝑖 or 𝑑𝑧𝑖 as following:

2𝜖 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑑𝑧𝑗 = 𝑑𝑧𝑗 𝛾𝑗 is going east, the edge weight is −𝑖, 𝑟𝑗𝑠𝑗 = −1
−𝑑𝑧𝑗 = −𝑑𝑧𝑗 𝛾𝑗 is going west, the edge weight is 𝑖, 𝑟𝑗𝑠𝑗 = −1
−𝑖𝑑𝑧𝑗 = 𝑖𝑑𝑧𝑗 𝛾𝑗 is going north, the edge weight is 1, 𝑟𝑗𝑠𝑗 = 1
𝑖𝑑𝑧𝑗 = −𝑖𝑑𝑧𝑗 𝛾𝑗 is going south, the edge weight is −1, 𝑟𝑗𝑠𝑗 = 1

.

Notice that 2𝜖 times the edge weight times (𝑟𝑗𝑠𝑗)
(1−𝜖𝑗 )

2 is −𝜖𝑗𝑖𝑑𝑧
𝜖𝑗

𝑗 , and 𝑎𝐸

is the product of the edge weights. For any choice of the 𝜖𝑗 we have

𝑎𝐸(2𝜖)𝑘(𝑟1𝑠1)
(1−𝜖1)

2 · · · (𝑟𝑘𝑠𝑘)
(1−𝜖𝑘)

2 = (−𝑖)𝑘𝜖1 · · · 𝜖𝑘𝑑𝑧𝜖1
1 · · · 𝑑𝑧𝜖𝑘

𝑘 .

The sum (4.8) is therefore

4−𝑘(−𝑖)𝑘𝑠𝑔𝑛(𝜎)
∑︁

𝜖1,··· ,𝜖𝑘∈{−1,1}

𝜖1 · · · 𝜖𝑘𝐹𝜖1,𝜖2(𝑧1, 𝑧2)𝐹𝜖2,𝜖3(𝑧2, 𝑧3) · · · 𝐹𝜖𝑘,𝜖1(𝑧𝑘, 𝑧1)𝑑𝑧𝜖1
1 · · · 𝑑𝑧𝜖𝑘

𝑘 .

When 𝜎 is a product of disjoint cycles we can treat each cycle separately
and the result is the product of terms involving disjoint sets of indices.
Thus when we sum over all (fixed-point free permutations) 𝜎, we obtain the
formula (4.2) without the integral. Summing over 𝑡1, · · · , 𝑡𝑘 (notice that 4𝑘

cancels) we get the formula.

Corollary 4.1.3. When 𝑘 = 2, the expression above is the Green’s function
on 𝑈 .
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Proof. To prove that this expression is the Green’s function on 𝑈 , we first
prove that this is the case on the half plane, then we use the conformal
invariance.

E[(ℎ − ℎ)(𝑎)(ℎ − ℎ)(𝑏)]

=
∫︁

𝛾1,𝛾2

⃒⃒⃒⃒
0 𝐹+(𝑧1, 𝑧2)

𝐹+(𝑧2, 𝑧1) 0

⃒⃒⃒⃒
𝑑𝑧1𝑑𝑧2 −

∫︁
𝛾1,𝛾2

⃒⃒⃒⃒
0 𝐹−(𝑧1, 𝑧2)

𝐹+(𝑧2, 𝑧1) 0

⃒⃒⃒⃒
𝑑𝑧1𝑑𝑧2

−
∫︁

𝛾1,𝛾2

⃒⃒⃒⃒
0 𝐹−(𝑧1, 𝑧2)

𝐹+(𝑧2, 𝑧1) 0

⃒⃒⃒⃒
𝑑𝑧1𝑑𝑧2 +

∫︁
𝛾1,𝛾2

⃒⃒⃒⃒
0 𝐹+(𝑧1, 𝑧2)

𝐹+(𝑧2, 𝑧1) 0

⃒⃒⃒⃒
𝑑𝑧1𝑑𝑧2

On the half plane, we have 𝐹0(𝑧1, 𝑧2) = 1
𝜋(𝑧2−𝑧1) − 1

𝜋(𝑧2−𝑧1) , 𝐹1(𝑧1, 𝑧2) =
1

𝜋(𝑧2−𝑧1) + 1
𝜋(𝑧2−𝑧1) . So, 𝐹+(𝑧1, 𝑧2) = 2

𝜋(𝑧2−𝑧1) , 𝐹−(𝑧1, 𝑧2) = − 2
𝜋(𝑧2−𝑧1) .

E[(ℎ − ℎ)(𝑎)(ℎ − ℎ)(𝑏)]

= − 4
𝜋2

∫︁
𝛾1

∫︁
𝛾2

1
(𝑧2 − 𝑧1)2 𝑑𝑧1𝑑𝑧2 + 4

𝜋2

∫︁
𝛾1

∫︁
𝛾2

1
(𝑧2 − 𝑧1)2 𝑑𝑧1𝑑𝑧2

+ 4
𝜋2

∫︁
𝛾1

∫︁
𝛾2

1
(𝑧2 − 𝑧1)2 𝑑𝑧1𝑑𝑧2 − 4

𝜋2

∫︁
𝛾1

∫︁
𝛾2

1
(𝑧2 − 𝑧1)2 𝑑𝑧1𝑑𝑧2.

The first integral is equal to

− 4
𝜋2 log (𝑎 − 𝑏)(𝑅𝑒(𝑎) − 𝑅𝑒(𝑠))

(𝑎 − 𝑅𝑒(𝑏))(𝑅𝑒(𝑎) − 𝑏) .

Therefore,

E[(ℎ − ℎ)(𝑎)(ℎ − ℎ)(𝑏)] = 4
𝜋2 ( − 2𝑅𝑒 log (𝑎 − 𝑏)(𝑅𝑒(𝑎) − 𝑅𝑒(𝑠))

(𝑎 − 𝑅𝑒(𝑏))(𝑅𝑒(𝑎) − 𝑏)

+2𝑅𝑒 log (𝑎 − 𝑏)(𝑅𝑒(𝑎) − 𝑅𝑒(𝑠))
(𝑎 − 𝑅𝑒(𝑏))(𝑅𝑒(𝑎) − 𝑏) )

= 8
𝜋2 𝑅𝑒 log(𝑝 − 𝑞

𝑝 − 𝑞
).

This is exactly the Green’s function on the half plane.
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4.2 Convergence to the Gaussian free field
In this part, we will show that the scaling limit when 𝜖 tends to 0 of height

functions on 𝑃𝜖 which approximate a bounded simply connected domain in
R2 with smooth boundary is the Gaussian free field.

Theorem 4.2.1. Let 𝑈 be a bounded simply connected domain in R2 with
smooth boundary, with a marked point 𝑏 ∈ 𝜕𝑈 . For each 𝜖 > 0 sufficiently
small let 𝑃𝜖 be a Temperley domain approximating 𝑈 as defined in 2.5.
Then, as 𝜖 → 0, ℎ𝜖 − ℎ𝜖 converges weakly to 4√

𝜋
times the Gaussian free

field 𝐹 on 𝑈 . That is to say, for any 𝜙 ∈ 𝐶∞
0 (𝑈), the random variable

𝜖2 ∑︀
𝑥∈𝑉𝜖

𝜙(𝑥)(ℎ𝜖(𝑥) − ℎ𝜖(𝑥)) converges in distribution to 4√
𝜋

∫︀
𝑈 𝜙𝐹𝑑𝑥𝑑𝑦.

To prove this, we first show that the limit of E[(ℎ𝜖 − ℎ𝜖)(𝑎1) · · · (ℎ𝜖 −
ℎ𝜖)(𝑎𝑛)] has a simple expression in terms of Green’s function.

When 𝑈 is the upper half plane, 𝐹+(𝑧1, 𝑧2) = 2
𝜋(𝑧2−𝑧1) and 𝐹−(𝑧1, 𝑧2) =

− 2
𝜋(𝑧2−𝑧1) . The matrix in the integral of equation (4.2) is ( 2𝜖𝑖𝜖𝑗

𝜋(𝑧
𝜖𝑗
𝑗 −𝑧

𝜖𝑖
𝑖 )

)𝑖,𝑗 . Fac-
toring a 𝜖𝑖 out of the 𝑖th column for each 𝑖, the matrix has the same deter-
minant as the matrix ( 2

𝜋(𝑧
𝜖𝑗
𝑗 −𝑧

𝜖𝑖
𝑖 )

).
Such a matrix has a simple determinant.

Lemma 4.2.2. If 𝑀 = (𝑚𝑖𝑗) is a 𝑘 × 𝑘 matrix, where 𝑚𝑖𝑖 = 0, 𝑚𝑖𝑗 =
1

𝑥𝑗−𝑥𝑖
, 𝑖 ̸= 𝑗. Then when 𝑘 is odd, det 𝑀 = 0 and when 𝑘 is even, we have

det(𝑀) =
∑︁ 1

(𝑥𝜎(1) − 𝑥𝜎(2))2(𝑥𝜎(3) − 𝑥𝜎4)2 · · · (𝑥𝜎(𝑘−1) − 𝑥𝜎(𝑘))2 (4.9)

where the sum is over all (𝑘−1)!! possible pairings {{𝜎(1), 𝜎(2)}, · · · , {𝜎(𝑘−
1), 𝜎(𝑘)}} of {1, · · · , 𝑘}.

Proof. When 𝑘 is odd det 𝑀 = 0 because 𝑀 is antisymmetric. When 𝑘 is
even, we proceed by induction on 𝑘:

Clearly the formula holds when 𝑘 = 2. For 𝑘 > 2 and even, the determi-
nant is a rational function of 𝑥1 with a double pole at 𝑥1 = 𝑥2. Thus

det(𝑀) = 𝑐−2
(𝑥1 − 𝑥2)2 + 𝑐−1

(𝑥1 − 𝑥2) + 𝑐0 + 𝑂(𝑥1 − 𝑥2).

Because the determinant is symmetric in 𝑥1 and 𝑥2, 𝑐−1 = 0. 𝑐−2 is
the determinant of 𝑀12, the matrix obtained from 𝑀 by deleting the first
two rows and columns. Therefore, the right- and left-hand sides of (4.9) both
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represent functions (in each variable) with the same poles and residues; hence
they differ by a constant. which is zero by homogeneity. If we replace all 𝑥𝑖

with 𝜆𝑥𝑖 for each 𝑖, the determinant is multiplied by 𝜆−𝑘. By homogeneity,
the constant is zero.

In the following, we will use Wick’s rule to show that height functions
converge to the Gaussian free field.

Theorem 4.2.3. (Wick)[1] For a set of random variables {𝑋𝑖}, if for any
𝑋1, · · · , 𝑋2𝑛 (not necessarily distinct), E[𝑋1 · · · 𝑋2𝑛−1] = 0

E[𝑋1𝑋2 · · · 𝑋2𝑛] =
∑︁

pairings𝜎

E[𝑋𝜎(1)𝑋𝜎(2)] · · ·E[𝑋𝜎(2𝑛−1)𝑋𝜎(2𝑛)],

then (𝑋1, · · · , 𝑋2𝑛) is Gaussian with mean zero.

To verify the conditions of Wick’s rule, we need the following proposition:

Proposition 4.2.4. Let 𝑈 be a bounded simply connected domain in R2

with smooth boundary and 𝑝1, · · · , 𝑝𝑘 be distinct points in 𝑈 . If 𝑘 is odd, we
have

lim
𝜖→0

E[ℎ0(𝑝1) · · · ℎ0(𝑝𝑘)] = 0.

If 𝑘 is even, we have

lim
𝜖→0

E[ℎ0(𝑝1) · · · ℎ0(𝑝𝑘)] = (−16
𝜋

)𝑘/2
∑︁

pairings 𝜎

𝑔(𝑝𝜎(1), 𝑝𝜎(2)) · · · 𝑔(𝑝𝜎(𝑘−1), 𝑝𝜎(𝑘)).

Proof. When 𝑈 is the upper half plane, by combining 4.2 with Corollary
4.1.3, we have

lim
𝜖→0

E[ℎ0(𝑝1) · · · ℎ0(𝑝𝑘)] =
∑︁

𝜖1,··· ,𝜖𝑘=±1
𝜖1 · · · 𝜖𝑘

∫︁
𝛾1

· · ·
∫︁

𝛾𝑘

∑︁
pairings 𝜎

det
𝑖,𝑗∈{𝜎(1),𝜎(2)}

(𝐹𝜖𝑖,𝜖𝑗 ) · · ·

det
𝑖,𝑗∈{𝜎(𝑘−1),𝜎(𝑘)}

(𝐹𝜖𝑖,𝜖𝑗 )𝑑𝑧
(𝜖1)
1 · · · 𝑑𝑧

(𝜖𝑘)
𝑘

=
∑︁

𝜎

(
∑︁

𝜖𝜎(1),𝜖𝜎(2)=±1
det

𝑖,𝑗∈{𝜎(1),𝜎(2)}
(𝐹𝜖𝑖,𝜖𝑗 )𝑑𝑧

𝜖𝜎(1)
𝜎(1) 𝑑𝑧

𝜖𝜎(2)
𝜎(2) ) · · ·

(
∑︁

𝜖𝜎(𝑘−1),𝜖𝜎(𝑘)=±1
det

𝑖,𝑗∈{𝜎(𝑘−1),𝜎(𝑘)}
(𝐹𝜖𝑖,𝜖𝑗 )𝑑𝑧

𝜖𝜎(𝑘−1)
𝜎(𝑘−1) 𝑑𝑧

𝜖𝜎(𝑘)
𝜎(𝑘) )

= (−16
𝜋

)𝑘/2
∑︁

𝜎

𝑔(𝑝𝜎(1), 𝑝𝜎(2)) · · · 𝑔(𝑝𝜎(𝑘−1), 𝑝𝜎(𝑘)).
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For an arbitrary 𝑈 , we use conformal invariance and Corollary 4.1.3 to
show that E[ℎ0(𝑝1)ℎ0(𝑝2)] = −16

𝜋 𝑔𝑈 (𝑝1, 𝑝2), where 𝑔𝑈 is the Green’s function
on 𝑈 . The proof is completed by summing over all the pairs.

Next, we will complete the proof of Theorem 4.2.1.
Let 𝑓𝑛1 , · · · , 𝑓𝑛𝑘

be (not necessarily distinct) eigenvectors of Δ with
Dirichlet boundary conditions. Let 𝐶𝜖

𝑛𝑗
be the real-valued random variable

𝐶𝜖
𝑛𝑗

= 𝜖2 ∑︀
𝑥∈𝑉𝜖

ℎ0(𝑥)𝑓𝑛𝑗 (𝑥), where the sum is over the vertices 𝑉𝜖 of 𝑃𝜖, and
𝑓𝑛𝑗 (𝑥) is 𝑓𝑛𝑗 evaluated at the vertex 𝑥. We have

lim
𝜖→0

E[𝐶𝜖
𝑛1 · · · 𝐶𝜖

𝑛𝑘
] = lim

𝜖→0
E[

∑︁
𝑥1∈𝑉𝜖

𝜖2ℎ0(𝑥1)𝑓𝑛1(𝑥1) · · ·
∑︁

𝑥𝑘∈𝑉𝜖

𝜖2ℎ0(𝑥𝑘)𝑓𝑛𝑘
(𝑥𝑘)]

= lim
𝜖→0

∑︁
𝑥1∈𝑉𝜖

· · ·
∑︁

𝑥𝑘∈𝑉𝜖

𝜖2𝑓𝑥1(𝑥1) · · · 𝜖2𝑓𝑛𝑘
(𝑥𝑘)E[ℎ0(𝑥1) · · · ℎ0(𝑥𝑘)]

= (−16
𝜋

)𝑘/2
∫︁

𝑈
· · ·

∫︁
𝑈

𝑓𝑛1(𝑥1) · · · 𝑓𝑛𝑘
(𝑥𝑘)

∑︁
𝜎

𝑔(𝑥𝜎(1), 𝑥𝜎(2)) · · · 𝑔(𝑥𝜎(𝑘−1), 𝑥𝜎(𝑘))

= (−16
𝜋

)𝑘/2
∑︁

𝜎

∫︁
𝑈

· · ·
∫︁

𝑈
𝑓𝑛1(𝑥1) · · · 𝑓𝑛𝑘

(𝑥𝑘)

∑︁
𝑚1,··· ,𝑚𝑘/2

𝑓𝑚1(𝑥𝜎(1))𝑓𝑚1(𝑥𝜎(2))
𝜆𝑚1

· · ·
𝑓𝑚𝑘/2(𝑥𝜎(𝑘−1))𝑓𝑚𝑘/2(𝑥𝜎(𝑘))

𝜆𝑚𝑘/2

= (−16
𝜋

)𝑘/2
∑︁

𝜎

𝛿𝑛𝜎(1),𝑛𝜎(2)

−𝜆𝑛𝜎(1)

· · ·
𝛿𝑛𝜎(𝑘−1),𝑛𝜎(𝑘)

−𝜆𝑛𝜎(𝑘−1)

where we use an expression of the Green’s function in terms of the eigen-
basis {𝑓𝑛}.

Lemma 4.2.5. 𝑔𝑈 (𝑧1, 𝑧2) =
∑︀
𝑖≥1

1
𝜆𝑖

𝑓𝑖(𝑧1)𝑓𝑖(𝑧2)

Proof. Let 𝑓𝑛 be the normalized eigenvectors of Δ with Dirichlet boundary
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conditions. {𝑓𝑛} is an orthonormal basis of 𝐿2(𝑈). Because

⟨𝑓𝑖(𝑧2), 𝑔𝑈 (𝑧1, 𝑧2)⟩ = 1
𝜆𝑖

⟨𝜆𝑖𝑓𝑖(𝑧2), 𝑔𝑈 (𝑧1, 𝑧2)⟩

= 1
𝜆𝑖

⟨Δ𝑓𝑖(𝑧2), 𝑔𝑈 (𝑧1, 𝑧2)⟩

= 1
𝜆𝑖

⟨𝑓𝑖(𝑧2), Δ𝑔𝑈 (𝑧1, 𝑧2)⟩

= 1
𝜆𝑖

⟨𝑓𝑖(𝑧2), 𝛿𝑧1(𝑧2)⟩

= 1
𝜆𝑖

𝑓𝑖(𝑧1),

𝑔𝑈 (𝑧1, 𝑧2) =
∑︀

𝑖≥1
𝑓𝑖(𝑧1)𝑓𝑖(𝑧2)

𝜆𝑖
.

These are exactly the moments for a set of independent Gaussians of
mean 0 and variances − 16

𝜋𝜆𝑖
. To conclude we invoke the following standard

probability lemma.
Lemma 4.2.6. [1] A sequence of multidimensional random variables whose
moments converge to the moments of a Gaussian, converges itself to a Gaus-
sian.

Now, we have to show that the Gaussian free field 𝐹 is conformally
invariant in the following sense (if we consider 𝐹 to be a continuous linear
functional on the space of smooth 2−forms on 𝑈):
Proposition 4.2.7. Let 𝜔 be a smooth 2−form on 𝑈 and 𝑓 : 𝑉 → 𝑈 be
a conformal bijection. Let 𝑋 =

∫︀
𝑈 𝐹𝑈 (𝑧)𝜔(𝑧), 𝑌 =

∫︀
𝑉 𝐹𝑉 (𝑧)𝑓*𝜔(𝑧), where

𝑓*𝜔 is the pullback of 𝜔 to 𝑉 . Then the random variables 𝑋 and 𝑌 are equal
in distribution.
Proof. Since 𝑋 and 𝑌 are Gaussians with mean 0, it suffices to compute
their variances. In fact,

E[𝑋2] =
∫︁

𝑈

∫︁
𝑈

𝜔(𝑧1)𝜔(𝑧2)E[𝐹 (𝑧1)𝐹 (𝑧2)]

=
∫︁

𝑈

∫︁
𝑈

𝜔(𝑧1)𝜔(𝑧2)𝑔𝑈 (𝑧1, 𝑧2)

=
∫︁

𝑉

∫︁
𝑉

𝑓*𝜔(𝑦1)𝑓*𝜔(𝑦2)𝑔𝑈 (𝑓(𝑦1), 𝑓(𝑦2))

=
∫︁

𝑉

∫︁
𝑉

𝑓*𝜔(𝑦1)𝑓*𝜔(𝑦2)𝑔𝑉 (𝑦1, 𝑦2)

= E[𝑌 2]
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where we used the conformal invariance of the Green’s function: 𝑔𝑈 (𝑓(𝑦1), 𝑓(𝑦2)) =
𝑔𝑉 (𝑦1, 𝑦2).



Chapter 5

Conclusion

At the time Kenyon published [3, 5], conformal invariance in the scaling
limit of various 2D lattice model was conjectured by physicists and sup-
ported by numerical simulations but formal mathematical proofs remained
elusive. These papers presented a machinery capable of proving some confor-
mal invariance in the scaling limit of a particular 2D lattice model, namely
domino tilings. Since then, many other 2D lattice models have been proven
to have some conformal invarance in their scaling limit (for example the
critical percolation on triangular lattice [7] and the 2D Ising model [8])

The work presented also paved the way for the proof of the conformal
invariance of the scaling limit of other dimer models (models describing ran-
dom perfect matching of a graph, a perfect matching being a set of edge such
that all vertices belong to exactly one edge). Relatively recently, Kenyon
proved the conformal invariance of loops in the double-dimer model (union
of two perfect matching of the same graph) on Z2 [4].

Since the publication of Kenyon seminal papers [3, 5] in 1999 and 2001,
impressive advances have been achieved. Nevertheless, several open prob-
lems remain to be solved. To mention only one example, at the moment, we
are not able to adapt the proofs presented in this report if the polyominos
are not Temperley domains. In other words, the proofs rely heavily on spe-
cific conditions on the boundary combinatorics of the polyominos. For an
example, if the polyomino is even (i.e. the union of 2x2 blocs), it is believed
that the height function converges to the Gaussian free field but no proof
has been proposed yet.
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