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We sketch some relations between tropical geometry and representation

theory. This text originates from many discussions with Bernhard Keller and

Alfredo Nájera, to whom I express my sincere gratitude.

Attention: this text serves as the memoir of third year at Ecole normale

supérieure in Paris. As required, it is meant to be an introduction to a research

area rather than an original research article.
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1 Canonical basis in Lie theory

1.1 Quiver representations

Representation theory of quivers is closely related to Lie theory. The first

historical instance is

Theorem 1.1 ([Gab72]). A quiver has finitely many isomorphism classes of

indecomposable representations if and only if it is an oriented Dynkin diagram. In

this case there are bijections between the isomorphism classes of indecomposable

representations, the dimension vectors of indecomposable representations and the

set of positive roots of the Dynkin diagram.
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More generally, we have

Theorem 1.2 ([Kac80]). For a finite quiver without vertex loops, the set of

dimension vectors of the indecomposables over an algebraically closed field is in

bijection with the set of positive roots of the underlying graph. Moreover, there

is a unique indecomposable representation (up to isomorphism) corresponding to

a given positive root if and only if this root is real.

The second relation between quiver representations and Lie theory is through

Ringel-Hall algebra.

Definition 1.3. The Ringel-Hall algebra R for a quiver Q is the C-vector space

with basis elements V indexed by the isomorphism classes of representations

of Q, and with structure constants defined in the following way. Given three

representations V , V ′, V ′′ of Q, the structural constant cV,V ′,V ′′ is the Euler

characteristic in cohomology with compact support of the space of all short exact

sequences of representations of the following type

0→ V → V ′′ → V ′ → 0.

Theorem 1.4 ([Rin90]). Let ∆ be a Dynkin diagram of type A,D,E, g the

associated complex semisimple Lie algebra, n a maximal nilponent Lie subalgebra,

U(n) the enveloping algebra of n, and let e1, . . . , en denote a basis of the root

system in n. Let Q be a quiver whose underlying graph is ∆, and let R be the

Ringel-Hall algebra for Q. Then there is a unique algebra isomorphism U(n) ' R
which takes each ei ∈ U(n) to the simple representation of Q corresponding to

the vertex i of the Dynkin diagram ∆.

1.2 Canonical and semicanonical basis

We follow [Lus91] 19. Via the theorem above, U(n) acquires from R a C-basis,

which depends on the choice of orientation of the Dynkin diagram ∆. Lusztig

[Lus90] used perverse sheaves to remedy this dependence. He defined invariants

jV,V ′ ∈ N for any two representations V, V ′ of the quiver Q. In the case where

V, V ′ have different dimensions, jV,V ′ is 0. Assume now that they have the same

dimension vector d = (d1, . . . , dn). Let Ed be the space of representations of

dimension d of Q. The group Gd =
∏
iGLdi(C) acts on Ed by conjugation.

The two representations V, V ′ correspond to two Gd-orbits O,O′ in Ed. If O
is contained in the closure of O′, jV,V ′ is defined to be the Euler characteristic

of the local intersection cohomology of that closure at a point in O. Otherwise,

jV,V ′ is set to be 0.

Theorem 1.5. The elements {
∑
V jV,V ′V | V ′ is a representation of Q } form

a new basis of R. Upon transferring it to U(n), we obtain a basis of U(n) which

is independent of the chosen orientation. This basis is called the canonical basis.

Moreover, given an irreducible, finite dimensional representation V of g with a

specified lowest weight vector. If we apply the elements of the canonical basis to

this lowest weight vector, we obtain a canonical basis of the representation V

with nice properties.
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Now we follow [Lec10] Section 4 and 5. In [Lus00], Lusztig introduced another

basis S of the enveloping algebra U(n), called the semicanonical basis. Using

the duality between U(n) and the coordinate ring C[N ] of N , one obtains the

dual semicanonical basis S∗ of C[N ].

Let us recall his construction briefly. Let Q denote the quiver obtained from

the Dynkin diagram ∆ by replacing every edge by a pair (α, α∗) of opposite

arrows.

Definition 1.6. The preprojective algebra Λ is the quotient of the path algebra

CQ by the two-sided ideal generated by the element

ρ =
∑

(αα∗ − α∗α),

where the sum is taken over all pairs (α, α∗) of opposite arrows.

Let Si be the one-dimensional Λ-modules attached to the vertices i of Q. For

any sequence i = (i1, . . . , id), any Λ-module X of dimension d, let FX,i be the

space of flags of submodules

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fd = X

such that Fk/Fk−1 ' Sik for k = 1, . . . , d. Denote by Λd the space of Λ-modules

X with a given dimension vector d = (di) where
∑
i di = d. Let χi be the

constructible function on Λd given by χi(X) = χ(FX,i) and let Md be the C-

vector space spanned by the functions χi for all possible sequences i of length d,

and let M =
⊕

d∈NnMd. Lusztig constructed an isomorphism M' U(n), and

the semicanonical basis of U(n) via this isomorphism. By duality between U(n)

and C[N ] as Hopf algebras, every object X ∈ Λ -mod gives rise to a polynomial

function ϕX on N . Let Id be the set of irreducible components of Λd and

I =
∐

d Id. Then the set S∗ = { ϕZ | Z ∈ I } is the dual semicanonical basis,

where ϕZ denotes the generic value of ϕ on Z.

2 Cluster structures

2.1 Cluster algebras and categorification

Cluster algebras were invented by Fomin and Zelevinsky [FZ02] in order to find

a combinatorial algorithm for calculating the (semi)canonical basis constructed

by Lusztig. Let us recall their definition and some related constructions in the

case of skew-symmetric cluster algebras of geometric type following [Kel11].

Definition 2.1. Let 1 ≤ n ≤ m be integers, and let Q̃ be a quiver with m

vertices numbered as 1, . . . ,m without loops or 2-cycles. We call the vertices

n+ 1, . . . ,m frozen vertices and the rest vertices non-frozen vertices. Q̃ is called

a frozen quiver of type (n,m) if there is no arrows between frozen vertices.

Definition 2.2. The cluster algebra AQ̃ associated to a frozen quiver Q̃ is

a subalgebra of the field F = Q(x1, . . . , xm) defined by a set of generators
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constructed in the following iterative way. A seed is a pair (R̃, u) of a frozen

quiver R̃ of type (n,m) and a sequence of m variables u = (u1, . . . , um) which

generate freely the field F . The first n variables u1, . . . , un are called cluster

variables, while un+1, . . . , um are called coefficients. The mutation of a seed

(R̃, u) at a non-frozen vertex k of R̃ gives a new seed (R̃′, u′), where R̃′ is obtained

by quiver mutations (i.e. add a new arrow i→ j for every subquiver i→ k → j,

then reverse all arrows attached to k, then delete all 2-cycles), and u′ is obtained

from u by replacing the element uk by the element u′k defined by the exchange

relation

u′kuk =
∏

s(α)=k

ut(α) +
∏

t(α)=k

us(α),

where s(α) and t(α) denote respectively the source and the target of an arrow

α of the quiver R̃. We start with the initial seed (Q̃, (x1, . . . , xn)). A cluster

associated to Q̃ is a sequence u which appears in a seed (R̃, u) obtained from

the initial seed by iterated mutations at non-frozen vertices. The cluster algebra

AQ̃ is the subalgebra of F generated by all cluster variables. The upper cluster

algebra UQ̃ is the subalgebra of F consisting of elements that can be expressed

as Laurent polynomials in the variables in all clusters associated to Q̃. The full

subquiver of Q̃ consisting of all non-frozen vertices is called the principal part of

Q̃, which we denote by Q.

Theorem 2.3 ([FZ03]). The number of clusters of AQ̃ is finite if and only if

the principal part Q is Dynkin. In this case, let α1, . . . , αn denote the simple

roots. Then each positive root α = d1α1 + · · ·+ dnαn corresponds to a unique

non-initial cluster variable Xα of denominator xd11 · · ·xdnn .

Combining with Theorem 1.1, we obtain the one-to-one correspondence

between indecomposable representations of Q and non-initial cluster variables.

This gives a representation theoretic interpretation of the non-initial cluster

variables. More generally, we have the following.

Theorem 2.4 ([CC06]). Let Q be an acyclic quiver. For any representation V

of Q, define the Caldero-Chapoton map

CC(V ) =
1

xd11 · · ·x
dn
n

∑
e

χ(Gre(V ))

n∏
i=1

x
∑
j→i ej+

∑
i→j(dj−ej)

i ,

where (d1, . . . , dn) is the dimension vector of V , and Gre(V ) denotes the Grass-

mannian of subrepresentations of V with dimension vector e. The map CC gives

a bijection between rigid indecomposable representations of Q and non-initial

cluster variables of AQ̃.

The Abelian category Q -mod can be enlarged to a 2-Calabi-Yau triangulate

category CQ called the cluster category1 ([BMR+06]). The Caldero-Chapoton

map extended to CQ gives representation theoretic interpretations to all cluster

variables, as well as exchange relations and the notion of clusters.

1For general quivers Q (not necessarily acyclic), there are methods of additive categorifica-

tions if we endow Q with a generic potential (see [Kel11] 4.4).
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Theorem 2.5 ([CK06]). The Caldero-Chapoton map CC : CQ → AQ has the

following properties

(i) CC(L⊕M) = CC(L) · CC(M) for any L,M ∈ CQ.

(ii) The map CC induces three bijections

{indecomposable rigid objects of CQ}
∼−→ {cluster variables of AQ},

{rigid objects of CQ}
∼−→ {cluster monomials of AQ},

{maximal rigid objects of CQ}
∼−→ {clusters of AQ}

(iii) Two indecomposable rigid objects L,M correspond to an exchange pair if

and only if dim Ext1(L,M) = 1. If this is the case, and let

L→ E →M
+1−−→, M → E′ → L

+1−−→

be two non-split triangles. We have the exchange relation

CC(L) · CC(M) = CC(E) + CC(E′).

(iv) Let T be a maximal rigid object of CQ corresponding to a cluster (R, (u1, . . . , un)).

Then the quiver associated2 to the endomorphism algebra EndCQ(T ) is the

quiver R.

2.2 Cluster monomials and canonical basis

Now we use notations in Section 1.2. The coordinate ring C[N ] can be endowed

with the structure of an upper cluster algebra with coefficients ([BFZ05]). Then

our map ϕ : Λ -mod → C[N ] is analogous to the Caldero-Chapoton map. Let

T = T1⊕· · ·⊕Tm be a maximal rigid Λ-module, where every Ti is indecomposable.

Denote by ΓT the quiver associated to the endomorphism algebra EndΛ T . Define

Σ(T ) = (ΓT , (ϕT1
, . . . , ϕTm)).

Theorem 2.6 ([GLS07]). There exists an explicit maximal right Λ-module U

such that Σ(U) is one of the seeds of the cluster structure on C[N ].

The notion of seed mutation can be lifted to the category Λ -mod.

Theorem 2.7 ([GLS06]). Let Tk be a non-projective indecomposable summand of

T . There exists a unique indecomposable module T ∗k 6' Tk such that (T/Tk)⊕T ∗k
is maximal rigid.

A rigid Λ-module is called accessible if its indecomposable direct summands

are obtained from iterated mutations from the initial seed constructed in Theorem

2.6.

2By definition, the quiver associated to an algebra has vertices corresponding to simple

modules over this algebra, and the numbers of arrows between two vertices is the dimension of

the group Ext1 between the corresponding modules.
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Theorem 2.8 ([GLS06]). We have the analogue of Theorem 2.5.

(i) ϕL⊕M = ϕLϕM .

(ii) The map ϕ induces three bijections

{accessible indecomposable rigid objects of Λ -mod} ∼−→ {cluster variables of AQ},

{accessible rigid objects of Λ -mod} ∼−→ {cluster monomials of AQ},

{accessible maximal rigid objects of Λ -mod} ∼−→ {clusters of AQ}

(iii) Two indecomposable rigid objects L,M correspond to an exchange pair if

and only if dim Ext1(L,M) = 1. If this is the case, and let

0→ L→ E →M → 0, 0→M → E′ → L→ 0

be two non-split exact sequences, we have the exchange relation

ϕLϕM = ϕE + ϕE′ .

(iv) We have Σ(µk(T )) = µk(Σ(T )), where µk denotes the mutation at place k.

Corollary 2.9. The cluster monomials in C[N ] is part of the dual semi-canonical

basis.

Remark 2.10. One can ask whether cluster monomials belong to the canonical

basis.

Remark 2.11. One can study the quantum analog of the previous statements.

3 Heuristics from symplectic geometry

Cluster structures is a particular case of the more general notion of wall-crossing

structures ([KS13]). Let us explain some heuristics from symplectic geometry

following [GS12] and [GHK11]. Let X and X̌ be a pair of mirror Calabi-Yau

n-folds. Their geometry is suggested by the following two insightful conjectures.

Strominger-Yau-Zaslow (SYZ) conjecture There exists special Lagrangian

fibrations τ : X → B, τ̌ : X̌ → B over real n-dimensional manifold B, whose

generic fibers are tori. The fibration τ induces two dual Z-affine structures ∇J ,

∇ω on an open dense part B0 ⊂ B, the former holomorphic in nature, the latter

symplectic in nature. Let ∇̌J and ∇̌ω denote the dual Z-affine structures induced

by the fibration τ̌ . We have ∇J ' ∇̌ω and ∇ω ' ∇̌J .
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Kontsevich’s homological mirror symmetry (HMS) conjecture The

Fukaya category Fuk(X̌) of X̌ is equivalent to the bounded derived category

Db(X) of coherent sheaves on X with A∞-enhancement.

We cannot explain precisely the various notions mentioned in the conjectures

because part of the game is to find the right definition for the conjectures to hold.

Nevertheless, the two conjectures combined together, gives birth to the notion of

wall-crossing structures, which sheds much light on the theory of cluster algebras

and canonical basis, as well as the theory of integrable systems.

Under homological mirror symmetry, special Lagrangian torus fibers of τ̌ cor-

respond to skyscraper sheaves on X, while Lagrangian sections of τ̌ corresponds

to line bundles on X. Suppose L0 is a Lagrangian section of τ̌ correspond-

ing to the structure sheaf OX , and L1 is a Lagrangian section corresponding

to an ample line bundle L on X. Then HMS should yield an isomorphism

Hom(L0, L1) ' Hom(OX ,L). In nice situations when all higher cohomology

H∗(X,L) vanishes and all the intersection points between L0 and L1 are Maslov

index zero, the obvious basis for Hom(L0, L1) given by the intersection points

induces a “canonical” basis for H0(X,L), whose elements are usually called theta

functions.

Certainly the “canonical basis” depends on the choice of Lagrangian sections.

There is in fact a whole set of natural sections Ll, indexed by l ∈ Z, given in

local integral affine coordinates on B by

σl : (y1, . . . , yn) 7→ −
n∑
i=1

l · yi
∂

∂yi
.

The set of intersection points L0 ∩ Ll is then parametrized by the lattice

points B0

(
1
lZ
)
. Let m ∈ B0

(
1
lZ
)
, so m determines a theta function θm ∈

Hom(OX ,L⊗l). We would like to specify the value of θm at a point x ∈ X. A

non-zero element of Hom(L⊗l,Ox) gives an identification L⊗l ⊗Ox ' Ox. Then

the composition of θm with this identification under

Hom(L⊗l,Ox)⊗Hom(OX ,L⊗l)→ Hom(OX ,Ox) (3.1)

gives the value of θm at x. Under HMS, (3.1) corresponds to the Floer multipli-

cation

µ2 : Hom(Ll, Lx)⊗Hom(L0, Ll)→ Hom(L0, Lx),

where Lx denotes the fibre of τ̌ over x. This suggests that the theta function

θm should be defined as a sum over Maslov index 2 disks with boundary on the

Lagrangians Ll, Lx, L0. Moreover, the exponentials on the summands should

correspond to the symplectic area of the holomorphic disks.

For the theta function θm to make sense, the moduli space of Maslov index 2

disks considered above must deform smoothly with the Lagrangian Lx. This fails

for Lagrangians that bound Maslov index 0 disks. Such Lagrangians are said to

be obstructed. The locus on B corresponding to obstructed Lagrangians is by

definition the union of the walls, which is of real codimension 1. When we cross

the wall the theta function θm are discontinuous. The discontinuity is corrected
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by a holomorphic change of variables in the local coordinates according to the

data associated to the walls determined by the counting of Maslov index 0 disks.

Nevertheless, there are huge technical difficulties regarding holomorphic disk

counting. In general, the number of the disks mentioned above is not rigorously

defined, let alone study their properties. It is suggested in [KS01] that the special

Lagrangian fibration resembles a lot the deformation retraction of a k-analytic

space to its skeleton constructed by Vladimir Berkovich ([Ber99]). Therefore,

techniques from non-Archimedean geometry can be used to study the counting

of disks. This is an ongoing project between myself and my advisor Kontsevich.

[Yu13a][Yu13b] are very preliminary results in this direction.

On the other hand, it is proposed in [KS06] that one can circumvent the

counting of Maslov index zero disks using the a posteriori wall-crossing formula.

As for Maslov index two disks, Mark Gross et al. ([GHKS]) invented the notion

of jagged paths, which is the tropical analogue of such disks, thus can be counted

combinatorially.

In our description in the symplectic setting, we must assume l 6= 0. Now for

the combinatorially defined notion of jagged path, it makes sense to specialize to

the case l = 0, and one arrives at the notion of broken lines (see Definition 4.4).

In a word, jagged paths control the propagation of local monomial sections of

L⊗l, while broken lines control the propagation of local monomials on X itself.

One can also provide a geometric interpretation of broken lines. A broken line

with initial direction q and endpoint x can be thought of as the tropicalization of

a Maslov index 2 disk which intersects one time with a specified boundary divisor

Eq in a certain minimal model of X̌, and whose boundary lie in the fiber Lx and

passes through a given point in Lx. Counting of such disks gives the obstruction

co-chain of the Lagrangian Lx. They should correspond to Landau-Ginzburg

superpotentials on the mirror (see for example [Tom01]) , which are in particular

holomorphic functions.

There is yet another way to construct holomorphic functions on X rather

than sections of L⊗l for l 6= 0 proposed by Kontsevich during his lectures at

Jussieu in April 2012. One can use heuristics from wrapped Fukaya category.

Let Lt denote the perturbation of L0 under the Hamiltonian flow associated to

a certain quadratic potential φ. We obtain

Hom(L0, L0) ' Hom(L0, Lt), for t > 0.

One imagines the intersection points between L0 and Lt as the lattice points

B0(Z). Under the assumption that ∂2φ|B0
> 0, the Floer complex above is

concentrated in degree zero. So we can proceed as in the case of line bundles.

That is, we obtain the composition map

µ2 : Hom(L0, L0)⊗Hom(L0, Lx)→ Hom(L0, Lx)

which corresponds under HMS to the composition map

Hom(O,O)⊗Hom(O,Ox)→ Hom(O,Ox).
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The tropicalizations of the disks contributing to the composition map µ2

above also have combinatorial descriptions. They are explained as paths of lights

in [Yu12] 4.6. Counting of such gadgets produces for us holomorphic functions

on the mirror. One can ask whether the canonical theta functions produced by

broken lines and those produced by light paths are the same. Denis Auroux

explained to me that one can expect an isomorphism (or an injection) from the

wrapped Floer homology groups to simplectic cohomology ([Abo10])

HW∗(L0, L0)→ SH∗(X̌).

Then regard Hom(L0, Lx) as a module over HW∗(L0, L0). There is also some

construction that makes H∗(Lx) (to confirm later) a module over SH∗(X̌). So

the coincidence between the results produced by broken lines and light paths

should be explained by the isomorphism between the two modules. It may be

interesting to make the arguments above more clear.

4 Counting tropical curves

Heuristics in the last section lead to interesting applications of tropical geometry

to cluster algebras. Let us review some of the ideas based on the lectures given

by Sean Keel in Strasbourg in June 2013.

We start with two observations.

Observation. A seed for a cluster algebra of geometric type can be encoded in the

following datum: a lattice N of rank n, a skew-symmetric form 〈, 〉 : Λ2N → Q,

a basis (e1, . . . , en) of N, and possibly a declaration that some of the base vectors

are frozen.

Let us denote M = N∗.

Observation. The vector space MR = M⊗R can be regarded as the tropicalization

of the cluster X -variety. Mutations are birational transformations on the cluster

X -variety. They give rise to piecewise linear transformations on MR. (Very

detailed explanations are given in [Yu12] Section 4.4).

Now the idea is to do tropical geometry on MR to study the cluster algebra

A. We would like to have a canonical basis of A parametrized by the lattice M .

Let us review some constructions in tropical geometry. In order for the tropical

techniques to work, one need the assumption that vi = 〈ei,−〉, i = 1, . . . , n span

a strictly convex cone C ⊂MR. This should also be verified under all possible

mutations. Otherwise, there is the problem of taking the completion Q̂[C] of the

ring Q[C] with respect to the maximal ideal generated by monomials. One can

verify that the assumption is fulfilled in the case of cluster algebra with principal

coefficients.

Definition 4.1. A wall W is a full dimensional convex cone W ⊂ e⊥W for some

primitive vector eW ∈ N , equipped with a monomial mW ∈ e⊥W ∩ C ⊂MR, and

a function fW = 1 +
∑
r≥1 cr · zr·mW ∈ Q̂[C]. If W + R≥0mW ⊂W , it is called

an incoming wall, otherwise it is called an outgoing wall. A scattering diagram

D is a collection of walls with certain adic convergence assumptions.
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Crossing a wall W gives an automorphism TW of Q̂[C] defined as

zv 7→ zv · (fW )[v,eW ].

When we have a path Γ transversal to all walls, we can take composition µΓ of

all such automorphisms.

Definition 4.2. A scattering diagram D is called consistent if µΓ depends only

on the starting point and the endpoint.

Theorem 4.3 ([KS06][GS11]). Given any configuration of incoming walls, one

can add possibly infinitely many outcoming walls in a unique way to obtain a

consistent scattering diagram.

Let
{

(e⊥i , 1 + zvi)
∣∣ i = 1, . . . , n

}
be the incoming walls. The theorem above

produces for us a scattering diagram D. It is easy to see that this procedure is

compatible with mutations.

Now let us define the tropical incarnation of Maslov index 2 disks.

Definition 4.4. A broken line is a piecewise linear map from (−∞, 0] to MR
such that

(i) There are finitely many linear segments. We order them by 1, 2, . . . , nγ .

(ii) Each linear segment k is equipped with a monomial ck · zqk , for some

qk ∈M . We denote c(γ) = cnγ , F (γ) = zqnγ .

(iii) We require that −qk is parallel to the edge k for k = 1, . . . , nγ .

(iv) We require that c1 = 1, and we call q1 the initial direction of γ.

(v) Bends of γ can only occur at walls. Suppose that the segment k and the

segment k + 1 are separated by a wall W . Then there exists a monomial

term L in the expansion of f
[e,qk]
W such that ck+1z

qk+1 = L · ckzqk .

Finally, we can explain how broken lines give rise to canonical basis. Pick a

point b in a chamber of the scattering diagram D free from walls. Then for any

q ∈M , we obtain a canonical theta function

θb,q =
∑
γ

c(γ)zF (γ),

where the sum is taken over all broken lines γ with initial direction q, and which

terminates at the point b. If we move the point b in the same chamber, θb,q
remains unchanged. Otherwise, it changes according to mutation rules.

Using broken lines, one can also obtain the structural constants of the

multiplication rule of the canonical theta functions. Again it has a geometric

interpretation as counting rational curves in a certain minimal model of the

cluster X -variety with given intersection multiplicities with boundary divisors.

But I don’t know why counting such rational curves gives us multiplication rules.
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Remark 4.5. One can ask the relation between canonical theta functions con-

structed here and the (semi)canonical basis constructed by Lusztig.

Remark 4.6. Sean Keel asked for a representation theoretic interpretation of

broken lines. More generally, one can try to build a dictionary between objects

in tropical geometry and objects in representation theory. The link may be

established via Donaldson-Thomas invariants.
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