
Introduction au domaine de recherche
Keyu Wang





Contents

1 Introduction 1

2 Algebraic concepts 3
2.1 Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Quantum universal enveloping algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Integrable models 6
3.1 Six vertex model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Gaudin models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 TQ relations 10
4.1 TQ relations as operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 TQ relations in the Grothendieck ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Schrodinger operators and CD relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Bethe Ansatz and opers 15
5.1 Gaudin algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Opers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Miura transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



Chapter 1

Introduction

This introductory report is a review of what I have learnt during the passed three years at ENS Paris and what
I am planning to study in the following years.

During the first year, I finished a math-physics double license. Under the supervision of professor Denis
Bernard and professor David Hernandez, I completed an internship about the topic ’TQ relations in quantum
affine algebras’. The so-called TQ relations are certain relations in some physical solvable models, for example
the six vertex model. I learned the expression of these relations in terms of representations of quantum affine
algebras, and also how they are corresponded to certain second order ordinary differential equations. This
unexpected correspondence is called the ’ODE/IM correspondence’. In the part of physics, I learned the
formulation of Knizhnik-Zamolodchikov equations in Wess-Zumino-Witten models in the conformal field theory,
which are compactly related to the six vertex model and also to the quantum affine algebras.

During the second year, I studied abroad at ETH Zurich in Switzerland for one semester. There I was under
the supervision of professor Giovanni Felder. I learned Nakajima varieties, the geometric representation theory
of quantization of Lie algebras, and the formulation of Knizhnik-Zamolodchikov equations in the geometric
representation theory. This is a continue of the topic of my first year’s internship. The main work is about
solving elliptic KZ equations. However, the main theorem remains a conjecture till now. I will not talk about
these works in this review because of page limit and because my PhD research is more closely related to the
other two aspects above and below.

Last year was my final year at ENS, I finished my master mémoire and defended it at Paris Diderot. My
supervisor is professor David Hernandez, who guided me for the license internship and is now my PhD adviser.
The master mémoire titled as ’On the Bethe Ansatz conjecture for Gaudin model’. The Bethe Ansatz is a
method of diagonalizing Gaudin models in physics. This method is formulated in pure mathematics as the
problem of studying the spectrum of Gaudin algebras. We can describe their spectrum by a geometric object
called opers. This mémoire is related to my first year’s internship in the following sense. The transfer matrices
in the six vertex model may be viewed as a quantization of the Gaudin Hamiltonians related to the affinization
of the simplest Lie algebra sl2. The Bethe Ansatz method is also applied to the six vertex model. And the
geometric object opers will provide the differential operators as in the ODE/IM correspondence. For example
the Schrodinger operators corresponding the six vertex model can be derived from ŝl2-opers. This mémoire is
also related to my second year’s project, as the Gaudin Hamiltonians are explicitly appeared in KZ equations.
Also Bethe Ansarz provides solutions to KZ equations. And it is natural to consider this relation in their
quantum analogue.

This review is organized as follows.
In chapter 2, we review the definitions and basic properties of affine Lie algebras and their quantization.

Then we formulate the physical models we concern in chapter 3. And we recall the physical methods of solving
these models. In chapter 4, we formulate the TQ relations in the six vertex model in mathematical language
of representations of quantum affine sl2. And in general these relations can be formulated in the Grothendieck
ring of representations of quantum affine algebras. We also see the similar relations in the theory of ordinary
differential equations. In the last chapter, we will see how Bethe Ansatz equations are formulated in mathematics
and how they are related to opers. The relations of the concepts in this review can be read from the table below.
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Dictionary

Classical Quantum

ĝ Uq(ĝ)

Gaudin model Six vertex model

Gaudin Hamiltonians Transfer matrices

Bethe Ansatz Bethe Ansatz

g-opers ŝl2-opers

Affine Harish-Chandra homomorphism Quantum affine Harish-Chandra homomorphism

Characters q-characters

characters Cartan connections

Gaudin algebras opers

Spec

Miura trans.affine H-C homom.

Spec

q-characters Schrodinger operators

transfer matrices affine opers

Miura. trans.q-affine H-C homom.

Hitchin systems Langlands←−−−−−→ opers quantum Hitchin systems q-Langlands←−−−−−−→ affine opers

... ...
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Chapter 2

Algebraic concepts

2.1 Lie algebras
Let g be a finite-dimensional semisimple Lie algebra over C with a Cartan subalgebra h. The Killing form on g
restricting to h allows us to identify h and h∗ and thus gives us a bilinear form 〈, 〉 on h∗. Let ∆ = {α1, · · · , αl}
be a set of simple roots, the matrix Cij = 〈αi, αj〉 is called the Cartan matrix of g.

Recall that the Cartan matrices classify simple Lie algebras and we can construct simple Lie algebras from
Cartan matrices in the following way.

Theorem 2.1.1. Let Cij be a Cartan matrix in the classification table [Kac90, Section 4.8]. Define a Lie
algebra g with generators {ei, fi, hi|1 ≤ i ≤ l}, satisfying:

[hi, hj ] = 0, 1 ≤ i, j ≤ l,
[ei, fi] = hi, [ei, fj ] = 0, i 6= j,

[hi, ej ] = Cijej , [hi, fj ] = −Cijfj ,
(adei)

−Cij+1(ej) = 0, i 6= j,

(adfi)
−Cij+1(fj) = 0, i 6= j.

(2.1.1)

Then g is a finite-dimensional semisimple algebra, with a Cartan subalgebra h spanned by hi, whose Cartan
matrix is Cij.

This construction is generalized to construct a family of infinite-dimensional Lie algebras, called Kac-Moody
algebras, by V. Kac and R. Moody. The Cartan matrices will be replaced by generalized Cartan matrices.

Definition 2.1.2. An n× n matrix C = (aij) is called a generalized Cartan matrix of rank l if it satisfies

aii = 2,

aij ∈ Z,
aij ≤ 0, i 6= j,

aij = 0 implies aji = 0.

(2.1.2)

Definition 2.1.3. Given a generalized Cartan matrix C = (aij)n×n of rank l, we can define a Lie algebra
g(C) as follows: Let h be a complex vector space of dimension 2n − l. Let {α1, · · · , αn} ⊂ h∗ be a linearly
independent set, called the set of simple roots. Then there is a linearly independent set {α∨1 , · · · , α∨n} in h such
that αi(α∨j ) = aji. Define g(C) to be the Lie algebra generated by {ei, fi, h|1 ≤ i ≤ n, h ∈ h}

[h, h′] = 0, h, h′ ∈ h,

[ei, fi] = α∨i , [ei, fj ] = 0, i 6= j,

[h, ei] = αi(h)ei, [h, fi] = −αi(h)fi, h ∈ h,

(adei)
1−aij (ej) = 0, i 6= j,

(adfi)
1−aij (fj) = 0, i 6= j.

(2.1.3)

In this review, we are interested in the untwisted affine Lie algebras, which are Kac-Moody algebras with
generalized Cartan matrices of affine type from the table Aff1 in [Kac90, Section 4.8]. Note that the untwisted
affine Lie algebras may be constructed by central extensions of loop algebras g(C) = g⊗C((t))⊕CK⊕Cd. Here
g is the related simple Lie algebra. We will focus on the subalgebra

ĝ = g⊗ C((t))⊕ CK,
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defined by relations

[A⊗ f(t), B ⊗ g(t)] = [A,B]⊗ f(t)g(t) + (A,B)Rest=0fdgK, ∀A,B ∈ g, (2.1.4)

K is a central element.

2.2 Quantum universal enveloping algebras
Quantum groups first appeared in the theory of quantum integrable systems. V. Drinfeld and M. Jimbo
formulate them as deformation of the universal enveloping algebras of semisimple Lie algebras.

Definition 2.2.1. Recall that a coalgebra over C is a vector space A over C together with linear maps comul-
tiplication ∆ : A→ A⊗A, and counit ε : A→ C, satisfying:

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆,

(id⊗ ε) ◦∆ = id = (ε⊗ id) ◦∆.

A bialgebra is an algebra (A,m, ι) which is also a coalgebra (A,∆, ε), such that ∆ : A→ A⊗A and ε : A→ C
are homomorphisms of algebras.

A Hopf algebra is a bialgebra equipped with a linear invertible map γ : A → A, called the antipode,
satisfying:

m ◦ (id⊗ γ) ◦∆ = m ◦ (γ ⊗ id) ◦∆ = ι ◦ ε.

Example 2.2.2. The universal enveloping algebras of Lie algebras U(g) admit the structure of Hopf algebras:
m(x, y) = xy; ∆(1) = 1⊗ 1,∆(x) = x⊗ 1 + 1⊗ x for x ∈ g determine ∆ on U(g); ι(1) = 1; ε(1) = 1, ε(x) = 0
for x ∈ g determine ε; γ(1) = 1, γ(x) = −x for x ∈ g determine γ.

Definition 2.2.3. Let g be a Kac-Moody algebra, C = (aij) be its generalized Cartan matrix, and di = (αi,αi)
2 .

Suppose q ∈ C∗ is not a root of unity. The quantum universal enveloping algebra Uq(g) is generated by the
elements {ei, fi, qh|1 ≤ i ≤ r, h ∈ h} satisfying:

q0 = 1, qa+b = qaqb, a, b ∈ h,

qheiq
−h = qαi(h)ei,

qhfiq
−h = q−αi(h)fi,

eifj − fjei = δij
qdihi − q−dihi
qdi − q−di

,

1−aij∑
n=0

(−1)n

[n]i![1− aij − n]i!
eni eje

1−aij−n
i = 0,

1−aij∑
n=0

(−1)n

[n]i![1− aij − n]i!
fni fjf

1−aij−n
i = 0,

where hi such that αj(hi) = aij , [n]i = qndi−q−ndi
qdi−q−di , [n]i! =

∏n
p=1[p]i.

Remark 2.2.4. In this review, we are only interested in the case when g is finite-dimensional or of untwisted
affine type.

We will use the notion of quantum loop algebras which is the subalgebra of Uq(g) generated by {ei, fi, qhi |1 ≤
i ≤ r}. When the generalized Cartan matrix is of untwisted affine type, we use the notation Uq(ĝ) for the
quantum loop algebra, where now g denotes the related finite-dimensional simple Lie algebra.

Example 2.2.5. Uq(g) are Hopf algebras with operations, for example,

∆(qh) = qh ⊗ qh,∆(ei) = ei ⊗ qdihi + 1⊗ ei,∆(fi) = fi ⊗ 1 + q−dihi ⊗ fi,
ε(qh) = 1, ε(ei) = ε(fi) = 0,

γ(qh) = q−h, γ(ei) = −eiq−dihi , γ(fi) = −qdihifi.

It is known, due to V. Chari and A. Pressley, that finite-dimensional irreducible representations of Uq(ĝ) are
classified by highest l-weight representations. They are coded by all I-tuples of polynomials with constant term
1. We will state this theorem in section 4.2. The simplest example is called fundamental representations, where
the I-tuple of polynomials is (1, · · · , 1, 1−λz, 1, · · · , 1). In the case of Uq(ŝl2), the fundamental representations
can be obtained by evaluation maps from Uq(ŝl2) to Uq(sl2).
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Definition 2.2.6. For any λ ∈ C∗, we define the evaluation map evλ : Uq(ŝl2)→ Uq(sl2) by

evλ(e0) = λf, evλ(f0) = λ−1e,

evλ(e1) = e, evλ(f1) = f,

evλ(qh0) = q−h, evλ(qh1) = qh.

It is a homomorphism of algebras.

Definition 2.2.7. For any integer n ≥ 0 and any λ ∈ C∗, the evaluation representation Vn(λ) of Uq(ŝl2) is the
pull-back of the representation πn of Uq(sl2) by the evaluation map evλ. We will denote it by πn(λ) = πn ◦ evλ :

Uq(ŝl2)→ End(Vn(λ)). Here πn is the unique n dimensional highest weight representation of Uq(sl2).

Definition 2.2.8. A Hopf algebra A is called quasi-triangular, if there is an invertible element R ∈ A such
that

R∆(x) = T ◦∆(x)R

(∆⊗ id)(R) = R13R23

(id⊗∆)(R) = R13R12.

where T : A⊗A→ A⊗A, x⊗ y 7→ y⊗ x and R13 = φ13(R) with φ13 : A⊗A→ A⊗A⊗A, x⊗ y 7→ x⊗ 1⊗ y,
and R12,R23 are defined similarly. R is called a universal R-matrix.

Theorem 2.2.9. A universal R-matrix R satisfies the Yang-Baxter equation on A⊗A⊗A:

R12R13R23 = R23R13R12. (2.2.1)

Theorem 2.2.10. The quantum affine algebras Uq(ĝ) are quasi-triangular Hopf algebras.
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Chapter 3

Integrable models

3.1 Six vertex model
There exist in nature numerous crystals with hydrogen bonding. The most familiar example is the ice, where
the oxygen atoms form a lattice of coordination number four, and between each adjacent pair of atoms is an
hydrogen ion. Each ion is located near one or the other end of the bond in which it lies. By the local electric
neutrality, the ions should satisfy the ice rule: among the four ions surrounding each atom, there are exactly two
of them are close to it, and the other two away from it. Therefore, there are six different ways of arranging the
arrows. For this reason it is called a six-vertex model. Each of these six local arrangements will be associated
a distinct energy.

The six vertex model is exactly solvable, which means its partition function can be calculated explicitly. We
will introduce two methods to solve this model, namely the Bethe Ansatz and the TQ relations proposed by R.
Baxter.

3.1.1 Definitions
Six vertex model is a N×P planar lattice model with P rows and N columns, where N and P are even numbers.
An arrow is placed on each edge. The ice rule says among the four edges around each vertex of the lattice,
there are two arrows pointing in, and two arrows pointing out. We impose cyclic boundary conditions on every
rows and columns, which means the first arrow on each row or column has the direction as the last arrow on
that row or column. Such an allowed lattice with arrows is called a state of the six vertex model.

Then the canonical partition function is defined by

Z =
∑

s:states

e−βEs =
∑
states

∏
vertexes

Wα′β′

αβ .

The Boltzmann weights Wα′β′

αβ on each vertex, depending on the direction of the 4 arrows around it, is
defined by

W→→→→ (ν) = W←←←← (ν) = a(ν, η) = sin(η + iν),

W←→←→ (ν) = W→←→← (ν) = b(ν, η) = sin(η − iν),

W→←←→ (ν) = W←→→← (ν) = c(ν, η) = sin(2η).

(3.1.1)

Here the index α and α′ are the arrows under and above the vertex on the column, which are rotated clockwise
by π/2 for convenience, and the the index β and β′ are the arrows on the left and right of the vertex on the
row.

Remark 3.1.1. The fact that the Boltzmann weights in this model are trigonometric functions corresponds to
the fact that the underlying algebraic structure of this model is a quantum affine algebra. We also have other
solvable models, for example XXX models (resp. XYZ models), where the parameters are rational functions
(resp. elliptic functions). And these models will have underlying algebraic structure of Yangians (resp. elliptic
quantum groups), which are other ways of quantization of classical Lie algebras.

Definition 3.1.2. The transfer matrix is defined by

Tᾱ
′

ᾱ =
∑
{βi}

W
α′1β2

α1β1
W

α′2β3

α2β2
· · ·Wα′Nβ1

αNβN
,

where the sum is taken for all sequence {βi} complying the ice rule. Here ᾱ = (α1, · · · , αN ) and so on.
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Then the partition function can be written as

Z =
∑
states

∏
vertexes

Wα′β′

αβ =
∑
{ᾱi}

P∏
i=1

Tᾱi+1

ᾱi = Tr(TP ). (3.1.2)

Therefore, to solve the model, it is enough to compute the eigenvalues of T.
The monodromy matrix is defined by

T ᾱ
′

ᾱ (ν) ba =
∑
{βi}

W
α′1β2
α1a (ν)W

α′2β3

α2β2
(ν) · · ·Wα′Nb

αNβN
(ν), (3.1.3)

where we relax the restriction of cyclicity.
The elements of T ᾱ′ᾱ (ν) are

T ᾱ
′

ᾱ (ν) =

 T ᾱ′ᾱ (ν) →
→ T ᾱ′ᾱ (ν) ←

→

T ᾱ′ᾱ (ν) →
← T ᾱ′ᾱ (ν) ←

←

 =

 A(ν) B(ν)

C(ν) D(ν)

 .

Then Tᾱ′ᾱ (ν) = T ᾱ′ᾱ (ν) →
→ + T ᾱ′ᾱ (ν) ←

← = A(ν) +D(ν).

Definition 3.1.3. Define the R matrix by Rα
′β′

αβ (ν) = Wα′β′

αβ (ν − iη).

One can calculate the R matrix explicitly under the ordered base {→→,→←,←→,←←}.

R(ν) =


sin(2η + iν) 0 0 0

0 −sin(iν) sin(2η) 0

0 sin(2η) −sin(iν) 0

0 0 0 sin(2η + iν)

 (3.1.4)

Under Einstein’s summation convention, which an index appears in both superscripts and subscripts of a
term, it implies a summation of that index over the index set. Here the index set is {→,←}.

Theorem 3.1.4. R-matrices defined above satisfy the Yang-Baxter relation.

Rc
′c
aa′(ν − ν′)Rδbαc(ν + iη)Rα

′b′

δc′ (ν′ + iη) = Rδcαa(ν′ + iη)Rα
′c′

δa′ (ν + iη)Rb
′b
cc′(ν − ν′). (3.1.5)

Corollary 3.1.5. Use Yang-Baxter relation (3.1.5) for N times, we have

Rc
′c
aa′(ν − ν′)(T δ̄ᾱ ) b

c (ν)(T ᾱ′δ̄ ) b′

c′ (ν′) = (T δ̄ᾱ ) c
a (ν′)(T ᾱ′δ̄ ) c′

a′ (ν)Rb
′b
cc′(ν − ν′). (3.1.6)

Theorem 3.1.6. The transfer matrices for different spectral parameters commute:

[T(ν),T(ν′)] = 0 (3.1.7)

3.1.2 Algebraic Bethe Ansatz
By taking different values of {a, a′, b, b′} in (3.1.6), we will get relations among A(ν), B(ν), C(ν) and D(ν).

D(ν)B(ν′) = g(ν − ν′)B(ν′)D(ν)− h(ν − ν′)B(ν)D(ν′),

[B(ν), B(ν′)] = 0,

A(ν)B(ν′) = g(ν′ − ν)B(ν′)A(ν)− h(ν′ − ν)B(ν)A(ν′),

where g(ν) =
R←←←←
R→←→←

= − sin(2η+iν)
sin(iν) and h(ν) =

R→←←→
R→←→←

= − sin(2η)
sin(iν) .

Since [T(ν),T(ν′)] = 0, for any two ν, ν′. The T(ν) have common eigenvectors. Bethe Ansatz is a method
to find their common eigenvectors.

Recall that T is a 2N × 2N matrix, acts on the 2N dimensional space with basis consists of N left or right
arrows. Define the spin S of a base vector to be the total number of right arrows minus the total number of
left arrows. A vector is called of spin S if it lies in the subspace spanned by spin S bases. Then one can prove
easily that B maps a spin S vector to a spin S − 2, A and D maps a spin S to a spin S, and C maps a spin S
to a spin S + 2.
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Define |Ω〉 = | → · · · →〉 the unique vector of spin N . Bethe Ansatz says the eigenvectors of transfer
matrices are of the form |Ψ〉 = B(ν1)B(ν2) · · ·B(νn)|Ω〉. Compute with the help of commutative relations
among A(ν), B(ν), C(ν) and D(ν), we have

A(ν)|Ψ〉 = A(ν)B(ν1) · · ·B(νn)|Ω〉

= aN (ν, η)

n∏
j=1

g(νj − ν)|Ψ〉

+

n∑
k=1

{[−aN (νk, η)h(νk − ν)

n∏
j=1,j 6=k

g(νj − νk)]B(ν)

n∏
j=1,j 6=k

B(νj)|Ω〉}

and

D(ν)|Ψ〉 = D(ν)B(ν1) · · ·B(νn)|Ω〉

= bN (ν, η)

n∏
j=1

g(ν − νj)|Ψ〉

+

n∑
k=1

{[−bN (νk, η)h(ν − νk)

n∏
j=1,j 6=k

g(νk − νj)]B(ν)

n∏
j=1,j 6=k

B(νj)|Ω〉}.

Therefore |Ψ〉 is a eigenvector of T if and only if {ν1, ν2, · · · , νn} satisfies

[−aN (νk, η)h(νk − ν)

n∏
j=1,j 6=k

g(νj − νk)]

+ [−bN (νk, η)h(ν − νk)

n∏
j=1,j 6=k

g(νk − νj)] = 0, ∀k.

Or equivalently,

(−1)n
n∏
j=1

sinh(2iη − νk + νj)

sinh(2iη − νj + νk)
= −a

N (νk, η)

bN (νk, η)
, ∀k. (3.1.8)

And the corresponding eigenvalue of T is

t(ν) = aN (ν, η)

n∏
j=1

g(νj − ν) + bN (ν, η)

n∏
j=1

g(ν − νj). (3.1.9)

(3.1.8) is called the Bethe Ansatz equations.

3.1.3 TQ relations
We proved in (3.1.7) that the transfer matrices commute for different values of spectral parameters [T(ν),T(ν′)] =
0. Therefore T(ν) can be diagonalized simultaneously, with diagonal elements the associated eigenvalues
t0(ν), t1(ν), · · · . Pay attention to the expression of matrix T, we know that these functions are 2πi-periodic and
entire on the complex plane.

The essential property of these eigenvalues is that there exist 2πi-periodic entire functions qi(ν) such that

ti(ν)qi(ν) = aN (ν, η)qi(ν + 2iη) + bN (ν, η)qi(ν − 2iη). (3.1.10)

This relation recovers the Bethe ansatz equation as follows: Suppose the real zeros of q(ν) are ν1, · · · , νn,
then q(ν) =

∏n
l=1 sinh(ν − νl) up to a constant. By setting ν = νl in (3.1.10), we have q(νl−2iη)

q(νl+2iη) = −a
N (νl,η)
bN (νl,η)

,
which is exactly the Bethe ansatz equations with νl the roots. Therefore, the Bethe Ansatz equations may be
understood as pole cancellation equations. We will see this point of view again in the context of opers.

In fact, we can construct a matrix Q(ν) such that [Q(ν),T(µ)] = [Q(ν),Q(µ)] = 0 for any ν, µ and

T(ν)Q(ν) = aN (ν, η)Q(ν + 2iη) + bN (ν, η)Q(ν − 2iη).

Then we can diagonalize T and Q simultaneously, and the corresponding diagonal elements ti(ν), qi(ν) satisfy
(3.1.10).
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3.2 Gaudin models
Let g be a simple complex Lie algebra. Let Vλ be the finite-dimensional simple module over g of highest weight
λ. Denote {Ja}da=1 to be a basis of g, {Ja} the dual basis with respect to the renormalized Killing form, and

∆ =
1

2

d∑
a=1

JaJ
a

the Casimir element. In Gaudin’s model of spin chains, the Hamiltonians were constructed as operators acting
on Vλ1 ⊗ · · · ⊗ VλN formulated by

Ξi =
∑
j 6=i

d∑
a=1

J
(i)
a Ja(j)

zi − zj
. (3.2.1)

The problem in Gaudin models is to find eigenvectors and associated eigenvalues of Gaudin Hamiltonians.
When solving sl2 Gaudin models, Gaudin proposed the following procedure, known as Bethe Ansatz, to find

common eigenvectors of Gaudin Hamiltonians.
Let |0〉 be a tensor product of highest weight vectors in Vλ1 ⊗ · · · ⊗ VλN . Note that |0〉 is automatically an

eigenvector of Gaudin Hamiltonians. Let e, f, h be the standard basis of sl2. Gaudin made a hypothesis that
all eigenvectors can be obtained from |0〉 by applying the operator

F (w) := ϕw−z1,··· ,w−zN (f ⊗ t−1) =

N∑
i=1

f (i)

w − zi
.

Denote |w1, · · · , wm〉 = F (w1) · · ·F (wm)|0〉, then it is calculated that

S(u)|w1, · · · , wm〉 = sm(u)|w1, · · · , wm〉+

m∑
j=1

fj
u− wj

|w1, · · · , wj−1, u, wj+1, · · · , wm〉, (3.2.2)

where sm(u) ∈ C and

fj =

N∑
i=1

λi
wj − zi

−
∑
s6=j

2

wj − ws
.

Thus |w1, · · · , wm〉 is an eigenvector if and only if the Bethe ansatz equations

N∑
i=1

λi
wj − zi

−
∑
s6=j

2

wj − ws
= 0, j = 1, · · · ,m, (3.2.3)

are satisfied.
A natural question to ask is when the vector |w1, · · · , wm〉 associated to a solution of Bethe ansatz equations

is non-zero. From which we can deduce, under Gaudin’s hypothesis, a correspondence between eigenvectors of
Gaudin Hamiltonians and a subset of solutions to Bethe ansatz equations.

For general simple Lie algebra g, it was introduced by Babujian and Flume [BF94] vectors |wi11 , · · · , wimm 〉 =
Fi1(w1) · · ·Fim(wm)|0〉 analogous to |w1, · · · , wm〉 for sl2. Here ij ∈ I are indices of simple roots. If |wi11 , · · · , wimm 〉
is an eigenvector of Gaudin Hamiltonians, then the Bethe ansatz equations

N∑
i=1

(λi, αij )

wj − zi
−
∑
s 6=j

(αis , αij )

wj − ws
= 0, j = 1, · · · ,m (3.2.4)

are satisfied. Moreover, if |wi11 , · · · , wimm 〉 is an eigenvector, then it is of highest weight
∑N
i=1 λi −

∑m
i=1 αij .

9



Chapter 4

TQ relations

4.1 TQ relations as operators

The T-operator and Q-operator can be defined as operators in representations of Uq(ŝl2).

Definition 4.1.1. We define the monodromy operator Mm,n(λ, ν) = (πm(λ)⊗ πn(ν))(R). It is an element of
End(Vm)⊗ End(Vn).

Definition 4.1.2. Then define

Mm,n(λ; ν1, · · · , νN ) = M0,1
m,n(λ, ν1) · · ·M0,N

m,n(λ, νN )

an operator acting on Vm ⊗ V ⊗Nn , where M0,i
m,n(λ, νi) is the monodromy operator Mm,n(λ, νi) acts on Vm and

the ith component of V ⊗Nn .

Definition 4.1.3. Define the transfer operator

Tm,n(λ; ν1, · · · , νN ) = Trm(Mm,n(λ; ν1, · · · , νN )Fm(λ)),

where Fm(λ) ∈ Matm(C) is the matrix of πm(λ)(qφh1), φ ∈ C plays as a twist parameter. It is an element of
End(V ⊗Nn ). We will simply denote it by Tm,n(λ; ν̄).

Theorem 4.1.4.
Tm,n(λ; ν̄)Tm′,n(λ′; ν̄) = Tm′,n(λ′; ν̄)Tm,n(λ; ν̄) (4.1.1)

for all parameters λ, λ′ ∈ C and m,m′ ∈ N∗.

As indicated by [BLZ99], to define the Q-operator, we need to use the q-oscillator algebras.

Definition 4.1.5. The q-oscillator algebraAq is the associative algebra generated by four elements a+, a, qN , q−N

subject to the relations
aa+ − qa+a = q−N , aa+ − q−1a+a = qN ,

q−NqN = qNq−N = 1, qNa+ = qa+qN , qNa = q−1aqN .

We consider the representation T+ of Aq with basis {|m〉 : m ∈ N} defined by

T+(N)|m〉 = m|m〉,
T+(a+)|m〉 = |m+ 1〉,
T+(a)|m〉 = [m]|m− 1〉,

where | − 1〉 := 0.
Similarly, the representation T− with basis {| − 1−m〉 : m ∈ N} defined by

T−(N)| − 1−m〉 = (−1−m)| − 1−m〉,
T−(a)| − 1−m〉 = | −m− 2〉,
T−(a+)| − 1−m〉 = [m]| −m〉,

where |0〉 := 0.
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Definition 4.1.6. The Borel subalgebra Uq(b) of Uq(ŝl2) is the Hopf subalgebra generated by qh0 , qh1 , e0, e1.
And Uq(b−) is the Hopf subalgebra generated by qh0 , qh1 , f0, f1. We know that the R-matrix is an element in
Uq(b)⊗ Uq(b−).

We need a family of homomorphisms from Uq(b) to Aq.
For λ ∈ C∗, define ϕ(λ)(qh1) = q−2N , ϕ(λ)(qh0) = q2N , ϕ(λ)(e1) = aq−N

q−q−1 , ϕ(λ)(e0) = λa+. And also

ϕ̄(λ)(qh1) = q2N , ϕ̄(λ)(qh0) = q−2N , ϕ̄(λ)(e0) = λ aq−N

q−q−1 , ϕ̄(λ)(e1) = a+.
The resulting representations of the quantum Borel subalgebra turns out to be the prefundamental repre-

sentations of quantum Borel subalgebras [HJ12].

Definition 4.1.7. The L-operator is defined by

L(λ) = (1⊗ q
uh1
4 )(ϕ(λ)⊗ id)(R),

L̄(λ) = (1⊗ q−
uh1
4 )(ϕ̄(λ)⊗ id)(R).

Here qu = λ. They are elements in Aq ⊗ Uq(b−).
Then let Ln(λ, ν) = (1⊗ πn(ν))L(λ) and L̄n(λ, ν) = (1⊗ πn(ν))L̄(λ). They are elements of Aq ⊗End(Vn).
Generally L-operator are defined by

Ln(λ; ν1, · · · , νN ) = Ln(λ, ν1)0,1 · · ·Ln(λ, νN )0,N .

L̄n(λ; ν1, · · · , νN ) = L̄n(λ, ν1)0,1 · · · L̄n(λ, νN )0,N .

They are elements in Aq ⊗End(Vn)⊗N . Where Ln(λ, νi)
0,i(resp. L̄n(λ, νi)

0,i) is the L-operator Ln(λ, νi) (resp.
L̄n(λ, νi)) lying in Aq and the ith component of V ⊗Nn .

The Q-operator is defined by

Q+,n(λ; ν1, · · · , νN ) = tr+(Ln(λ; ν1, · · · , νN )(q−2φN ⊗ 1⊗ · · · ⊗ 1)),

and
Q−,n(λ; ν1, · · · , νN ) = tr−(L̄n(λ; ν1, · · · , νN )(q2φN ⊗ 1⊗ · · · ⊗ 1)).

Where the traces tr± are taken in representations T+
0 and T−−1 respectively. We will denote them by Q±,n(λ; ν̄).

Remark The Q-operator is an element in End(V ⊗N ), we can write them in matrix form under the same
basis as we chose for T as:

Q±,n(λ; ν1, · · · , νN ) = (Qi1,··· ,iN ;j1,··· ,jN (λ; ν1, · · · , νN )).

It is an (n+ 1)N by (n+ 1)N matrix with complex entries.

Theorem 4.1.8. The operators T,Q satisfy the commutation relations

Q±,n(λ; ν̄)Tm,n(λ′; ν̄) = Tm,n(λ′; ν̄)Q±,n(λ; ν̄),

Q±,n(λ; ν̄)Q±,n(λ′; ν̄) = Q±,n(λ′; ν̄)Q±,n(λ; ν̄),

Q±,n(λ; ν̄)Q∓,n(λ′; ν̄) = Q∓,n(λ′; ν̄)Q±,n(λ; ν̄), ∀λ, λ′ ∈ C, ν̄ ∈ CN ,

and the TQ relations

T1,n(λ; ν̄)Q±,n(λ; ν̄) = qNφQ±,n(q2λ; ν̄) + q−NφQ±,n(q−2λ; ν̄). (4.1.2)

4.2 TQ relations in the Grothendieck ring
To study the representations of quantum affine algebras, another set of generators described by Drinfeld is
useful.

Theorem 4.2.1. The algebra Uq(ĝ) is generated by x±i,n(i ∈ I, n ∈ Z), k±i (i ∈ I), hi,n(i ∈ I, n ∈ Z \ {0}) and
central elements c±1/2, with the Drinfeld’s relations.

We introduce the elements φ±i,n determined by the formal power series

∞∑
n=0

φ±i,±nu
±n = k±i exp(±(q − q−1)

∞∑
m=1

hi,±mu
±m).

A presentation of Uq(ĝ) is called of type 1 if the central elements c±1/2 acts as identity, and it can be
decomposed into direct sum of weight spaces of k±i when viewed as representations of Uq(g).
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Definition 4.2.2. Let V be a type 1 representation. A vector v ∈ V is called a highest l-weight vector if

x+
i,rv = 0, φ±i,rv = γ±i,rv,

for some complex numbers γ±i,r. A type 1 representation V is a highest l-weight representation if V = Uq(ĝ)v,
for some highest l-weight vector v. In that case, the set (γ±i,r)i∈I,r∈Z is called the highest l-weight of V .

An important theorem of Chari and Pressley [CP95] says

Theorem 4.2.3. Every finite-dimensional irreducible representation of Uq(ĝ) of type 1 is a highest l-weight
representation. Moreover, there exists a set of polynomials (Pi)i∈I such that the highest l-weight satisfies∑

m≥0

γ±i,±mu
±m = q

deg(Pi)
i

Pi(uq
−1
i )

Pi(uqi)
.

Conversely, for each set of polynomials (Pi)i∈I with constant terms 1, the corresponding representation is finite-
dimensional.

Example 4.2.4. When (Pi)i∈I = (1, · · · , 1, 1 − λu, 1, · · · , 1), we called the corresponding representations the
fundamental representations, denoted by Vi,λ.

The similar arguments also apply to the quantum Borel subalgebra Uq(b) [FH15]. The Borel subalgebra
Uq(b) contains Drinfeld generators x+

i,m, x
−
i,r, k

±
i , φ

+
i,r, where i ∈ I,m ≥ 0, r > 0.

Example 4.2.5. For the highest l-weight

(
∑
m≥0

γ+
i,mu

m)i∈I = (1, · · · , 1, (1− au)±1, 1, · · · , 1),

the corresponding highest l-weight representations of Uq(b) are called the prefundamental representations, de-
noted by L±i,a. They have infinite dimension.

For the highest l-weight
(
∑
m≥0

γ+
i,mu

m)i∈I = (1, · · · , 1, qi, 1, · · · , 1),

the corresponding highest l-weight representations of Uq(b) are 1-dimensional representations, denoted by L(ωi).

Remark 4.2.6. The evaluation representations of Uq(ŝl2) turn out to be the fundamental representations.
And the representations of the Borel subalgebra constructed from q-oscillator algebras turn out to be the
prefundamental representations. Therefore, we expect to write the TQ relations in terms of fundamental
representations and prefundamental representations.

Theorem 4.2.7. [FH15] In the case of Uq(ŝl2), in the Grothendieck ring of a certain category O of represen-
tations of Uq(b), we have

[V1,a][L+
1,aq] = [L+

1,aq−1 ][L(ω1)] + [L+
1,aq3 ][L(−ω1)]. (4.2.1)

The next question is to reconstruct the operator TQ relations from the above relation in the Grothendieck
ring.

Recall that the universal R-matrix of Uq(ĝ), R, lies in Uq(b)⊗̂Uq(b−). Let V be a representation of Uq(b)
from the category O, we can define the transfer matrix

tV (z, u) = (TrV,u ◦ πV (z) ⊗ Id)(R) ∈ Uq(b−)[[z, u±i ]].

Here TrV,u(g) =
∑
λ TrVλ(πV (g))(

∏
i∈I u

λi
i ), V (z) is the twisting of V by the action x±i,r = zrx±i,r, φ

+
i,r = zrφ+

i,r.

Proposition 4.2.8. If [W ] = [V ] + [V ′] in the Grothendieck ring of the category O, then tW (z, u) = tV (z, u) +
tV ′(z, u);

If [W ] = [V ⊗ V ′] in the Grothendieck ring of the category O, then tW (z, u) = tV (z, u)tV ′(z, u).

Then the operator TQ relations are nothing but the result of applying transfer matrices to the TQ relations
in the Grothendieck ring.

Remark 4.2.9. We define the q-character of a representation V of Uq(b) by

χq(V ) =
∑
γ

dim(Vγ)eγ .

Here γ are l-weights of V , Vγ = {v|∃p, (φ+
i,m−γi,m)pv = 0}. Then the q-characters can be calculated by applying

the quantum affine Harish-Chandra homomorphisms to the transfer matrices. We will see, in the classical case,
the relation between affine Harish-Chandra homomorphisms and Miura transformations in the next chapter.
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4.3 Schrodinger operators and CD relations
The TQ relations appear in the theory of second order ordinary differential equations [DDT07] when we study
structures of solutions of the following time-independent Schrodinger equation:

d2

dx2
Ψ(x) = [x2M +

l(l + 1)

x2
− E]Ψ(x), (4.3.1)

where M > 1 and l > − 1
2 are real numbers.

The following result is obtained by WKB approximation.

Theorem 4.3.1. For the case M ∈ N, we write x = ρeiθ with ρ real and −π < θ ≤ π. Then for θ /∈
{± (2k+1)π

2M+2 |k ∈ Z}, Ψ has the asymptotic approximation

Ψ±(x) ∼ P− 1
4 (x)exp(± 1

M + 1
eiθ(1+M)ρ1+M ), ρ = |x| → ∞. (4.3.2)

Where P (x) = x2M + l(l+1)
x2 − E.

Remark The rays θ = ± (2k+1)π
2M+2 for k ∈ Z are called "anti-Stokes lines", and a wedge-like region between

two neighboring anti-Stokes lines is called a Stokes sector, denoted by Sk = {x : |arg(x)− 2πk
2M+2 | <

π
2M+2}. We

remark that in a Stokes sector, one of Ψ±(x) is exponentially growing and the other exponentially decaying. The
exponentially growing solution is called dominant in that sector, and the decaying solution is called subdominant.

Then for each pair of Stokes sectors, we can state an eigenvalue problem: for which values of E, there exist
solutions of (4.3.1) subdominant in the two sectors? They are called lateral connection problems.

Another type of eigenvalue problems, called radical connection problems, can be stated as follows: we are
finding for solutions of (4.3.1) which decay exponentially in one of Stokes sectors, and we require Ψ(x) ∼
axl+1 + bx−l as x→ 0 in this sector, a, b ∈ C.

The problem gets complicated when M takes real values, since x2M is not globally defined. We can solve
the problem in C \ {arg(x) = π}. Then Sk is defined for k such that |k| < 2M+1

2 and the asymptotic relation
(4.3.2) still holds.

For solutions of (4.3.1), we have the following theorem.

Theorem 4.3.2. There is a unique solution y(x,E, l) of (4.3.1) such that

y(x,E, l) ∼ x−M/2

√
2i

exp(− x
M+1

M + 1
), (4.3.3)

y′(x,E, l) ∼ −x
M/2

√
2i
exp(− x

M+1

M + 1
), (4.3.4)

as |x| → ∞ with |argx| < 3π
2M+2 . It is called the basic solution.

With the help of the basic solution, we can define a set of functions

yk(x,E, l) = ωk/2y(ω−kx,w2kE, l), (4.3.5)

where ω = e
2πi

2M+2 , k ∈ Z.

Theorem 4.3.3. For all k ∈ Z,
1) yk solves (4.3.1).
2) yk is subdominant in Sk, and dominant in Sk−1 and Sk+1.
3) yk and yk+1 are linearly independent and form a basis of solutions of (4.3.1).

Express y−1 under the basis {y0, y1} as y−1 = C(E, l)y0 + C̃(E, l)y1. Recall that the Wronskian of two
functions f and g is defined to be W [f, g] = fg′ − f ′g. For two solutions of a second order ODE whose first
order term vanishes, their Wronskian W [f, g] is a constant, and W [f, g] vanishes if and only if f and g are
proportional.

If we write Wk1,k2(E, l) = W [yk1(x,E, l), yk2(x,E, l)], then it satisfies

Lemma 4.3.4.
Wk1,k2(E, l) = Wk1+1,k2+1(ω−2E, l) , W0,1(E, l) = 1.
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Taking Wronskian with y1 and y0 on both sides of y−1 = C(E, l)y0 + C̃(E, l)y1 shows that C(E, l) =
W−1,1(E,l)
W0,1(E,l) = W−1,1(E, l), C̃(E, l) = −W−1,0(E,l)

W0,1(E,l) = −1. Thus

C(E, l)y0(x,E, l) = y−1(x,E, l) + y1(x,E, l).

We will simply admit that, for the radical problem, there is a solution ψ(x,E, l) such that ψ(x,E, l) ∼ xl+1

as x → 0. Since the equation is invariant when replacing l by −1 − l, ψ(x,E,−1 − l) is also a solution of the
equation. If we denote ψ+(x,E) = ψ(x,E, l) and ψ−(x,E) = ψ(x,E,−1− l), then ψ−(x,E) ∼ x−l as x→ 0.

Analogously, define
ψk(x,E, l) = ωk/2ψ(ω−kx, ω2kE, l) , k ∈ Z. (4.3.6)

Then ψk also solves (4.3.1) and the behavior at x→ 0 shows that

ψk(x,E, l) = ω−(l+1/2)kψ(x,E, l).

In addition,
W [yk, ψk](E, l) = W [y, ψ](ω2kE, l).

Thus we conclude
W [yk, ψ](E, l) = ω(l+1/2)kW [y, ψ](E, l).

Taking Wronskian with ψ(x,E, l) on both sides of y−1 = C(E, l)y0 + C̃(E, l)y1,

C(E, l)W [y0, ψ](E, l) = W [y−1, ψ](E, l) +W [y1, ψ](E, l),

if we denote D(E, l) = W [y, ψ](E, l), then

C(E, l)D(E, l) = ω−(l+1/2)D(ω−2E, l) + ω(l+1/2)D(ω2E, l), (4.3.7)

Theorem 4.3.5. Define D∓(E) = W [y, ψ±](E, l). Then by taking l to be l and −l − 1 in (4.3.7), it becomes

C(E, l)D∓(E) = ω∓(l+1/2)D∓(ω−2E, l) + ω±(l+1/2)D∓(ω2E, l). (4.3.8)

This is the CD relation. It has the same form as the TQ relation we have seen before.
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Chapter 5

Bethe Ansatz and opers

We have seen that the Bethe Ansatz is a possible method to solve Gaudin models. In this chapter, we review
another approach to Bethe Ansatz equations, the singularities cancellation of opers. Therefore a correspondence
between the spectrum of Gaudin Hamiltonians and the space of opers is supposed. The opers concerning in
Gaudin models are the opers associated to finite-dimensional simple Lie algebras. Recall in the six vertex model,
we also have Bethe Ansatz. We note that the opers associated to affine Lie algebras are related to quantum
KdV systems and, in particular, the six vertex model.

5.1 Gaudin algebras
Gaudin algebras are larger commutative sub-algebras in U(g)⊗N containing the Gaudin Hamiltonians Ξi. Fur-
thermore, we give a system of generators of Gaudin algebras including the Gaudin Hamiltonians. For general g,
the Gaudin algebras are generated by Gaudin Hamiltonians together with so-called higher Gaudin Hamiltonians.
Roughly speaking, Gaudin algebra is constructed as follows. Consider the space

(U(ĝ)/U(ĝ)(g[[t]] + C(K + h∨)))g[[t]].

Each element in this space has a unique representative in U(t−1g[t−1]). The resulting subalgebra in U(t−1g[t−1])
is called the universal Gaudin algebra, denoted by z(ĝ).

Theorem 5.1.1. z(ĝ) is a commutative subalgebra of U(t−1g[t−1]). And it is stable under ∂t.

Definition 5.1.2. Denote by J the left ideal of U(t−1g[t−1]) generated by U(t−1n−[t−1]). Note that we have
a direct sum

U(t−1g[t−1])h = U(t−1h[t−1])⊕
(
U(t−1g[t−1])h ∩ J

)
.

The affine Harish-Chandra homomorphism ῑHC can be obtained as the restriction of the projection

U(t−1g[t−1])h → U(t−1h[t−1])

on z(ĝ).

Example 5.1.3. When g = sl2, (Fun g)g = C[P ], with P = ef + 1
4h

2. The affine analogue (Fun g[[t]])g[[t]] is
the polynomial algebra on coefficients of

P (z) = e(z)f(z) +
1

4
h(z)2 = (e⊗ t−1)(f ⊗ t−1) +

1

4
(h⊗ t−1)2 + z(· · · ).

Denote by P0 = (e⊗ t−1)(f ⊗ t−1) + 1
4 (h⊗ t−1)2, then z(ŝl2) = C[TnS]n≥0 with

S =
1

2
[(e⊗ t−1)(f ⊗ t−1) + (f ⊗ t−1)(e⊗ t−1) +

1

2
(h⊗ t−1)2]v0

the Segal-Sugawara vector.
ῑHC : z(ŝl2) → U(t−1h[t−1]) maps the corresponding field S(z) = 1

2 : e(z)f(z) + f(z)e(z) + 1
2h(z)2 : to the

generating series 1
4b(z)

2 − 1
2∂zb(z). Here b(z) =

∑
k≥0(h⊗ t−k−1)zk.

To define a subalgebra of U(g)⊗N , we apply the morphism of algebras

ϕw−z1,··· ,w−zN : U(t−1g[t−1])→ U(g)⊗N
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which is defined on generators

A⊗ t−n 7→ A(1)

(w − z1)n
+ · · ·+ A(N)

(w − zN )n

and extended to U(t−1g[t−1]). Here A(i) denotes the element 1⊗ · · · ⊗A⊗ · · · ⊗ 1 ∈ U(g)⊗N with A appearing
on the i-th component.

Definition 5.1.4. A(z1, · · · , zN ) := ϕw−z1,··· ,w−zN (z(ĝ)) is a commutative subalgebra of U(g)⊗N , called the
Gaudin algebra. It is independent of the choice of w ∈ C \ {z1, · · · , zN}.

Theorem 5.1.5. [FFR94] A(z1, · · · , zN ) contains the Gaudin Hamiltonians Ξi. In fact,

ϕw−z1,··· ,w−zN (S) =

N∑
i=1

∆(i)

(w − zi)2
+

N∑
i=1

Ξi
w − zi

,

where S is the Segal-Sugawara vector.

Example 5.1.6. When g = sl2, by the above discussion, the Gaudin algebra A(z1, · · · , zN ) is generated by
Gaudin Hamiltonians Ξi and the central elements ∆(i). The only relation among these generators is

∑N
i=1 Ξi = 0.

5.2 Opers
In this chapter we will review the definition of opers. And we explain its relation with Gaudin algebras. The
notion of opers was defined by Beilinson, Drinfeld and Sokolov. For simplicity, we will follow the notation of
Frenkel.

Let G be the simple Lie group of adjoint type associated to the simple Lie algebra g. For example, when
g = sln, G = PGL(n).

Definition 5.2.1. A G-oper on a smooth curve X is the following data

• a principal G-bundle F on X

• a connection ∇ on F

• a B-reduction FB of F , i.e. a principal B-bundle FB together with an isomorphism of G-bundles

G×B FB → F .

such that under local trivialization of FB and induced local trivialization of F ,

∇ = ∂t +

l∑
i=1

ψi(t)fi + v(t),

where ψi(t) are nowhere vanishing functions and v(t) is a b-valued function.

Example 5.2.2. Let X = D = SpecC[[t]] be the formal disc with coordinate t. Then under a trivialization
of FB on D, an oper is an operator ∇ = ∂t +

∑l
i=1 ψi(t)fi + v(t). For different choices of trivialization, the

operators differ by a gauge transformation by B[[t]]:

g.(∂t +A(t)) = ∂t + gA(t)g−1 − g−1∂tg. (5.2.1)

So the space of G-opers on the unit disc is the space

OpG(D) = {∂t +

l∑
i=1

ψi(t)fi + v(t)}/B[[t]] ' {∂t + p−1 + v(t)}/N [[t]], (5.2.2)

where p−1 =
∑l
i=1 fi. The later is obtained by renormalizing ψi by applying H[[t]] actions.

If we choose a different coordinate t = ϕ(s), then the operator becomes ∂s+ϕ′(s)p−1 +ϕ′(s)v(ϕ(s)). Denote
by ρ̆ : C× → H the sum of fundamental coweights of G. We also use the symbol ρ̆ for its corresponding element
in h by a little abuse of language. The gauge transformation by ρ̆(ϕ′(s)) makes this operator to the form

∂s + p−1 + ϕ′(s)ρ̆(ϕ′(s))v(ϕ(s))ρ̆(ϕ′(s))−1 − ρ̆ϕ
′′(s)

ϕ′(s)
. (5.2.3)

This formula exhibits the action of DerC[[t]] = C[[t]]∂t on OpG(D).
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E. Frenkel found the following non-trivial theorem.

Theorem 5.2.3. [Fre02, Theorem 11.2.] We have canonical isomorphisms of algebras

z(ĝ) ' Fun OpLG(D).

Here LG is the adjoint type Lie group associated to the Lie algebra Lg. Lg is the Kac-Moody algebra whose
Cartan matrix is the transpose of the Cartan matrix of g.

Example 5.2.4. When g = sl2, p−1 = f , 2ρ̆ = h, p1 = e. A PGL2-oper is the spaces of operators of the form

∂t +

0 v(t)

1 0

 , v(t) ∈ C[[t]].

Therefore, Fun OpPGL2
(D) = C[vn]n≥0 if we write v(t) =

∑
n≥0 vnt

n. Under a change a coordinate t = ϕ(s),
the oper becomes

∂s +

 0 ϕ′(s)v(ϕ(s))

ϕ′(s) 0

 .

We make it into the form ∂s + p−1 + ṽ(s), ṽ(s) ∈ b[[t]] by gauge transformation by g =

ϕ′(s)1/2 0

0 ϕ′(s)−1/2

,

and the resulting oper is

∂s +

− 1
2
ϕ′′(s)
ϕ′(s) ϕ′(s)2v(ϕ(s))

1 1
2
ϕ′′(s)
ϕ′(s)

 .

It can be further made into the canonical form by the gauge transformation by

1 1
2
ϕ′′(s)
ϕ′(s)

0 1

.

5.3 Miura transformation
Definition 5.3.1. A G-oper on D = SpecC[[t]] with regular singularity at 0 is by definition an element in

{∂t +
1

t
(p−1 + v(t))}/N [[t]], v(t) ∈ b[[t]].

Denote by OpRSG (D) the space of G-opers on D with regular singularity. In particular, it is a subspace of
OpG(D×).

The residue of an oper in OpRSG (D) is defined to be the projection of p−1 +v(0) onto g/G := Spec Fun(g)G.
Note that under the gauge transformation by g(t) ∈ N [[t]], p−1 + v(0) is conjugated by g(0). So the residue
in g/G is well-defined. We identify Fun(g)G ' Fun(h)W and denote $ : h → h/W the projection. For λ̆ ∈ h,
define OpRSG (D)λ̆ to be the space of G-opers with regular singularities with residue $(−λ̆− ρ̆).

Generally, we define an G-oper on P1 with multiple regular singularities at z1, · · · , zn to be an oper on
P1 \ {z1, · · · , zn} whose restriction to neighborhood of each zi is an oper with regular singularity. Denote by
OpRSG (P1)z1,··· ,zn the space of G-opers on P1 with regular singularities. When {z1, · · · , zn} = {z1. · · · , zN ,∞},
we simplify the notation by OpRSG (P1)(z). We also denote by OpRSG (P1)(z),(λ̆) to be the space of G-oper on P1

with regular singularities at z1, · · · , zN ,∞ with residues $(−λ̆1 − ρ̆), · · · , $(−λ̆N − ρ̆), $(−λ̆∞ − ρ̆).
Define the H-bundle Ωρ̆ on X determined by the following property: for any character λ : H → C×, the line

bundle Ωρ̆×HCλ = Ω〈λ,ρ̆〉, i.e. it is the H-bundle so that in local coordinate, its sections are s(t) =
∑l
i=1 ω̆isi(t)

with si(t) transforming like a one-form.

Definition 5.3.2. Denote by Conn(Ωρ̆, X), or by Conn(X) for short, the space of connections on Ωρ̆ over X.
In particular, when X is the formal disc D = SpecC[[t]] with coordinate t, a connection in Conn(D) is presented
by a connection form ∂t +u(t), where u(t) ∈ h[[t]]. We also define the space Conn(D)RS of Cartan connections
on D with regular singularity to be the connections whose operator has the form ∇̄ = ∂t + λ̆

t + u(t). λ̆ ∈ h is
called the residue of the connection.

For each connection ∇̄ ∈ Conn(X), we associate to it an oper as follows: Choose a splitting of B → H and
set F = Ωρ̆ ×H G, FB = Ωρ̆ ×H B and locally ∇ = ∇̄+ p−1. We note that under the gauge transformation on
∇ by B[[t]], this map is independent of the choice of the splitting.
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Definition 5.3.3. The Miura transformation Conn(D) → OpG(D) maps a connection to the associated oper
as above. Similarly, we have Conn(D)RS → OpRSG (D).

Remark 5.3.4. Notice that under a change of coordinate t = ϕ(s), the Cartan connection ∂t + u(t) becomes

∂s + ϕ′(s)u(ϕ(s))− ρ̆ϕ
′′

ϕ′
.

Because u(t) ∈ h, this formula is the same as the coordinate change of opers in (5.2.3). So, the Miura transfor-
mation is well-defined.

It immediately follows that the Miura transformation maps a connection with residue λ̆ ∈ h to an oper with
residue $(λ̆− ρ̆) ∈ h/W .

Example 5.3.5. When g = sl2, connections in Conn(D) have the form

∂t +

 1
2u(t) 0

0 − 1
2u(t)

 , u(t) ∈ C[[t]].

The Miura transformation maps this connection to an oper in Opsl2(D) which is the gauge conjugation class of

∂t +

 1
2u(t) 0

1 − 1
2u(t)

 .

This oper can be presented by the operator

∂t +

0 1
4u(t)2 + 1

2∂tu(t)

1 0

 .

We will also use connections on the bundle Ω−ρ̆. Note that Conn(Ωρ̆, D) ' Conn(Ω−ρ̆, D) maps ∂t + u(t)
to ∂t − u(t).

Remark 5.3.6. Remark that the Miura transformation is the spectrum of the affine Harish-Chandra homomor-
phism in the following sense: Conn(Ω−ρ̆, D) = {∂t + u(t)}, write

∑
n<0 ui,nz

−n−1 = ui(z) = 〈u(z), hi〉. Thus
Fun Conn(Ω−ρ̆, D) = C[ui,n] is identified with U(t−1h[t−1]), mapping ui,n to the generator bi,n. Taking spectrum
of the affine Harish-Chandra homomorphism z(ĝ) → U(t−1h[t−1]) gives the homomorphism Conn(Ω−ρ̆, D) →
Spec z(ĝ) ' OpLG(D). This is the Miura transformation under the identification Conn(Ωρ̆, D) ' Conn(Ω−ρ̆, D).

We consider the Langlands dual Lie algebra Lg and the adjoint type Lie group LG associated to Lg. Fix
λi ∈ Lh ' h∗ weights and αij ∈ Lh ' h∗ simple roots. Consider connections on P1 on Ω−ρ with regular
singularities whose restriction to P1 \∞ has the form

∇̄ = ∂t + χ(t) = ∂t +

N∑
i=1

λi
t− zi

−
m∑
j=1

αij
t− wj

(5.3.1)

Under the change of coordinate z = 1
t , we have

∇̄ = ∂z − z−2χ(z−1)− 2ρz−1.

Thus χ(t) has an expansion at infinity

χ∞(t) = (−
∑

λi +
∑

αij − 2ρ)t−1 + regular terms.

Denote λ∞ = −
∑
λi +

∑
αij − 2ρ.

Definition 5.3.7. Define Conn(P1)gen(z);(λ) to be the space of connections of the form (5.3.1) whose Miura
transformation lies in the space OpRSLG(P1)(z);(λ).

This means that the possible singularities wj , j = 1, · · · ,m, of its Miura transformation are regular points.

Theorem 5.3.8. [Fre04, Proposition 4.10.] There is a bijection between the set of solutions of the Bethe ansatz
equations (3.2.4) and the set Conn(P1)gen(z);(λ).

Gaudin algebras can be described by opers according to the following important theorem.

Theorem 5.3.9. [Fre04, Theorem 2.7.] The algebra A(z1, · · · , zN ) is isomorphic to the algebra Fun OpRSLG(P1)(z).
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