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1 History
First a brief history of Hodge theory, extracted from [16]. Hodge theory has
origin in works by Abel, Jacobi, Gauss, Legendre and Weierstrass among
many others on the periods of integrals of rational one-forms. The relative
theory appeared in the late 1960’s with the work of Griffiths [10, 11]. He
found that higher weights generalization of the ordinary Jacobian, the inter-
mediate Jacobian, need not be polarized. He generalized Abel-Jacobi maps
in this set-up and used these to explain the difference of cycles and divisors.
The important insight that any algebraic variety has a generalized notion of
Hodge structure was worked out in Hodge II,III [5, 6]. In the relative setting,
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if the family acquires singularities, the Hodge structure on the cohomology of
fiber may degenerate when the base point goes to the singular locus, leading
to the so-called limit mixed Hodge structure. Morihiko Saito introduced the
theory of Mixed Hodge Modules around 1985, which unifies many different
theories: algebraic D-modules and perverse sheaves.

2 Hodge structure
Classically, for a compact orientable Riemann manifold, Hodge theory inter-
prets H∗

dR(X,R) in terms of the kernel of the Laplacian ∆d, i.e., the space
of harmonic forms. On a complex manifold, a Hermitian metric is a com-
plex analogue of Riemannian metric. To be precise, a Hermitian metric h
is a smoothly varying Hermitian inner product on each holomorphic tangent
space. Note that its real part Reh is a usual Riemannian metric. With re-
gard to h, we may define ∂-Laplacian (resp. ∂-Laplacian) ∆∂ (∆∂). One may
expect a refinement of the classical Hodge theory in this case. A priori, ∆∂ is
not related to ∆d. The remedy is the introduction of the following definition.
Definition 1 (Kähler manifold). A Kähler manifold is a complex manifold
with a Hermitian metric h such that the 2-form ω defined by ω(u, v) =
Imh(u, v) is closed. Such a special metric h is called a Kähler metric and ω
a Kähler form.

For a Kähler manifold (X,ω), ω is a symplectic form. Hence we find three
mutually compatible structures: a complex structure, a Riemannian struc-
ture, and a symplectic structure. Every complex submanifold of a Kähler
manifold is again Kähler with the induced metric. The Fubini-Study met-
ric [12, Example 3.1.9] on a projective space CP n is Kähler. As a result, a
complex projective manifold is Kähler. Any Hermitian metric on a Riemann
surface is Kähler, since dω ∈ A3(X) = 0. Thus we find various examples of
Kähler manifold.

In the rest of the present section, let (X,w) be a compact Kähler manifold
with dimC X = n unless otherwise stated. A landmark in Hodge theory is
the following theorem.
Theorem 1 (Hodge’s decomposition theorem). [12, Corollary 3.2.12]Let X
be a compact Kähler manifold. Define Hp,q(X) = {[α] ∈ Hp+q

dR (X,C) : α ∈
Ap,q(X), dα = 0} to be the subspace represented by (p, q)-forms. Then

Hm(X,C) = ⊕p+q=mH
p,q(X).
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Furthermore, we have Hodge symmetry: Hp,q(X) = Hq,p(X).

A key argument in the proof is ∆d = 2∆∂. The Hodge decomposition
is actually independent of the choice of the Kähler metric, which can be
proved using Bott-Chern cohomology. Hodge decomposition induces a fil-
tration on each Hk(X,C), called the Hodge filtration, by F pHk(X,C) =
⊕r≥pH

r,k−r(X). Hodge decomposition motives the definition of (pure) Hodge
structure.

Definition 2 (pure Q-Hodge structure). Let n ∈ N. A pure Q-Hodge struc-
ture of weight n consists of a finite dimensional Q-vector space V , a fi-
nite decreasing filtration F ∗ on VC = C ⊗Q V such that for any p ∈ Z,
F pV ∩ F n+1−pV = 0 and VC = F pV ⊕ F n+1−pV .

The existence of such a filtration is equivalent to that of a decomposition:
to pass between theses two definitions, given the Hodge filtration F ∗V , for
p ∈ Z, define V p,n−p = F pV ∩ F n−pV , then VC = ⊕p∈ZV

p,n−p. The filtration
is preferred as in the relative situation, the filtration varies holomorphically
while the bigradings not and we have Proposition 3.

In the definition of Hodge structure, we may replace Q by other coefficient
rings like Z,R.

Now that Hodge structure on H∗(X,C) is determined by the complex
structure of X, a natural question is the converse: Does the Hodge structure
on cohomology determines the complex structure? The Global Torelli the-
orem is said to hold for a particular class of compact complex algebraic or
Kähler manifolds if any two manifolds of the given type can be distinguished
by their integral Hodge structures.

Theorem 2. Two complex tori T and T ′ are biholomorphic if and only if there
exists an isomorphism of weight one integral Hodge structures H1(T,Z) →
H1(T ′,Z).

Hodge decomposition may fail for a general compact complex manifold,
as shown by Example 1. This potential failure is encoded in the following
spectral sequence.

Definition 3 (Frölicher spectral sequence). Let X be a complex manifold.
Write Ak for the space of k-forms and Ap,q for that of (p, q)-forms. The
decreasing filtration F pAk = ⊕i≥pA

i,k−i induces a spectral sequence Ep,q
1 =

Hq(X,Ωp
X) ⇒ Hp+q(X,C).
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We call hp,q = dimC H
q(X,Ωp

X) the Hodge numbers of the complex man-
ifold X. The Hodge numbers of a compact complex manifold are finite.

Definition 4. For a complex manifold X, the putative Hodge filtration on
Hk(X,C) is given by

F pHk(X,C) = Im(Hk(X,Ω≥p
X ) → Hk(X,Ω⋆

X)).

Corollary 1. For a compact Kähler manifold X, its Frölicher spectral se-
quence degenerates at E1. For any p, q ∈ Z, Hq(X,Ωp

X) is canonically iso-
morphic to Hp,q(X). The putative Hodge filtration coincides with the actual
Hodge filtration.

Theorem 3. [13]For a compact complex surface, the Frölicher spectral se-
quence degenerates at E1.

A consequence of the degeneration of the Frölicher spectral sequence is
that any holomorphic global form is closed. Iwasawa manifold is a compact
complex manifold of (complex) dimension 3 admitting a non-closed holomor-
phic 1-form. (See [8, Example VI.8.10])

3 Topological constraints
Hodge theory impose strong restriction on the topology of the manifold, as
the following results show.

Corollary 2. The Betti numbers b2k−1(X) are even.

Corollary 3. If the fundamental group π1(X) is a free group, then it is
trivial.

Proof. Suppose that π1(X) is a free group on m(≥ 1) generators. We can find
a subgroup H ≤ π1(X) of index 2. By [15, Theorem 2.10], H is a free group
on 2m − 1 generators. This corresponds to a two-sheeted cover π : Y → X
where π1(Y ) is isomorphic to H. The space Y with pullback structures is
also compact Kähler. However, the betti number b1(Y ) = 2m − 1 is odd,
which contradicts Corollary 2.

The first example of compact complex surface with no Kähler metric is
the following.
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Example 1 (Hopf surface). Consider the action of Z on C2−{0} by (k, z) 7→
2kz. The quotient space X is a compact complex manifold, which is diffeomor-
phic to S1×S3. In particular, the Bettic number b1(X) = dimC H

1(X,C) = 1
is odd. Therefore, H1(X,C) admits no (strong) Hodge decomposition. By
Corollary 2, X is not homeomorphic to any Kähler manifold. By Corollary
5, X cannot be algebraic. The Dolbeault cohomology group H1(X,OX) =
H0,1

∂
(X) is nonzero since the global form α = z1dz̄1+z2dz̄2

|z1|2+|z2|2 is ∂-closed but not
∂-exact. By Theorem 3, b1 = h1,0 + h0,1, so we obtain the Hodge numbers
h0,1 = 1 and h1,0 = 0.

As Example 1 illustrates, the existence of Hodge decomposition is strictly
stronger than the degeneration of Frölicher spectral sequence.

We turn to another aspect of classical Hodge theory. Define the Lefschetz
operator L : H∗

dR(X,R) → H∗+2
dR (X,R) by [η] 7→ [η ∧ ω].

Theorem 4 (Hard Lefschetz). For 0 ≤ k ≤ n,

Ln−k : Hk
dR(X,R) → H2n−k

dR (X,R)

is an isomorphism. For k ≤ j ≤ n,

Ln−j : Hk
dR(X,R) → H2n−2j+k

dR (X,R)

is injective.

Corollary 4. The even Betti numbers b2i(X) are increasing in the range
2i ≤ n and similarly the odd Betti numbers b2i+1(X) are increasing in the
range 2i+ 1 ≤ n .

For k ≤ n, define the primitive part of its cohomology as

Hk(X,R)prim = ker[Ln−k+1 : Hk(X,R) → H2n−k+2(X,R)].

When p, q ≥ 0 and p+ q ≤ n, we can similarly define

Hp,q(X,C)prim = {[α] ∈ Hp,q(X,C) : Ln−p−q+1α = 0}.

Then Theorem 4 gives an isomorphism Ln−p−q : Hp,q(X,C) → Hn−q,n−p(X,C)
and another decomposition theorem of the cohomology groups.
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Theorem 5 (Lefschetz decomposition theorem).

Hp,q(X,C) = Hp,q(X,C)prim ⊕ L(Hp−1,q−1(X,C)) (1)
Hk(X,C) = ⊕k−2r≤nL

rHk−2r(X,C)prim (2)

Since the Kähler form ω ∈ A1,1 is real, the above theorem remains true
with real coefficients. We mention a striking example in passing. For a com-
pact simply connected Kähler manifold, its real homotopy type is determined
by its cohomology ring (cf.[7]). This is later improved to rational homotopy
type in [20].

4 Polarized Hodge structure
Note that any two compact Riemann surfaces of genus g share isomorphic
integral Hodge structure H1(−,Z). We need an extra structure to distin-
guish them. This motivates the definition of polarization. Again let X be a
compact Kähle manifold. For k ≤ n, define a bilinear form on Hk(X,R) by

Q(α, β) =

∫
X

ωn−k ∧ α ∧ β.

Then Q is (−1)k-symmetric. This form is called the intersection form.

Definition 5. A polarized R-Hodge structure of weight k is a R-Hodge
structure (VR, V

p,q) of weight k, with a (−1)k-symmetric bilinear form Q :
VR × VR → R, such that its extension to VC satisfies Hodge-Riemann bilibear
relations:

1. the Hodge decomposition is orthogonal with respect to Q

2. for any α ∈ Hp,q(X,C) nonzero,

ip−q(−1)k(k−1)/2Q(α, ᾱ) > 0.

Proposition 1. (Hk(X,R)prim, Q) is a polarized real Hodge structure of
weight k.

Theorem 6 (Riemann). Let L ⊆ Cn be a lattice. Then the complex torus
X = Cn/L is algebraic if and only if the Hodge structure of H1(X,Z) admits
a polarization.
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With polarized Hodge structure we can state the following two Torelli
type results.

Theorem 7. Two compact Riemann surfaces M and N are isomorphic
if and only if there exists an isomorphism of weight one Hodge structures
H1(M,Z) → H1(N,Z) that respects the intersection pairing.

Definition 6 ((analytic) K3 surface). A compact complex surface X with
trivial canonical bundle and h0,1(X) = 0 is called a K3 surface.

Every K3 surface is Kähler (cf.[18]).

Theorem 8. Two complex K3 surfaces S and S ′ are isomorphic if and only
if there exists an isomorphism of Hodge structures H2(S,Z) → H2(S ′,Z)
respecting the intersection pairing.

5 Mixed Hodge structure
Given a field k, by k-variety we mean a finite type, separated k-scheme.
Recall Chow’s theorem: a projective manifold is algebraic. We are thus led
to the following question: can Hodge theory be extended to complex algebraic
varieties?

For a general complex variety X, its analytification Xan may not be com-
pact nor smooth. For example, consider the punctured line X = SpecC[t, t−1],
then Xan = C∗ and H1(Xan,C) = C is of odd dimension. Here X is smooth
but not proper. On the other hand, take C to be the plane projective curve
Y 2Z = X2(X − Z). Then still dimC H

1(C,C) = 1. In this case, C has
a nodal singularity. The cohomology groups cannot be expected to have a
Hodge decomposition in both cases. We are forced to seek a weaker notion
than Hodge structure.

The heuristic evidence for the existence of such a weaker notion comes
from the properties of étale cohomology of varieties over fields with positive
characteristic. A dictionary between l-adic cohomology and Hodge theory is
in [4]. Deligne was also the first to give an affirmative answer to the question.
More precisely, he established the existence of mixed Hodge structure on the
cohomology of complex algebraic varieties.

Definition 7 (mixed Hodge structure). Let H be a finite Z-module. A mixed
Hodge structure on H consists of
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1. an increasing filtration W∗ on HQ = Q⊗ZH, called the weight filtration;

2. a decreasing filtration F ∗ on HC = C⊗Z H, called the Hodge filtration

with the property that F ∗ induces a pure Q-Hodge structure of weight k
on the graded piece

GrWk (HQ) = Wk/Wk−1.

Theorem 9. [5, Theorem 3.2.5] Let X/C be a smooth algebraic variety.
Then Hk(X,C) has a canonical mixed Hodge structure. This structure is
fuctorial. If X is further more complete (proper), then this structure is pure
of weight k.

Sketch of the proof of Hodge II: a smooth variety X/C has a smooth com-
pactification j : X → X̄ such that D = X̄−X is a divisor of normal crossing
by Nagata’s theorem [19, Tag 0F41] and Hironaka’s resolution of singularity.
Then Deligne used differential forms with logarithmic singularities along the
boundary and the residue maps between them to show Theorem 9. In Hodge
III [6], the result is generalized to proper varieties and finally to any complex
algebraic variety. In the singular case, varieties are replaced by simplicial
schemes, leading to more complicated homological algebra. Using the theory
of motives, it is possible to refine the weight filtration on the cohomology
with rational coefficients to one with integral coefficients.

Remark 1. The weight filtration on Hk(X) satisfies the following properties:

1. W−1 = 0 and W2k = Hk.

2. If X/C is proper, then Wk = Hk(X) and for any resolution of singu-
larity X̃ → X, we have Wk−1H

k(X) = ker(Hk(X) → Hk(X̃).

3. If X/C is smooth, then Wk−1H
k(X) = 0 and for any smooth compact-

ification i : X → X̄, then i∗Hk(X̄) = WkH
k(X).

In particular, when X/C is a smooth projective variety, the weight filtration
is trivial 0 = Wk−1 ⊂ W k = Hk(X), that is, we recover the pure Hodge
structure given by Theorem 1.

Corollary 5. Let X/C be a proper smooth variety, then X admits a strong
Hodge decomposition.
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Example 2. [9, Section 4] Let X1, X2 ⊂ CPN be two complex submanifolds
intersecting transversally. Let X = X1 ∪X2. The Mayer-Vietoris sequence
is

→ Hm−1(X1 ∩X2)
δ→ Hm(X) → Hm(X1)⊕Hm(X2) → Hm(X1 ∩X2) →

The weight filtration of Hm(X) is Wm−2 = 0, Wm−1 = Imδ and Wm =
Hm(X). (Note that the category of mixed Hodge structures is abelian and
any morphism is strict. See [16, Corollary 3.6])

Example 3. For the projective curve C : Y 2Z = X2(X − Z), then 0 =
W−1 ⊂ W0H

1(C) = H1(C).

Example 4. X = A1
C − 0, then 0 = W1H

1 ⊂ W2H
1 = H1

We present one application.

Theorem 10 (Weight principle). Let Z ⊂ U ⊂ X be inclusions, where X/C
is a proper smooth variety, U ⊂ X is a Zariski dense open and Z ⊂ X is a
closed subvariety, for each l,

H l(X,Q)
a→ H l(U,Q)

b→ H l(Z,Q)

have Im(ba) = Im(b)

Example 5 shows that the real counterpart is false.

Example 5. Let X = CP 1, U = C∗, Z = S1, then H1(X,Q) → H1(Z,Q)
has trivial image while H1(U,Q) → H1(Z,Q) is an isomorphism.

6 Variation of Hodge structure
We turn to a relative version of Hodge theory.

Let π : X → S be a smooth proper analytic morphism of relative dimen-
sion n, such that the Frölicher spectral sequence degenerates at each fiber
Xs. (This happens if all the fibers admit a Kähler metric. Another example
is that π : X → S is algebraic, then the degeneration is guaranteed by [3,
Theorem 5.5].) We can ask how the Hodge structures (if exist) on H∗(Xs,C)
vary. The variation of Hodge structures is closely related to monodromy
action and has important application in arithmetic.
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Proposition 2. The Hodge numbers of Xs are locally constant.

Corollary 6. Riπ∗Ω
≥k
X/S is a holomorphic vector bundle on S for all i and k.

Define the i-th relative de Rham cohomology to be the OS-module Riπ∗Ω
·
X/S,

denoted by Hi
dR(X/S). A relative version of Definition 4 is

F pHi
dR(X/S) = Im(Riπ∗Ω

≥p
X/S → Hi

dR(X/S)).

Consider the local system of complex vector spaces Riπ∗C. We have Hi
dR(X/S) =

OS ⊗Riπ∗C, which induces a flat connection ∇ : Hi(X/S) → Hi(X/S)⊗Ω1
S

by Riemann-Hilbert correspondence (cf.[16, Corollary 10.4]). This connec-
tion is known as Gauss-Manin connection. In terms of parallel transport, we
may identify nearby fibers of Hi(X/S).

Proposition 3 (Griffiths’ transversality). [16, Corollary 10.31]

∇(F pHi
dR(X/S)) ⊂ F p−1Hi

dR(X/S)⊗ Ω1
S.

The properties above lead to an abstract definition.

Definition 8 (variation of Hodge structure). Let S be a complex manifold.
A variation of Hodge structure of weight k on S consists of the following
data:

1. a local system V of finite dimensional Q-vector spaces on S;

2. the Hodge filtration: a finite decreasing filtration F ∗ of the holomorphic
vector bundle V = V⊗Q OS by holomorphic subbundles.

These data must satisfy the following conditions:

• for any s ∈ S, F ∗(s) of Vs ⊗Q C defines a pure Hodge structure of
weight k on Vs.

• The induced connection satisfies the Griffith transversality: ∇(F p) ⊂
F p−1 ⊗ Ω1

S

We
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Proposition 4. [16, Proposition 1.38]For a smooth projective morphism
π : X → S, the restriction maps

Hm(X ,Q) → H0(S,Rmπ∗Q)

are surjective.
The right hand side is exactly the invariants under the monodromy action.

Therefore, the proposition has the interpretationt: for any s ∈ S, an invariant
of Hm(XS,Q) come from a global class.

In Hodge II, Deligne considered variation of polarized Hodge structure,
and showed the semi-simplicity of monodromy representation for a wide class
of morphisms. The underlying variation of Hodge structure of a local system
can be used to show that the monodromy group is big in suitable sense. For
an example, see [16, Theorem 10.22].
Theorem 11. [17, Theorem 7.22] Let H be a complex polarized variation of
Hodge structure over a quasi-projective base S. Let e be a global flat section
of H, and write e =

∑
ep,q for ep,q ∈ Hp,q, then each ep,q is again flat.

The variation of Hodge structure is encoded in the period mapping, intro-
duced by Griffiths, which can be defined using the Gauss-Manin connection
introduced above. (Consult [1] for details.) The interaction of period map-
pings and monodromy finds application in number theory, for example, the
proof of Mordell conjecture given in [14].

7 Open problems
Let X be a projective manifold with dimC X = n. Define the Hodge class
of H2k(X) to be Hdg2k(X,Q) = H2k(X,Q) ∩ Hk,k(X). If j : C → X
is a complex submanifold of codimension k, consider j∗ : H2n−2k(C,Z) →
H2n−2k(X,Z) and Poincaré duality H2n−2k(X,Z) → H2k(X,Z). The funda-
mental class of C is mapped to [C] ∈ H2k(X,Z). By passing to desingu-
lariztion, for any algebraic subvariety C (not necessarily smooth), we may
also define [C] ∈ H2k(X,Z). In fact, [C] ∈ Hdgk,k(X,Z). This construction
extends to a cycle class map starting from the Chow group

cl : CHk(X) → H2k(X,Z). (3)

For a complex variety Y , let Zk(Y ) be the group of cycles of codimension
k on Y .
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Conjecture 1 (Hodge conjecture). Let X be a projective complex manifold,
is Hdgk(X,Q) = {[Z]B : Z ∈ Zk(X)⊗Z Q}? Or equivalently, the cycle class
map cl : CHk(X)Q → Hdg2k(X,Q) is it surjective?

Informally, the conjecture is that every Hodge class is algebraic. The
theory of Mixed Hodge structures was used by Cattani, Deligne and Ka-
plan to prove an algebraicity theorem that provides strong evidence for the
Hodge conjecture (cf.[2]). Hodge conjecture is related to generalized Bloch
conjecture, cf.[21].

Conjecture 2 (generalized Bloch conjecture). If the Hodge numbers hp,q = 0
for p 6= q and p < c or q < c, then for any i < c− 1, then cycle class map

cl : CHi(X)⊗Q → H2n−2i(X,Q)

is injective

Complex subvarieties are rather rigid, making it difficult to construct
them.
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