Géométrie Différentielle, TD 5 du 16 mars 2015

1. Groupes de Lie et exponentielle

Soit G un sous-groupe de $GL(n,\mathbb{R})$, qui est aussi une sous-variété de $GL(n,\mathbb{R})$. On note \mathfrak{g} l'espace tangent de G en l'identité.

- 1- Montrer que l'exponentielle de matrices envoie $\mathfrak g$ dans G.
- 2– Montrer que le groupe engendré par $\exp(\mathfrak{g})$ est la composante connexe de l'identité de G.
- 3– Donner un exemple, avec G connexe, où exp : $\mathfrak{g} \to G$ n'est pas surjective.

2. Voisinage tubulaire

Soit X une sous-variété de \mathbb{R}^n de dimension k. On définit le fibré normal de X, comme le sous-ensemble NX de $\mathbb{R}^n \times \mathbb{R}^n$ défini par :

$$NX = \{(x, v) \in \mathbb{R}^n \times \mathbb{R}^n \mid x \in X, v \perp T_x X\}.$$

On définit une application can : $NX \to \mathbb{R}^n$, $(x, v) \mapsto x + v$.

- 1- Soit x dans X. Montrer qu'il existe un voisinage ouvert U de x dans X et k fonctions lisses $e_i: U \to \mathbb{R}^n$ tels que pour tout y dans U, $(e_1(y), \ldots, e_k(y))$ est une base de T_yX .
- 2– En déduire que NX est une sous-variété de $\mathbb{R}^n \times \mathbb{R}^n$ et préciser sa dimension.
- 3- Montrer que can est un difféomorphisme local au voisinage de tout (x,0), avec $x \in X$.
- 4– On note $N^{\varepsilon}X$ l'ouvert de NX des points (x,v) tels que $|v| < \varepsilon$, où |v| est la norme euclidienne de v. On suppose X compact. Montrer qu'il existe ε tel que can : $N^{\varepsilon}X \to \mathbb{R}^n$ est un difféomorphisme sur un voisinage ouvert de X.
- 5— L'application can est-elle un difféomorphisme local au voisinage de tout (x,v) de NX?

3. Revêtement de \mathbb{S}^n sur \mathbb{RP}^n

Soit \mathbb{RP}^n l'ensemble des droites de \mathbb{R}^{n+1} . On l'identifie à l'ensemble des projecteurs orthogonaux de rang 1 dans les matrices carrées de taille (n+1,n+1), ce qui lui confère une structure de sous-variété (cf. cours). On note π l'application de \mathbb{S}^n dans \mathbb{RP}^n , qui à v associe la droite engendrée par v.

- 1– Montrer que π est \mathcal{C}^{∞} .
- 2- Montrer que π est un revêtement à deux feuillets, au sens suivant : pour tout x dans \mathbb{RP}^n , il existe un voisinage ouvert U contenant x et un difféomorphisme $\varphi : \pi^{-1}(U) \to U \times \{1,2\}$ tels que $\operatorname{pr}_1 \circ \varphi = \pi$. Ici, $\operatorname{pr}_1 : U \times \{1,2\} \to U$ désigne la première projection.

4. Grassmanniennes et matrices

On note G(k, n) la Grassmannienne des k-plans dans \mathbb{R}^n , vus comme projecteurs orthogonaux de rang k dans les matrices (n, n).

- 1- Montrer que si E est un point de G(k,n), il existe un voisinage ouvert U de E dans G(k,n) et des applications $e_1, \ldots, e_k : U \to \mathbb{R}^n$ tels que pour tout F dans U, $(e_1(F), \ldots, e_k(F))$ soit une base de F.
- 2- Soit L_0 une matrice (k, n) et E_0 dans G(k, n). On suppose que $L_{0|E_0}$ est un isomorphisme. Montrer que si L est proche de L_0 et si E est proche de E_0 , alors $L_{|E|}$ est un isomorphisme.
- 3- Montrer qu'il existe une unique application locale $S: M_{k,n}(\mathbb{R}) \times G(k,n) \to M_{n,k}(\mathbb{R})$ définie sur un voisinage de (L_0, E_0) telle que, pour tout (L, E) dans ce voisinage,

$$L \circ S(L, E) = \mathrm{Id}_{\mathbb{R}^k}$$

et telle que l'image de S(L, E) soit égale à E.