Feuille d'exercices n°8 Corrigé

Exercice 1

1.

$$\operatorname{Op}(a_t)J_{\epsilon}(u)(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} a_t(x,\xi) \widehat{J_{\epsilon}u}(\xi) e^{ix.\xi} d\xi
= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} a_t(x,\xi) \chi(\epsilon\xi) \hat{u}(\xi) e^{ix.\xi} d\xi
= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} a_t^{\epsilon}(x,\xi) \hat{u}(\xi) e^{ix.\xi} d\xi$$

si on pose $a_t^{\epsilon}(x,\xi) = a_t(x,\xi)\chi(\epsilon\xi)$.

2. Définisson $F:[0;T]\times H^s\to H^s$ par :

$$F(t, v) = f(t) - \operatorname{Op}(a_t^{\epsilon})v$$

Cette application est continue. En effet, f est continue par hypothèse. De plus, $t \to a_t$ est une application continue de [0;T] vers S^1 . Comme χ est à support compact, l'application $t \to a_t^\epsilon$ est donc continue de [0;T] vers S^r , pour tout $r \in \mathbb{R}$. Elle est en particulier continue de [0;T] vers S^0 , ce qui fait que $t \to \operatorname{Op}(a_t^\epsilon)$ est continue de [0;T] vers $\mathcal{L}_c(H^s,H^s)$ et entraı̂ne le résultat. La fonction F est de plus lipschitzienne en v (uniformément en t), de constante de Lipschitz au plus $\sup_{t \in [0;T]} ||\operatorname{Op}(a_t^\epsilon)||_{H^s \to H^s}$. On peut donc appliquer le théorème de Cauchy-Lipschitz, qui garantit que l'équation suivante a une et une seule solution maximale :

$$\begin{cases}
\partial_t u = F(t, u) \\
u(0) = u_0
\end{cases}$$
(1)

Montrons que la solution maximale est définie sur tout [0; T]. La fonction F vérifie une majoration de la forme :

$$\forall t \in [0; T] \qquad ||F(t, v)|| \le C + D||v||$$

La norme de u, solution maximale de (1), est donc bornée sur son intervalle de définition (par le lemme de Gronwall). D'après le théorème de sortie des compacts, cela entraı̂ne que u est définie sur [0;T] tout entier.

Donc le problème (1), qui est équivalent à celui qu'on cherchait à résoudre, a bien une et une seule solution $u \in \mathcal{C}^1([0;T],H^s)$.

3. L'application $B_{\epsilon}: b(x,\xi) \in S^0 \to b(x,\xi)\chi(\epsilon\xi) \in S^0$ est continue. De plus, la continuité est uniforme en ϵ : pour toute semi-norme N sur S^0 , il existe une semi-norme N' indépendante de ϵ , telles que :

$$\forall b \in S^0, \qquad N(B_{\epsilon}(b)) \le C_N N'(b)$$

En effet, on peut se contenter de traiter le cas où :

$$N(b) = \sup_{x,\xi} |\partial_x^{\alpha} \partial_{\xi}^{\beta} b(x,\xi)| (1+||\xi||)^{|\beta|}$$

pour certains multi-indices α, β .

Supposons qu'on est dans un tel cas. D'après la formule de Leibniz, $\partial_x^{\alpha} \partial_{\xi}^{\beta} [B_{\epsilon}(b)]$ est une combinaison linéaire de termes de la forme :

$$\epsilon^{|\beta|-|\gamma|}\partial_x^{\alpha}\partial_{\xi}^{\gamma}b(x,\xi)\partial_{\xi}^{\beta-\gamma}\chi(\epsilon\xi)$$

avec $\gamma \leq \beta$.

Pour $\gamma = \beta$, on a :

$$\sup_{x,\xi} (1+||\xi||)^{|\beta|} \epsilon^{|\beta|-|\gamma|} |\partial_x^{\alpha} \partial_\xi^{\gamma} b(x,\xi)| |\partial_\xi^{\beta-\gamma} \chi(\epsilon\xi)| \le ||\chi||_{\infty} \sup_{x,\xi} (1+||\xi||)^{|\beta|} |\partial_x^{\alpha} \partial_\xi^{\beta} b(x,\xi)| \qquad (2)$$

ce qui est une semi-norme de b dans S^0 , indépendante de ϵ .

Pour $\gamma \neq \beta$, on remarque que $\partial_{\xi}^{\beta-\gamma}\chi(\epsilon\xi)$ n'est non-nulle que sur $B(0,2/\epsilon)$, ce qui entraı̂ne :

$$|\partial_{\xi}^{\beta-\gamma}\chi(\epsilon\xi)| \le ||\partial_{\xi}^{\beta-\gamma}\chi||_{\infty} \left(\frac{1+2/\epsilon}{1+||\xi||}\right)^{|\beta|-|\gamma|}$$

Donc:

$$\sup_{x,\xi} (1+||\xi||)^{|\beta|} \epsilon^{|\beta|-|\gamma|} |\partial_x^{\alpha} \partial_{\xi}^{\gamma} b(x,\xi)| |\partial_{\xi}^{\beta-\gamma} \chi(\epsilon\xi)|
\leq ||\partial_{\xi}^{\beta-\gamma} \chi||_{\infty} \sup_{x,\xi} (1+||\xi||)^{|\gamma|} (\epsilon+2)^{|\beta|-|\gamma|} |\partial_x^{\alpha} \partial_{\xi}^{\gamma} b(x,\xi)|
\leq ||\partial_{\xi}^{\beta-\gamma} \chi||_{\infty} \sup_{x,\xi} (1+||\xi||)^{|\gamma|} 3^{|\beta|-|\gamma|} |\partial_x^{\alpha} \partial_{\xi}^{\gamma} b(x,\xi)|$$
(3)

ce qui est à nouveau une semi-norme de b dans S^0 , indépendante de ϵ .

En combinant (2) et (3), on obtient bien que, pour tout b, $N[B_{\epsilon}(b)]$ est majoré par une seminorme de b indépendante de ϵ .

La même démonstration permet aussi de montrer que B_{ϵ} est continue de S^1 vers S^1 , uniformément en ϵ .

Puisque $2 \operatorname{Re}(a_t^{\epsilon}) = B_{\epsilon}[2 \operatorname{Re}(a_t)]$ et puisque $(2 \operatorname{Re}(a_t))_{t \in [0;T]}$ est bornée dans S^0 , on a que $2 \operatorname{Re}(a_t^{\epsilon})$ est bornée dans S^0 , uniformément en t et en ϵ .

On admet d'autre part que l'application $c \in S^1 \to c^* - \overline{c} \in S^0$ est continue. Puisque $a_t^{\epsilon} = B_{\epsilon}[a_t]$ est uniformément bornée dans S^1 en t et ϵ , $(a_t^{\epsilon})^* - \overline{a_t^{\epsilon}}$ est uniformément bornée dans S^0 .

4. C'est un résultat du cours (lemme 5.5). La constante C ne dépend que des semi-normes de $(a_t^{\epsilon})^* - \overline{a_t^{\epsilon}} + 2\operatorname{Re}(a_t^{\epsilon})$ dans S^0 ; elle est donc indépendante de ϵ .

On applique cette inégalité à u_{ϵ} :

$$\forall t \in [0;T] \qquad ||u_{\epsilon}(t)||_{H^s} \le C||u_0||_{H^s} + C\int_0^T ||f(\tau)||_{H^s} d\tau$$

Donc, pour tout ϵ :

$$||u_{\epsilon}||_{\infty} \leq C||u_0||_{H^s} + C\int_0^T ||f(\tau)||_{H^s} d\tau$$

5. Soient ϵ_1, ϵ_2 tels que $\epsilon_1 < \epsilon_2$. On a :

$$\partial_t (u_{\epsilon_1} - u_{\epsilon_2}) + \operatorname{Op}(a_t^{\epsilon_1})(u_{\epsilon_1} - u_{\epsilon_2}) = \operatorname{Op}(a_t^{\epsilon_2} - a_t^{\epsilon_1})(u_{\epsilon_2})$$
$$(u_{\epsilon_1} - u_{\epsilon_2})(0) = 0$$

Lemme 1.1. Pour tout $\eta > 0$, l'opérateur $a_t^{\epsilon} - a_t$ tend vers 0 uniformément en t dans $S^{1+\eta}$ lorsque $\epsilon \to 0$.

On ne détaille pas la démonstration du lemme : elle est assez similaire à la démonstration vue à la question 3.

En remplaçant s par s-2 dans l'inégalité de la question 4:

$$||u_{\epsilon_{1}} - u_{\epsilon_{2}}||_{H^{s-2}} \leq C \int_{0}^{T} ||\operatorname{Op}(a_{t}^{\epsilon_{2}} - a_{t}^{\epsilon_{1}})(u_{\epsilon_{2}}(t))||_{H^{s-2}} dt$$

$$\leq C||\operatorname{Op}(a_{t}^{\epsilon_{2}} - a_{t}^{\epsilon_{1}})||_{H^{s} \to H^{s-2}} \int_{0}^{T} ||u_{\epsilon_{2}}(t)||_{H^{s-2}} dt$$

$$\to 0 \text{ quand } \epsilon_{1}, \epsilon_{2} \to 0$$

Cela démontre le résultat voulu.

6. Soit fixé un tel σ . Pour tout t:

$$||u_{\epsilon_1}(t) - u_{\epsilon_2}(t)||_{H^{\sigma}} \le C(s-2,s)||u_{\epsilon_1}(t) - u_{\epsilon_2}(t)||_{H^{s-2}}^{\alpha}||u_{\epsilon_1}(t) - u_{\epsilon_2}(t)||_{H^s}^{1-\alpha}$$

ce qui converge vers 0 uniformément en t lorsque $\epsilon_1, \epsilon_2 \to 0$, d'après les questions 4. et 5. Puisque $\mathcal{C}^0([0;T], H^{\sigma})$ est de Cauchy, on a donc convergence de u_{ϵ} vers une limite $u \in \mathcal{C}^0([0;T], H^{\sigma})$. De plus, pour tout ϵ :

$$\partial_t u_{\epsilon} = f - \operatorname{Op}(a_t^{\epsilon}) u_{\epsilon}$$

Pour tout $\eta > 0$, a_t^{ϵ} converge (uniformément en t) vers a_t dans $S^{1+\eta}$ lorsque ϵ tend vers 0. Donc la suite $\operatorname{Op}(a_t^{\epsilon})u_{\epsilon} = \operatorname{Op}(a_t^{\epsilon}-a_t)u_{\epsilon} + \operatorname{Op}(a_t)(u_{\epsilon}-u) + \operatorname{Op}(a_t)u$ est de Cauchy dans $\mathcal{C}^0([0;T], H^{\sigma-1-\eta})$. On peut donc passer à la limite : $u \in \mathcal{C}^1([0;T], H^{\sigma-1-\eta})$.

En prenant η assez petit et en appliquant ce résultat à $\sigma + \eta$ au lieu de σ , cela montre qu'on a $u \in \mathcal{C}^1([0;T], H^{\sigma-1})$.

7. Comme on l'a dit à la question précédente, $Op(a_t^{\epsilon})$ converge vers $Op(a_t)$ dans $S^{1+\eta}$, uniformément en t, lorsque ϵ tend vers 0, pour tout $\eta > 0$.

Donc $\operatorname{Op}(a_t^{\epsilon})u_{\epsilon} - \operatorname{Op}(a_t)u = \operatorname{Op}(a_t^{\epsilon} - a_t)u_{\epsilon} + \operatorname{Op}(a_t)(u_{\epsilon} - u)$ tend vers 0 dans $\mathcal{C}^0([0;T], H^{\sigma-1-\eta})$. De plus, $\partial_t u_{\epsilon}$ tend vers $\partial_t u$ dans $H^{\sigma-1-\eta}$. Comme $\partial_t u_{\epsilon} + \operatorname{Op}(a_t^{\epsilon})u_{\epsilon} = f$, on peut passer cette expression à la limite et on obtient l'égalité suivante :

$$\partial_t u + \operatorname{Op}(a_t)u = f$$

Il reste à montrer que u appartient en fait à $C^0([0;T],H^s) \cap C^1([0;T],H^{s-1})$. C'est la même méthode que dans le cours.

On fixe une suite $(f_n)_{n\in\mathbb{N}}$ d'éléments de $\mathcal{C}^0([0;T],H^{s'})$ (pour un certain s'>s) qui converge vers f dans $\mathcal{C}^0([0;T],H^s)$. On fixe de même $(u_{0,n})_{n\in\mathbb{N}}$ une suite d'éléments de $H^{s'}$ convergeant vers u_0 dans H^s . Pour tout n, on note u_n la solution de l'équation hyperbolique associée. D'après le résultat qu'on vient de voir, elle est bien définie et appartient à $\mathcal{C}^0([0;T],H^s)\cap\mathcal{C}^1([0;T],H^{s-1})$. D'après l'estimation d'énergie qu'on a déjà utilisée à la question 4., la suite $(u_n)_{n\in\mathbb{N}}$ est de Cauchy dans $\mathcal{C}^0([0;T],H^s)$. Elle converge donc dans cet espace ; sa limite est égale à u. Donc $u\in\mathcal{C}^0([0;T],H^s)$.

Puisque $\partial_t u = f - \operatorname{Op}(a_t)u \in \mathcal{C}^0([0;T], H^{s-1})$, on a aussi $u \in \mathcal{C}^1([0;T], H^{s-1})$.

Exercice 2

1. Commençons par démontrer la première inégalité donnée en indication. Pour tous $\xi, \eta, ||\xi - \eta|| \ge ||\xi||/2$ ou $||\eta|| \ge ||\xi||/2$, à cause de l'inégalité triangulaire. Dans le premier cas :

$$(1+||\xi||^{2})^{s/2} \leq (1+4||\xi-\eta||^{2})^{s/2}$$

$$\leq (4+4||\xi-\eta||^{2})^{s/2}$$

$$= 2^{s}(1+||\xi-\eta||^{2})^{s}$$

$$\leq 2^{s}((1+||\xi-\eta||^{2})^{s/2}+(1+||\eta||^{2})^{s/2})$$

De même dans le deuxième cas.

Pour l'inégalité de Young, on utilise l'inégalité de Jensen :

$$||u \star v||_{L^{p}}^{p} = \int |u \star v|^{p}(x)dx$$

$$= \int \left| \int u(t)v(x-t)dt \right|^{p} dx$$

$$\leq \int \left(\int |u(t)| |v(x-t)|dt \right)^{p} dx$$

$$\leq ||u||_{L^{1}}^{p} \int \left(\int \frac{|u(t)|}{||u||_{L^{1}}} |v(x-t)|dt \right)^{p} dx$$

$$\leq ||u||_{L^{1}}^{p} \int \frac{|u(t)|}{||u||_{L^{1}}} |v(x-t)|^{p} dt dx$$

$$= ||u||_{L^{1}}^{p} ||v||_{L^{p}}^{p}$$

On démontre maintenant l'inégalité demandée.

Pour tout ξ :

$$(1+||\xi||^2)^{s/2}|\hat{u}\star\hat{v}|(\xi) \le \int_{\mathbb{R}^n} (1+||\xi||^2)^{s/2}|\hat{u}(\eta)||\hat{v}(\xi-\eta)|d\eta$$

$$\leq 2^{s} \int_{\mathbb{R}^{n}} (1 + ||\eta||^{2})^{s/2} |\hat{u}(\eta)| |\hat{v}(\xi - \eta)| d\eta$$
$$+ 2^{s} \int_{\mathbb{R}^{n}} (1 + ||\xi - \eta||^{2})^{s/2} |\hat{u}(\eta)| |\hat{v}(\xi - \eta)| d\eta$$
$$= 2^{s} (U \star \hat{v} + \hat{u} \star v)$$

où l'on note $U(\xi)=(1+||\xi||^2)^{s/2}\hat{u}(\xi)$ et $V(\xi)=(1+||\xi||^2)^{s/2}\hat{v}(\xi)$. Donc :

$$||uv||_{H^{s}} = ||(1 + ||\xi||^{2})^{s/2} \widehat{uv}(\xi)||_{L^{2}}$$

$$= \frac{1}{(2\pi)^{n}} ||(1 + ||\xi||^{2})^{s/2} \hat{u} \star \hat{v}(\xi)||_{L^{2}}$$

$$\leq \frac{2^{s}}{(2\pi)^{n}} (||U \star \hat{v}||_{L^{2}} + ||\hat{u} \star V||_{L^{2}})$$

$$\leq \frac{2^{s}}{(2\pi)^{n}} (||U||_{L^{2}} ||\hat{v}||_{L^{1}} + ||V||_{L^{2}} ||\hat{u}||_{L^{1}})$$

$$= \frac{2^{s}}{(2\pi)^{n}} (||u||_{H^{s}} ||\hat{v}||_{L^{1}} + ||v||_{H^{s}} ||\hat{u}||_{L^{1}})$$

$$\leq \frac{2^{s}}{(2\pi)^{n}} (||u||_{H^{s}} ||(1 + ||\xi||^{2})^{s/2} \hat{v}||_{L^{2}} ||(1 + ||\xi||^{2})^{-s/2} ||_{L^{2}}$$

$$+ ||v||_{H^{s}} ||(1 + ||\xi||^{2})^{s/2} \hat{u}||_{L^{2}} ||(1 + ||\xi||^{2})^{-s/2} ||_{L^{2}})$$

$$= \frac{2^{s+1} ||(1 + ||\xi||^{2})^{-s/2} ||_{L^{2}}}{(2\pi)^{n}} ||u||_{H^{s}} ||v||_{H^{s}}$$

2. On utilise le lemme 5.5 du cours (celui de la question 4. de l'exercice 1), combiné avec le résultat de la question 1. (en notant la constante D' plutôt que C) :

$$\forall t \leq T \qquad ||u_{n+1}(t)||_{H^s} \leq D||u_0||_{H^s} + D \int_0^t ||u_n^2(\tau)||_{H^s} d\tau$$

$$\leq D||u_0||_{H^s} + DD' \int_0^t ||u_n(\tau)||_{H^s}^2 d\tau$$

On en déduit :

$$\sup_{t \in [0;T]} ||u_{n+1}(t)||_{H^s} \le D||u_0||_{H^s} + DD'T \left(\sup_{t \in [0;T]} ||u_n(t)||_{H^s} \right)^2 \tag{4}$$

Dans les égalités précédentes, D est une constante, qu'on peut supposer plus grande que 1. Si $1 - 4D^2D'T||u_0||_{H^s} > 0$, l'équation suivante a deux solutions sur \mathbb{R}^+ :

$$x = D||u_0||_{H^s} + DD'Tx^2$$

Notons x_0 la plus petite des solutions. Alors, par récurrence sur n, $\sup_{t \in [0,T]} ||u_n(t)||_{H^s} \le x_0$. En effet, c'est vrai pour n = 0 car $||u_0||_{H^s} \le D||u_0||_{H^s} \le x_0$.

Ensuite, si c'est vrai pour n, c'est vrai pour n+1: d'après l'équation (4),

$$\sup_{t \in [0;T]} ||u_{n+1}(t)||_{H^s} \le D||u_0||_{H^s} + DD'T \left(\sup_{t \in [0;T]} ||u_n(t)||_{H^s} \right)^2$$

$$\le D||u_0||_{H^s} + DD'Tx_0^2$$

$$= x_0$$

On a donc démontré que, si $T < \frac{1}{4D^2D'||u_0||_{H^s}}$, alors la suite $(u_n)_{n\in\mathbb{N}}$ est bornée dans $\mathcal{C}^0([0;T],H^s)$. Montrons maintenant que, sous cette condition, la suite $(u_n)_{n\in\mathbb{N}}$ est aussi de Cauchy dans $\mathcal{C}^0([0;T],H^s)$. On utilise :

$$\partial_t (u_{n+1} - u_n) + \operatorname{Op}(a_t)(u_{n+1} - u_n) = u_n^2 - u_{n-1}^2 = (u_n - u_{n-1})(u_n + u_{n-1})$$
$$(u_{n+1} - u_n)(0) = 0$$

Toujours avec le lemme 5.5, on obtient :

$$\sup_{t \in [0;T]} ||u_{n+1}(t) - u_n(t)|| \le DT \sup_{t \in [0;T]} ||(u_n - u_{n-1})(u_n + u_{n-1})(t)||_{H^s}
\le DD'T \left(\sup_{t \in [0;T]} ||u_n(t) - u_{n-1}(t)||_{H^s} \right) \left(\sup_{t \in [0;T]} ||u_n(t) + u_{n-1}(t)||_{H^s} \right)
\le 2x_0 DD'T \left(\sup_{t \in [0;T]} ||u_n(t) - u_{n-1}(t)||_{H^s} \right)$$

Or $x_0 < \frac{1}{2DD'T}$. Cela se vérifie à partir de l'équation qui définit x_0 , en écrivant les solutions. Donc $2x_0DD'T < 1$ et la suite $\left(\sup_{t \in [0;T]} ||u_{n+1}(t) - u_n(t)||\right)_{n \in \mathbb{N}}$ est géométriquement décroissante. Cela entraı̂ne que $(u_n)_{n \in \mathbb{N}}$ est de Cauchy dans $\mathcal{C}^0([0;T], H^s)$.

Le fait que $(u_n)_{n\in\mathbb{N}}$ est à la fois bornée et de Cauchy entraı̂ne le même résultat pour u_n^2 . On a alors que $\partial_t u_n = u_{n-1}^2 - \operatorname{Op}(a_t)u_n$ forme aussi une suite de Cauchy, dans $\mathcal{C}^0([0;T],H^{s-1})$. Donc $(u_n)_{n\in\mathbb{N}}$ est de Cauchy dans $\mathcal{C}^0([0;T],H^s) \cap \mathcal{C}^1([0;T],H^{s-1})$.

3. La suite $(u_n)_{n\in\mathbb{N}}$ converge vers une limite $u\in\mathcal{C}^0([0;T],H^s)\cap\mathcal{C}^1([0;T],H^{s-1})$. On passe l'équation définissant u_{n+1} à la limite dans $\mathcal{C}^0([0;T],H^{s-1})$:

$$\partial_t u + \operatorname{Op}(a_t)u = u^2$$

On a aussi $u(0) = u_0$ puisque $u_n(0) = u_0$ pour tout n. Donc u est une solution au problème voulu.