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1. Introduction

As A. Sokal states it at the beginning of its lectures on Monte Carlo methods [Sok96],

“Monte Carlo is an extremely bad method; it should be used only when all
alternative methods are worse.”

Indeed, Monte Carlo methods are based on the Central Limit theorem so that a statistical
error of order

error = O
( σ√

computational budget

)
is unavoidable: at best, the constant σ can be improved; in many situations, especially for
high dimensional problems, there is no better alternative. Any introductory text on Monte-
Carlo methods describes dozens of area of science where these ideas are at work, and where
there is no known way to tackle these problems more efficiently: see [Dia09] for an introduc-
tion and [Liu08, RC04] for book-length treatments.

Suppose that we are given a probability distribution π on a state space S and want to
compute the expected value Eπ[ϕ] of an observable ϕ : S → R. The basic Monte Carlo
approach consists in sampling independent copies X1, . . . , XN from π and then to take the
average. Nevertheless, except in very simple cases, the distribution π is impossible to sample
directly from and is generally only known up to a normalization constant. To remedy to
this problem, the Markov Chain Monte Carlo (MCMC) algorithm uses a Markov chain
x =

{
x(k)

}
k>0

on S that has π as invariant measure: the ergodic theorem for Markov chains

shows that under mild assumptions [MTH93] the quantity

I(ϕ,N) =
1

N

(
ϕ(x(1)) + . . .+ ϕ(x(N))

)
is a consistent estimator of Eπ [ϕ]. In the 1990s, Tierney [Tie94] is one of the first paper to
carefully laid out the assumptions needed to analyse MCMC algorithms and their properties,
in particular, convergence of ergodic averages and central limit theorems: the more recent
reference [MTH93] is dedicated to these topics. Maybe surprisingly, the construction of
Markov chains that let π invariant is generally not difficult. They are even so many different
ways of building such Markov chains that choosing an efficient candidate is often a delicate
exercise: this is one of the main themes of this report.
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1.1. Notations. In this text, sequence of Markov chains living in spaces of different dimen-
sions are considered. A Markov chain xd = {xd(k)}k>0 evolves in a space of dimension d
(typically Rd) and its coordinates are written as

xd(k) =
(
xd1(k), xd2(k), . . . , xdd(k)

)
∈ Rd.

The notations αn . βn and αn � βn indicate that there exists a universal constant K > 0
satisfying αn 6 Kβn and K−1βn 6 αn 6 Kβn respectively.

2. Metropolis Hastings algorithm, a brief review

The probability distributions π(x) = 1
Z
π̃(x) that we are interested in are typically known

up to a normalization constant Z so that only the unormalized density π̃ is generally available:

• in statistical physics, an Hamiltonian H : S → R is given and the associated Bolzt-
man distribution πβ(x) ∝ exp{−βH(x)} is used to describe the system at inverse
temperature β,
• in Bayesian statistics, the posterior distribution P(θ|y) ∝ P(y|θ)π0(θ) is again defined

up to a normalization constant.

A Markov kernel T̃ (x, y) is reversible with respect to the measure π if it satisfies the detailed
balanced equations π(x)T̃ (x, y) = π(y)T̃ (y, x): this implies in particular that π is an invariant
distribution of the Markov kernel. The idea of the Metropolis-Hastings algorithm in order
to construct a Markov chain

{
x(k)

}
k>0

that let π invariant is to take an arbitrary Markov

chain with transition kernel T and to modify it in such a way that the detailed balanced
equations (for the target distribution π) are enforced: the transition kernel of the Markov
chain

{
x(k)

}
k>0

is defined by T̃ (x, y) = T (x, y)α(x, y) where α(x, y) ∈ [0, 1] for x 6= y is an

appropriate holding probability. The detailed balance equations are satisfied if π(x)T̃ (x, y) =

π(y)T̃ (y, x) for any x 6= y, which also reads α(x, y) = π(y)T (y,x)
π(x)T (x,y)

α(y, x). Because 0 6 α(y, x) 6

1, this implies that α(x, y) 6 1 ∧ π(y)T (y,x)
π(x)T (x,y)

; it can be checked that the choice of holding

probabilities

α(x, y) = 1 ∧ π(y)T (y, x)

π(x)T (x, y)
for x 6= y (2.1)

satisfies the detailed balance equations: the quantity α(x, y) is usually called Metropolis-
Hastings ratio or acceptance probability. The MCMC algorithm, discovered by Me-
tropolis and co-authors in 1953 and described in their celebrated paper [MRR+53] hence
proceeds as follows:

(1) if the current position is x, propose a move y according to T (x, y)

(2) compute the acceptance probability α(x, y) := 1 ∧ π(y)T (y,x)
π(x)T (x,y)

(3) with probability α(x, y) move from x to y; otherwise stay still
(4) go back to 1.

This mechanism clearly defines a Markov chain that is π-reversible: stability, convergence
of ergodic averages and central limit theorems are available [MTH93]. There are thus many
different ways of constructing a Markov chain that let π invariant: any reasonable transition
kernel T can potentially be a candidate to build a Markov chain

{
x(k)

}
k>0

with transition

kernel T̃ that let π invariant.
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3. Optimal proposals

In the founding paper [MRR+53], the issue of optimal proposals was already mentioned:

proposals of the form y
D∼ Uniform[x− α, x+ α] were considered, and it was noted that

“it may be mentioned in this connection that the maximum displacement α
must be chosen with some care; if too large, most moves will be forbidden,
and if too small, the configuration will not change enough. In either case it
will then take longer to come to equilibrium.”

The proposal density T (x, y) is crucial to the success of a MCMC algorithm. The most
common case involves a symmetric random-walk Metropolis algorithm (RMW) in which the
proposal value is given by yn = xn + Zn where the increments Zn are i.i.d. samples from an

easy to simulate symmetric distribution (e.g., Zn
D∼ N(0, σ2Id)). In this case, the question

is how to scale the proposals (e.g., how to choose σ): too small a variance and the chain
moves too slowly; too large and the proposals are rejected too often, leading also to poor
performances.

Before the 90’s, the tuning of the proposals was almost invariably performed by trial and
errors. Several rules of thumb [BG93, BGHM95] to select the value of the local variance of
the proposals were described, advocating an acceptance rate as high as 70%. It came as a
surprise when it was proved in [RGG97] that, under certain assumptions described in the next
section, it is optimal to accept a proportion of only 23% of the proposed moves. This means
that for optimality the chain must stay still 77% of the time, which might seem counter-
intuitive when the goal is to obtain a chain converging fast to its stationary distribution.
The seminal result described in [RGG97] is only valid for random walk proposals with a very
specific target distribution, and described the behaviour of the algorithm at stationarity:
different authors have subsequently tried to relax the different assumptions needed to the
application of the 23% rule; [CRR05] describes the transient phase of local Metropolis-
Hastings algorithm, Langevin proposals are studied in [RR01, RR98, RT96], tuning of the
Hybrid Monte-Carlo algorithm is considered in [BRS09], more general target probabilities are
studied in [BR00, NRY07, BR08] and [MPS10] considers Random walk metropolis algorithms
in an infinite dimensional framework.

3.1. Optimality criteria. In this section we describe several efficiency criteria for the com-
parison of different Markov chains and focus on the so called Expected Squared Jumping
Distance (ESJD) that is the benchmark that will be considered in the remaining of this text.

As described in the introduction, the MCMC algorithm is mainly used to compute an
expectation Eπ[g] through the estimator IN(g) = 1

N

∑N
k=1 g(x(k)): at stationarity, the vari-

ance of this estimator is equal to Var[IN(g)] = 1
N

{
1 + 2

∑N−1
k=1 (1 − k

N
)ρ

(g)
k

}
Var[g] where

ρk = Corrπ(g(x(t))g(x(t + k))) is the auto-correlation function of the stationary series

{g(x(k))}k. If
∑

k ρ
(g)
k is summable it comes that

lim
N

N · Var[IN(g)] =
{

1 + 2
∞∑
k=1

ρ
(g)
k

}
Var[g] = τ (g)Var[g],
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where the quantity τ (g) = 1 + 2
∑∞

k=1 ρ
(g)
k , usually called the integrated autocorrelation

time, quantifies how much worse the MCMC estimator is with respect to the case where the
x(k) are i.i.d. samples from π: the bigger τ (g), the larger the variance of the MCMC estimator.

The integrated autocorrelation time τ (g) depends on the function g so that this is not a very
useful efficiency criterion, in general: this is possible to construct two different Markov chains

X and Y on the state space S such that τ
(g)
X < τ

(g)
Y and τ

(f)
X > τ

(f)
Y where f, g : S → R are

two different test functions. The use of the autocorrelation time as an efficiency criterion is
thus very limited for the comparison of different MCMC algorithms. Instead, for real valued
Markov chains, the first autocorrelation coefficient ρ1 = Corr[x(k), x(k + 1)] is a simple way
of quantifying the dependence structure. Moreover, because for real valued Markov chains
we have E

[
|x(k + 1) − x(k)|2

]
= 2Var[x(k)](1 − ρ1), minimizing the first autocorrelation

coefficient ρ1 is equivalent to maximizing the expected squared jumping distance

ESJD = E[‖x(k + 1)− x(k)‖2].

The ESJD is defined the same way for multidimensional Markov chains; this is the usual mea-
sure of efficiency that has been studied in the literature [BRS09, RR01, PG09]: indeed, the
analytical tractability of the ESJD is one of the main reasons for its use. More sophisticated
efficiency criteria such as spectral gaps, mixing time [LPW09] have been considered in the
literature, but are usually much more difficult to analyse than the ESJD. It should be noted
that a notion of distance on the state space is necessary to define the ESJD, which rules out
the use of the ESJD in many important cases where MCMC methods are used. Before con-
tinuing, one might wonder why the expected squared jumping distance is considered while
we could instead investigate the properties of E

[
‖x(k + 1) − x(k)‖p

]
for any power p > 0:

as we will see, in many of the circumstances we are interested in, the MCMC algorithm
can asymptotically be approached by a diffusion process. The squared jumping distance is
thus directly related to the fact that the p-variation of a diffusion process is only interesting
for p = 2. It is worth mentioning that in many situation where it is known that there is
a diffusion limit, as this is described in the next section, maximization of the asymptotic
integrated autocorrelation time and ESJD are equivalent: see [RR01] for a discussion.

3.2. High Dimensional asymptotic: diffusion limits. Quantifying computational com-
plexity of an MCMC method is most naturally undertaken by studying the behaviour of the
method on a family of probability distributions indexed by a parameter, and studying the
cost of the algorithm as a function of that parameter. For example, the behaviour of the
Gibbs sampler for the Ising model, as a function of the temperature, has been extensively
studied [LPW09].

In this section we describe the costs of different MCMC algorithms as a function of the
dimension of the target density. The seminal paper [RGG97] falls into this setting: this
paper studied the behaviour of the Random Walk Metropolis algorithm (RWM) on target
distributions with density 1

πd(x1, . . . , xd) =
d∏
i=1

f(xi),

1For ease of notation we do not distinguish between a measure and its density: all the densities are with
respect to the usual Lebesgue measure on Rd
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where f : R → R+ is a fixed probability density. The RWM proposals are of the form

y = x +
√
`d−γZ where Z

D∼ N(0, Id) and `, γ > 0 are two parameters to be optimized: the
larger γ, the smaller the variance of the proposed moves. It was shown that the ESJD is
asymptotically maximized for γ = γc = 1, for any reasonable choice of function f . This
means that for any fixed value of ` and γ,

ESJD(d, `, γ) 6 ESJD(d, `, γc), γc = 1

for d large enough where ESJD(d, `, γ) is the expected squared jumping distance for the
algorithm with parameter ` and γ and target distribution πd. Furthermore, the asymptotic
optimal value of the parameter ` can be described as the one that leads to an asymptotic
mean acceptance rate equal to 23%, independently of the function f .

These ideas have been generalized in many directions and are now better understood: for
more complex target distributions πd, where d stands for the dimension of the problem, and
the proposal distribution T d`,γ(x, y) has an asymptotic variance of order d−γ, the choice of the
scaling exponent γ is a delicate exercise. In a recent series of articles [BRS09, BS09, BRSJ]
it was shown that for a variety of proposals T d`,γ(x, y) there exists a critical exponent γc > 0
such that choice of γ < γc leads to average acceptance probabilities which are smaller than
any inverse power of d while for exponent γ > γc the average acceptance probabilities tends
to 1. This shows that in high dimensions, value of γ strictly smaller than γc lead to very
poor mixing because of the negligible acceptance probability. However, it turns out that at
the critical value γc the average acceptance probability is bounded away from 0 so that the
algorithm does not degenerate. For optimality the Metropolis Markov chains xd = {xd(k)}k>0

must evolves in Rd with jumps of variance of order d−γc . Because the variance of the jump
y − x is of order d−γc , we need to speed up time by a factor d−γc to observe a non trivial
limit: defining the continuous process zd as a speeded up version of xd by

zd(kd−γc) = xd(k), k = 1, 2, . . .

and linear interpolation in between, it is shown in many instances that zd converges in a
suitable way (see below) to a diffusion process. Care has to be taken in general since the
different processes zd live on different spaces: zd is a d-dimensional process. A few examples
include:

• the original paper [RGG97] shows that the first coordinate process zd1 =
{
zd1(t)

}
t∈[0;T ]

converges weakly in C([0, T ];R) to the scalar diffusion

dz = h(`)(log f)′(z) dt+
√

2h(`) dWt, (3.1)

where h(`) is a computable constant depending on ` and f(·). Observe that the
invariant distribution of the Langevin diffusion (3.1) is f(x) dx and the constant h(`)
describes the speed of this diffusion. Moreover, it is shown in [RGG97] that

lim
d→∞

ESJD(`, γc, d) = h(`), γc = 1

so that in the asymptotic limit and for the critical choice of exponent γ = γc, maxi-
mizing the speed function over ` is equivalent to maximizing the ESJD. Maybe more
importantly, the optimal value `? of the parameter ` that leads to an asymptotic av-
erage acceptance probability is equal to 23%, independently of the target distribution
f .
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• similar results have been obtained in [RR98] for the MALA algorithm that proposes

moves according to y = `d−γ∇(log πd)(x) +
√

2`d−γ Z where again Z
D∼ N(0, Id) and

πd has density equal to
∏d

i=1 f(xi). The critical exponent is in this case equal to
γc = 1

3
and the limiting diffusion has exactly the same form: after speeding up the

Metropolis Markov chain by a factor dγc , the first coordinate process converges in
laws to the diffusion 3.1. Nevertheless, the maximization of the speed function h(`)
leads to another universal value: independently of f , the optimal value of ` leads to
an average acceptance probability equal to 57%.

These types of results have two immediate important messages:

• if the Metropolis chain xd is speeded up by a factor dγc , it can be approximated by a
Langevin diffusion: this suggests that the MCMC algorithm takes O(dγc) to explore
the d-dimensional target distribution πd. Indeed, care has to be taken with this kind
of heuristic, especially if it is only known that the first coordinate process converges
to a diffusion. This is discussed in section 3.3.
• for practitioners, the universal constants 23% for the RWM algorithm and 57% for

the MALA algorithm give very clear and straightforward ways of optimizing MCMC
algorithms, at least in the setting were the results described above apply. It suffices
to tune the variance of the proposals so that these optimal acceptance probabilities
are achieved.

3.3. Whole process scaling. In this section we try to motivate the usefulness of the main
theorem 4.3 of this report by arguing that the first coordinate scaling result of [RGG97]
might not be satisfying to answer very simple questions. Indeed, if what we are interested in
is a functional of the first coordinate, the first coordinate scaling is satisfying to give precise
estimates of the rate of convergence of the RWM, say. One might even say that this is often
the case that when dealing with high-dimensional problems we are in fact very often only
interested in low dimensional statistics: these are the situation where the first coordinate
scaling gives the correct answer. Nevertheless, this does not say how fast the whole process
mixes.

As a first very simple example, consider a Gibbs sampler with target distribution density

πd(x1, . . . , xd) =
d∏
i=1

f(xi)dxi.

At each step, one coordinate i ∈ {1, 2, . . . , d} is chosen uniformly at random and xi is

updated by x?i
D∼ f(x) dx. It is obvious that once all the coordinates have been chosen at

least one time the Markov chain has reached stationarity. Moreover, it takes τ
D∼ Geom(1

d
)

steps before the first coordinate i = 1 is updated: this means that after [αd] steps the first
coordinate i = 1 has a chance ≈ 1 − e−α of having reached stationarity. In other words,
the first coordinate mixes on a time scale of order d. Nevertheless, this is not true that the
Markov chain mixes on a time scale of order d since this is well known (coupon collector
problem) that it takes O

(
d ln(d)

)
to reach stationarity: there is a correlation cost between

the different coordinates that has to be taken into account.
The next example is more realistic: consider the product form target density πd =

N(0, 1
d
Id) i.e. the coordinates are independent and distributed as a centred Gaussian random
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variables with variance σ2 = 1
d
. An optimal RWM algorithm proposes moves of the form

y = x +
√

`
d2
ξ where ξ

D∼ N(0, Id): indeed, our situation is just a rescaled version (rescaled

by a factor 1√
d
) of the one treated in [RGG97] with f(x) = 1√

2π
e−

x2

2 . Because πd is highly

concentrated on the unit sphere of Rd, one can argue that the MCMC algorithm behaves
like a Brownian motion on Sd−1 in the sense that the trajectory of xd between 0 and k can
be approximated by a Brownian trajectory Wt between time 0 and h(`) k

d2
, where h(`) > 0

is a computable constant. It is well known that a Brownian motion on Sd−1 takes O( ln(d)
d

)
to mix, which shows that the RWM algorithm takes O(d ln(d)) to mix, and not O(d) as
it could be believed from the first coordinate scaling result. As a simple illustration, if the
Markov chain is started at xd(0) = (1, 0, 0, . . . , 0) ∈ Sd−1 it takes order O(d ln(d)) for the
first coordinate x1 to be of order 1√

N
. Ongoing works try to make this heuristic more rigorous

and adapt these ideas to more general target distributions.

4. S(P)DE limits for Langevin proposals

In this section we describe a variant of the main theorem of [RGG97]. This is the main
result obtained during this first year of PhD and is joint work with Andrew Stuart and
Natesh Pillai: this is a follow-up of the article [MPS10]. The generalization is twofold:

• the target density is not supposed to have a product form: the different coordinates
are neither independent, nor identically distributed. A weak form of correlation is
allowed, motivated by applications [Stu10a, BS09]. The target distribution πd is a
finite dimensional approximation of a limiting probability distribution π living on a
separable Hilbert space H: the probability π has a density with respect to a Gaussian

measure π0
D∼ N(0, C) on H which is supported by a linear subspace Hs ⊂ H,

dπ

dπ0

(x) ∝ exp
(
−Ψ(x)

)
where Ψ : Hs → Hs is a reasonably well-behaved functional: precise assumptions on
Ψ are given in section 4.2.
• in this setup where the coordinates are not supposed to be independent, the first

coordinate process is not expected to converge to a Markovian diffusion. The dis-
tribution πd is a finite dimensional approximation of π, living in Rd. Nevertheless,
looking at Rd as a finite dimensional subspace Xd of H, the Metropolis Markov chain
xd that has πd as invariant distribution can also be viewed as a Markov chain evolving
in Xd ⊂ H. All the Markov chains xd living in the same Hilbert space H, this allows
to describe the limiting behaviour of the full Markov chains, not only the first co-
ordinate process: we proved theorem 4.3 that shows that the appropriately rescaled
Markov chains xd converge weakly in C([0, T ],Hs) to the Hs-valued diffusion

dzt = −
(
zt + C∇Ψ(zt)

)
dt+ dWt (4.1)

where W is a Hs-valued Brownian motion.

The rigorous arguments leading to the main theorem being slightly too long to be presented
in this report, we only give a detail sketch of the proof; the full argumentation can be found
in the forthcoming paper [PST11].
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4.1. Preliminaries. Let
(
H, 〈·, ·〉

)
be a separable Hilbert space and C be a self-adjoint

positive, trace class operator on H. Let {φj, λ2
j} be the eigenfunctions and eigenvalues of C

respectively, so that

Cφj = λ2
j φj, j ∈ N.

We assume a normalization under which {φj} forms a complete orthonormal basis in H.
We also assume that the eigenvalues are arranged in decreasing order and are all strictly
positive: the expansion in this basis of a vector x ∈ H is x =

∑
i xiφi where xi = 〈x, φi〉.

Using this expansion, we define the Sobolev-like space Hs, s ∈ R, with norm defined by

‖x‖2
s

def
=

∞∑
j=1

j2s x2
j . (4.2)

Let π0 denote a mean zero Gaussian measure on H with covariance operator C, i.e., π0
def
=

N(0, C). If x
D∼ π0, then the xj = 〈x, φj〉 are independent N(0, λ2

j) Gaussian random vari-

ables and we may write (Karhunen-Loève expansion) x =
∑∞

j=1 λj ξj φj where ξj
D∼ N(0, 1)

are i.i.d. standard Gaussian random variables. We assume in the sequel that there exists
κ > 0 such that λj � j−κ and we fix s ∈ [0;κ − 1

2
). Observe that Eπ0 ‖x‖2

s < ∞ so that
π0-almost every x ∈ H belong to Hs: this is the motivation for the introduction of the
Sobolev-like space Hs.

Our goal is to sample from a measure π on H, given by

dπ

dπ0

= MΨ exp
(
−Ψ(x)

)
where MΨ is a normalization constant and Ψ : Hs → R is a functional that only needs to
be defined on Hs. To this purpose, we first approximate π and π0 by probability measures
πd and πd0 living in a finite dimensional subspace Xd ⊂ H of dimension d. Consider the
orthogonal projection P d : H → Xd ⊂ H on

Xd = span
{
φ1, . . . , φd

}
.

The approximate distribution πd is a d-dimensional approximation of π defined as follows:

• the approximate prior probability measure πd0 is defined as the image of π0 under P d:
this is a Gaussian measure living in Xd ∼= Rd, with covariance Cd = P d ◦ C ◦ P d

and density with respect to the Lebesgue measure on Xd ∼= Rd proportional to

exp
(
− 1

2
〈x,C−1

d x〉
)

.

• the function Ψ : Hs → Hs is approximated by Ψd(x) = Ψ
(
P dx

)
: this can be viewed

as a function on Xd.
• finally, the approximate probability distribution πd is defined as a change of measure

with respect to πd0 ,

dπd

dπd0
(x) = MΨd exp

(
−Ψd(x)

)
.

The probability πd has a support equal to Xd ∼= Rd and has density in Rd proportional

to exp
(
− 1

2
〈x,C−1

d x〉−Ψd(x)
)

, where Cd = P d ◦C ◦P s is the restriction of C to Xd.
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The precise assumptions on the functional Ψ and the covariance operator C are described
in the next section.

4.2. Assumptions on π0 and Ψ. In order for the main theorem 4.3 to be valid, the posterior
distribution π must not be very different from the Gaussian prior π0: this is translated by
growth conditions imposed on the functional Ψ. The regularity of the functional Ψ is needed
to control the behaviour of its gradient ∇Ψ which is used in the proposals of the different
Markov chains (see section 4.3). Also, we impose a rate of decay of the eigenvalues λ2

i of C:
this is not fundamental but simplifies the proof to a certain extent.

To avoid technicalities we assume that Ψ(x) is quadratically bounded and lower bounded
inHs, with first derivative linearly bounded and second derivative globally bounded. Weaker
assumptions could be dealt with by use of stopping time arguments.

Assumptions 4.1. The operator C and functional Ψ satisfy the following:

(1) Decay of Eigenvalues λ2
i of C: there is an exponent κ > 1

2
such that

λj � j−κ

(2) Assumptions on Ψ: There exist s ∈ [0, κ− 1/2) such that for all x ∈ Hs we have

1 . Ψ(x) .
(

1 + ‖x‖2
s

)
‖∇Ψ(x)‖−s .

(
1 + ‖x‖s

)
‖∂2Ψ(x)‖L(Hs,H−s) . 1.

Remark 4.2. the condition κ > 1
2

ensures that C is a trace class operator. Also, the Hs

norm of x
D∼ N(0, C) is almost surely finite because E

(
‖x‖2

s

)
<∞ for x

D∼ N(0, C). A simple

example of a function Ψ satisfying the above assumptions is Ψ(x) = ‖x‖2
s.

The above regularity assumptions on Ψ imply in particular that the functional µ(x) =
−
(
x+ C∇Ψ(x)

)
satisfies

‖µ(x)− µ(y)‖s 6 K · ‖x− y‖s
for a certain constant K > 0. This is important since µ is the drift of the Langevin diffusion
(4.1). This is used to establish the continuity of the Itô map Θ : Hs × C([0, T ],Hs) that
maps a couple (x0, w) ∈ Hs × C([0, T ],Hs) to the unique solution of the integral equation

xt = x0 +
∫ t

0
µ(xs) ds+ wt.

4.3. Algorithm description and main theorem. The goal is now to sample from πd: we
use the Metropolis Adjusted Langevin Algorithm (MALA) [RT96, RS02] that we describe

now. It is readily checked that the Rd-valued diffusion dX = A∇D(X) dt+
√

2AdWt, where
A is any positive definite matrix and D : Rd → R a smooth function that defines a prob-
ability distribution e−D(x) dx, has precisely e−D(x) dx as invariant distribution: the matrix
C is usually called a preconditioning matrix and the process is called “Langevin diffusion”
in the literature. Since this diffusion has e−D(x) dx as invariant diffusion, this is tempting
to use Euler-Maruyama discretizations of this diffusion as MCMC proposals in order to
study the distribution e−D(x) dx. In other words, proposals of the MALA are defined by
y = x+A∇D(x) ∆t+

√
2A∆tN(0, Id) and then accepted or rejected according to the usual
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Metropolis-Hastings rule.

The probability πd has density proportional to exp
(
− 1

2
〈x,C−1

d x〉 −Ψd(x)
)

on Xd ∼= Rd

so that the MALA proposals with preconditioning matrix equal to Cd read

y = x− `∆t
(
x+ Cd∇Ψd(x)

)
+
√

2`∆t Cd ξ
d, ξd =

d∑
i=1

ξiφi (4.3)

where ` and ∆t are parameters to be optimized and ξi
D∼ N(0, 1) are i.i.d. Gaussian random

variables. It is known [RR98] that the critical exponent for the MALA algorithm is γc = 1
3

so that ∆t is chosen equal to

∆t = d−
1
3 .

To be more precise, the Markov chain xd = {xd(k)}k>0 evolving inH and with target distribu-
tion πd is defined as follows: if the current position is x = xd(k), a proposal yd(k) distributed
according to (4.3) is considered and accepted with probability αd(xd(k), yd(k)) equal to the
Metropolis-Hastings ratio of the move from xd(k) to yd(k). A Bernoulli random variable

γd(k) which can be defined as 1{U<αd(x(k),y(k))} is introduced, where U
D∼ Uniform(0, 1) is in-

dependent of any other source of randomness : the next position xd(k+ 1) of the Metropolis
Markov chain is

xd(k + 1) =
(
1− γd(k)

)
xd(k) + γd(k)yd(k).

To observe a diffusion limit, the Markov chain xd has to be speeded up by a factor d
1
3 :

the continuous interpolate zd of xd is thus defined by

zd(t) =
(
t/∆t− k

)
xd(k + 1) +

(
k + 1− t/∆t

)
xd(k), k∆t 6 t < (k + 1)∆t. (4.4)

We show that the asymptotic mean acceptance probability of this algorithm is given by

α(`) = E
[
1 ∧ exp(Z`)

]
where Z`

D∼ N(− `3

4
, `

3

2
).

Theorem 4.3. Suppose that the assumptions 4.1 are satisfied and that the MALA Markov
chain xd is started at stationarity,

xd(0)
D∼ πd.

Then the sequence of rescaled continuous interpolates zd defined by (4.4) converges weakly
in C([0, T ];Hs) to the Hs-valued diffusion process z{

dz = −h(`)
(
z + C∇Ψ(z)

)
dt+

√
2h(`) dWt

z(0)
D∼ π

(4.5)

where {Wt}t>0 is a H-valued Brownian motion with covariance operator C and the speed
function h(`) is given by

h(`) = ` α(`).

Remark 4.4. Observe that the H-valued Brownian motion with covariance C takes value in
Hs since π0-almost every element of H are in Hs.

This theorem thus describes the asymptotic behaviour of the whole Markov chain. It is
interesting to notice that the speed function h(`) has exactly the same expression as the
analogous theorem describing diffusion limit of the first coordinate process [RR98]: it is
maximized for `? satisfying α(`?) = 0.574 to three decimal places. Remarkably, the optimal
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acceptance probability identified in [RR98] for product measures, is also optimal for the
non-product measures studied in this paper.

0 1 2 3 4 5
`

0.0

0.2

0.4

0.6

0.8

1.0

0.574

Acceptance probability

speed function h(`)
acceptance probability α(`)

Figure 1. Optimal acceptance probability = 0.574

4.4. Sketch of the proof. This section describes the main ideas behind the proof of theo-
rem 4.3; the full proof can be found in [PST11]. The majority of the MCMC diffusion limits
present in the literature [RGG97, RR98, BR00, Béd07] is based on the generator approach.
The generalization of this technique to the Hilbert space setting is difficult: instead, fol-
lowing [MPS10], we adopt a pedestrian approach which has the advantages of keeping the
technicalities at their minimum and of offering a better understanding of the diffusion limit.

Consider a scalar Lipschitz function µ : R→ R and constants `, C > 0: the usual theory of
diffusion approximation for Markov processes [EK86] shows that the sequence xd =

{
xd(k)

}
k

of scalar Markov chains

xd(k + 1)− xd(k) = µ(xd(k))`∆t+
√

2`∆tC
1
2 ξ(k),

with ∆t→ 0 and ξk
D∼ N(0, 1) converges in any reasonable sense, when speeded up by a factor

(∆t)−1, to the scalar diffusion dzt = `µ(zt) dt+
√

2` dWt, where W is a Brownian motion with
variance Var(Wt) = Ct. Also, if {γ(k)}k is an i.i.d. sequence of Bernoulli random variables
with success rate α(`), independent from the Markov chain xd, then it can be proved that
the sequence

xd(k + 1)− xd(k) = γ(k)µ(xd(k))`∆t+
√

2`∆tγ(k)C
1
2 ξ(k),

converges, after being speeded up by a factor (∆t)−1, to the diffusion dzt = h(`)µ(zt) dt +√
2h(`) dWt where h(`) = `α(`). Hence, the Bernoulli random variables γk have slowed

down the original Markov chain by a factor α(`), as expected.

The proof of theorem 4.3 is an application of this idea in a slightly more general setting:
11



• instead of working for scalar diffusions, the result holds for a Hilbert space valued
diffusions. The difference is small but the correlation structure between the different
coordinates has to be taken into account.
• instead of working with a single function µ, a sequence of approximations µd(x) has

to be taken into account.
• the Bernoulli random variables γ(k) are not i.i.d. and have an autocorrelation struc-

ture. Moreover, the Bernoulli random variables γ(k) are not independent from the
Markov chain xd. This is the main difficulty in the proof.
• it should be emphasized that the main theorem crucially uses the fact that the MALA

Markov chain is started at stationarity: this in particular implies that xd(k)
D∼ πN

for any k > 0. Indeed, this is known that in many instances, if the Markov chain is
started ”far” from stationarity, a fluid limit is first observed [CRR05].

The main ingredient of the proof is a Gaussian approximation. We now give the main steps
of the proof:

(1) Gaussian approximation: it can be shown by simple algebraic manipulations that

the Metropolis-Hastings ratio αd(x, y) = 1∧eQd(x,ξd) introduced in section 4.3 satisfies

Qd(x, ξd) = Zd(x, ξd) + ed(x, ξd) (4.6)

where Zd(x, ξd) = − `3

4
− `

3
2√
2
d−

1
2

∑
16j6d

ξixi
λj

and ed(x, ξd) is an error term. For any

fixed value of x the random variable Zd(x, ξ) is Gaussian with mean − `3

4
and vari-

ance `3

2
1
d

∑d
i=1

x2i
λ2i

: at stationarity, as this is the case in theorem 4.3, x is distributed

according to πd and usual Gaussian concentration shows that the quantity 1
d

∑d
i=1

x2i
λ2i

is approximately equal to 1 with overwhelming probability. In [PST11] we precisely
quantify the error in the approximation

Qd(x, y) ≈ Z`

where Z`
D∼ N(− `3

4
, `

3

2
) is a Gaussian random variables independent from the local

position x and the noise term ξ: this is the main part of the proof. This in particular
implies that the asymptotic acceptance rate is equal to α(`) = E

[
1 ∧ eZ`

]
.

(2) Drift-Martingale decomposition: the increment xd(k+ 1)−xd(k) is decomposed
as

xd(k + 1)− xd(k) = µd
(
xd(k)

)
∆t+

√
2∆tΓd(k)

where µd : H → H is a deterministic function and Γd(k) defines a martingale
Md(k) =

∑
j6k−1 Γd(j) adapted to the natural filtration of xd. In other words,

µd(x) = (∆t)−1 E
[
xd(k + 1)− xd(k) |xd(k) = x

]
. It can be proved that

lim
d

Eπd[ ∥∥µd(x)− h(`)µ(x)
∥∥ ] = 0

where µ(x) = −
(
x+ C∇Ψ(x)

)
.

(3) Invariance principle: an invariance principle for Hilbert space valued martingales
[Ber86] and the Gaussian approximation (4.6) are used to show that the continuous
rescaled sequence of martingales wd(k∆t) = Md(k) converges weakly in C([0, T ];Hs)
to a Brownian motion W with covariance h(`)C.

12



In other words, the decomposition xd(k+ 1)−xd(k) = µd
(
xd(k)

)
∆t+

√
2∆tΓd(k)

‘resembles’ the Euler-Maruyama discretization of the SPDE

dz = −h(`)
(
z + C∇Ψ(z)

)
dt+

√
2h(`) dWt.

(4) continuity of the Itô map: the Itô map Θ : H×C([0, T ];Hs)→ C([0, T ];Hs) that
sends a couple (z0, w) ∈ Hs×C([0, T ];Hs) to the unique solution z ∈ C([0, T ],Hs) of
the integral equation

z(t) = z0 +

∫ t

0

µ
(
z(u)

)
du+ w(t), ∀t ∈ [0, T ]

is continuous: the usual Picard’s iteration proof of the Cauchy uniqueness theorem
for ODEs works exactly the same. This would not be true if the noise in the SPDE
(4.5) was not additive i.e the volatility function were not constant.

The continuous interpolate zd defined by (4.4) satisfies

zd = Θ(xd(0), wd) + (error)

where it can be proved that the error term converges in probability to the null function
in C([0, T ],Hs) and is thus asymptotically negligible. The end of the proof follows
from the continuous mapping theorem: the law of the diffusion (4.5) is equal to the

law of Θ(z(0),W ), with z(0)
D∼ π and it can be proved that

(
xd(0), wd

)
converges

weakly in Hs × C([0, T ];Hs) to (z(0),W ).
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