Durée: 3 heures

Examen de topologie, analyse et calcul différentiel

Documents et calculatrices interdits

Les quatre exercices sont indépendants.

Exercice I Soient E et F deux espaces de Banach réels, U un ouvert de E et $f: U \to F$ une application injective C^{∞} , dont la différentielle en tout point de U est une bijection. Montrer que f(U) est un ouvert de F et que $f: U \to f(U)$ est un C^{∞} -difféomorphisme.

Exercice II Soient E et F deux espaces de Banach réels, et $(f_{\alpha})_{\alpha \in \mathscr{A}}$ une famille d'applications linéaires continues de E dans F.

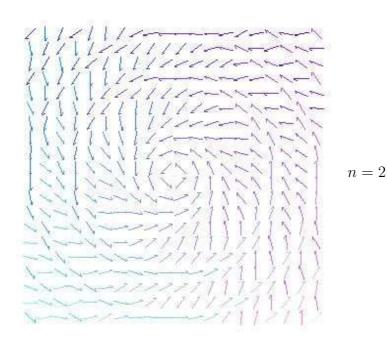
(1) Montrer que l'application g de E dans $[0, +\infty]$ définie par $x \mapsto \sup_{\alpha \in \mathscr{A}} ||f_{\alpha}(x)||$ est semi-continue inférieurement.

On suppose dans la suite de l'exercice II que $\sup_{\alpha \in \mathscr{A}} ||f_{\alpha}|| = +\infty$.

- (2) Pour tout n dans \mathbb{N} , montrer que l'intérieur de $F_n = \{x \in E : g(x) \leq n\}$ est vide.
- (3) Montrer que $G = \{x \in E : \sup_{\alpha \in \mathscr{A}} ||f_{\alpha}(x)|| = +\infty\}$ est dense dans E.

Exercice III Identifions le plan euclidien usuel \mathbb{R}^2 avec le corps \mathbb{C} des nombres complexes, de manière usuelle par $(x,y)\mapsto z=x+iy$. Notons \mathbb{D} le disque unité ouvert de \mathbb{R}^2 , et fixons $n\in\mathbb{N}-\{0\}$. Définissons l'application $X:\mathbb{R}^2\to\mathbb{R}^2$ par

$$X: z \mapsto iz e^{\frac{i}{2}\left(1-\cos(2n\pi|z|^2)\right)}$$
.



1

Pour tout z dans \mathbb{R}^2 , soit $t \mapsto \phi_t(z)$ la solution maximale de l'équation différentielle u' = X(u) valant z à l'instant t = 0.

- (1) Montrer que pour tout $k=0,1,\ldots,n,$ si $|z|=\sqrt{\frac{k}{n}}$ (et en particulier si |z|=1), alors $\phi_t(z)=e^{it}z$ pour tout t dans \mathbb{R} .
- (2) Montrer que pour tout z dans \mathbb{D} , l'image de l'application $t \mapsto \phi_t(z)$ est contenue dans \mathbb{D} . En déduire que l'application $t \mapsto \phi_t(z)$ est définie sur \mathbb{R} , pour tout z dans \mathbb{D} .
- (3) Pour tout $k=0,1,\ldots,n-1,$ si $|z|\in]\sqrt{\frac{k}{n}},\sqrt{\frac{k+1}{n}}[$, déterminer l'ensemble des valeurs d'adhérence de $\phi_t(z)$ quand t tend vers $+\infty$, et quand t tend vers $-\infty$.
- (4) On considère la relation \mathscr{R} sur \mathbb{D} définie par $z \mathscr{R} w$ si et seulement s'il existe t dans \mathbb{R} tel que $w = \phi_t(z)$. Montrer que \mathscr{R} est une relation d'équivalence, et que l'espace topologique quotient \mathbb{D}/\mathscr{R} n'est pas séparé.

Exercice IV Soient E un espace de Banach complexe, $\mathscr{L}(E)$ l'algèbre des endomorphismes linéaires continus de E, muni de la norme d'opérateurs usuelle, et $u \in \mathscr{L}(E)$. Soit $P = \sum_{i=0}^n a_i X^i \in \mathbb{C}[X]$ un polynôme complexe en une variable. Notons $\overline{P} = \sum_{i=0}^n \overline{a_i} X^i \in \mathbb{C}[X]$ et $P(u) = \sum_{i=0}^n a_i u^i \in \mathscr{L}(E)$. Remarquons que (PQ)(u) = P(u)Q(u) = Q(u)P(u).

- (1) Montrer que la série $\exp(u) = \sum_{n \in \mathbb{N}} \frac{1}{n!} u^n$ converge dans $\mathscr{L}(E)$. Montrer que si $v \in \mathscr{L}(E)$ commute avec u (i.e. si uv = vu), alors $\exp(u + v) = (\exp u)(\exp v)$.
- (2) Pour tous x_0 dans E et t_0 dans \mathbb{R} , montrer que l'unique solution maximale de l'équation différentielle y' = u(y) valant x_0 à l'instant t_0 est l'application de \mathbb{R} dans E définie par $t \mapsto \exp((t-t_0)u) \cdot x_0$.
- (3) a) Montrer que si $\lambda \in \operatorname{Sp}(u)$, alors $P(\lambda) \in \operatorname{Sp}(P(u))$.
- b) Réciproquement, si $\mu \in \operatorname{Sp}(P(u))$, montrer qu'il existe $\lambda \in \operatorname{Sp}(u)$ tel que $P(\lambda) \mu = 0$.

Dans la suite de l'exercice IV, nous supposons que E est un espace de Hilbert complexe et que u est autoadjoint.

- (4) Montrer que l'adjoint de P(u) est $\overline{P}(u)$.
- (5) Montrer que $||P(u)||^2 = \sup_{\lambda \in \operatorname{Sp}((P\overline{P})(u))} |\lambda| = \sup_{\lambda \in \operatorname{Sp}(u)} |P(\lambda)|^2$.
- (6) Considérons $\mathscr{C}(\mathrm{Sp}(u),\mathbb{C})$, l'algèbre des applications continues de $\mathrm{Sp}(u)$ dans \mathbb{C} , muni de la norme uniforme. Montrer qu'il existe un unique morphisme d'algèbres continu $\Psi: \mathscr{C}(\mathrm{Sp}(u),\mathbb{C}) \to \mathscr{L}(E)$ tel que $\Psi(P) = P(u)$ pour tout P dans l'algèbre $\mathbb{C}[X]$ des polynômes complexes.
- (7) Montrer que si $f \in \mathscr{C}(\mathrm{Sp}(u), \mathbb{C})$ et $\lambda \notin f(\mathrm{Sp}(u))$, alors $g : t \mapsto \frac{1}{f(t) \lambda}$ appartient à $\mathscr{C}(\mathrm{Sp}(u), \mathbb{C})$. En déduire que $\mathrm{Sp}(\Psi(f))$ est contenu dans $f(\mathrm{Sp}(u))$.
- (8) Soit $f \in \mathcal{C}(\mathrm{Sp}(u), \mathbb{C})$. En déduire que si E est de dimension infinie et si f est à valeurs réelles non nulles, alors l'opérateur $\Psi(f)$ est autoadjoint, mais n'est pas compact.