
INTRODUCTION TO THE RESEARCH AREA

Ricci-flat Kähler Metrics on Non-compact Spaces

1. Kähler manifold and Ricci curvature tensor

Kähler manifold and its Ricci curvature are central concepts of this memoire.

Definition 1.1. Let M be a smooth manifold. A Kähler structure on M is a triple
(g, I, ω), where g is an I-invariant Riemannian metric (i.e. g(Iu, Iv) = g(u, v)), I
is an integrable almost complex structure and ω is a symplectic form (i.e. a closed
non-degenerate 2-form), satisfying

g(u, v) = ω(u, Iv),(1.1)

here u, v are tangent vectors of M . A smooth manifold with such a structure is
called a Kähler manifold. The metric g of such a manifold is called the Kähler
metric, and the form ω is called the Kähler form.

So a Kähler manifold is at the same time a Riemannian, complex and symplectic
manifold. Denote its complex dimension by n. A classical example of Kähler man-
ifold is the complex projective space CPn together with the Fubini-Study metric.
From the definition it is clear that any complex submanifold of a Kähler manifold
inherits a Kähler structure. In particular any smooth projective variety over C is
a Kähler manifold.

In local holomorphic coordinates (zj), we may write ω = i
∑n
j,k=1 ωjk̄dzj ∧ dz̄k.

Recall that the Riemannian curvature tensor is defined by R(u, v)w = ∇u∇vw −
∇v∇uw − ∇[u,v]w. Define R(u, v, w, x) = g(R(u, v)x,w), and under local coordi-

nates write Rīkl̄ = R( ∂
∂zi
, ∂
∂z̄j

, ∂
∂zk

, ∂
∂z̄l

). Direct calculations show that (see [Tia00,

Chapter 1.2])

Rīkl̄ = − ∂2ωī
∂zk∂z̄l

+ ωst̄
∂ωs̄
∂zk

∂ωit̄
∂z̄l

,(1.2)

where (ωst̄) = ((ωjk̄)t)−1.

The Ricci curvature tensor is defined by Rickl̄ = Rkl̄ = ωīRīkl̄, and it follows
that

Rickl̄ = − ∂2

∂zk∂z̄l
log det(ωī).(1.3)

We then define Ric(ω) = i
2π

∑
j,k Ricjk̄ dzj ∧ dz̄k = − i

2π∂∂̄ log det(ωī). It can be

shown that the cohomology class of Ric(ω) is c1(M), the first Chern class of M .

Definition 1.2. A Kähler metric ω is called a Kähler-Einstein metric, if there
exists λ ∈ R such that Ric(ω) = λω. If λ = 0, then we say that the Kähler metric
ω is Ricci-flat.
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A central problem in Kähler geometry is to look for special metrics, such as
Kähler-Einstein metrics, constant scalar curvature metrics or extremal metrics (see
for example [Szfrm[o]–4]). In this article we are concerned with Ricci-flat metrics,
which is a special case of Kähler-Einstein metrics.

2. Ricci-flat metrics on compact Kähler manifold

A result closely related to the existence of Ricci-flat metrics is the Calabi con-
jecture, which was conjectured by E.Calabi and confirmed by S.T.Yau ( [Yau78]).

Theorem 2.1 (Calabi conjecture). If (M,ω) is a compact Kähler manifold, and R
is any (1, 1)−form representing c1(M), then there exists a unique Kähler metric ω̃
such that ω and ω̃ represents the same cohomology class in H2(M,R) and Ric(ω̃) =
R.

In fact, the searching of ω̃ is equivalent to solving a non-linear partial differential
equation, known as the complex Monge-Ampère equation. In his original proof, Yau
showed the existence of a solution by continuity method and the uniqueness of the
solution by maximum principle.

Since Ric(ω) represents c1(M), a necessary condition for Ric(ω) = 0 is that
c1(M) = 0. If a M is a compact Kähler manifold with c1(M) = 0, then it is
called a Calabi-Yau manifold. As an easy consequence of the Calabi conjecture, if
M a Calabi-Yau manifold, then there is a unique Ricci-flat Kähler metric in each
cohomology class of Kähler metric. Such metrics are also called Calabi-Yau metrics.
However, the proof does not tells us how to write down a Calabi-Yau metric. In
fact, little is known about general Calabi-Yau metrics.

3. Kähler-Einstein metrics on compact Kähler manifold

We digress a little bit in this section to consider the Kähler-Einstein equation
Ric(ω) = λω on compact manifolds. Note that by (1.3), one can rescale the metric
by a positive constant, then there are only three cases to treat: λ = 1, λ = 0 and
λ = −1. We have already discussed the case λ = 0 in the previous section.

When λ = −1, then a necessary condition is c1(M) < 0. Conversely, Aubin
[Aub78] and Yau [Yau78] showed that if c1(M) < 0, then there exists a unique
Kähler-Einstein metric solving Ric(ω) = −ω.

Similarly, when λ = 1, then necessarily c1(M) > 0, a compact Kähler manifold
M with c1(M) > 0 is called a Fano manifold. However there are obstructions to the
existence of Kähler-Einstein metric on Fano manifold, the Futaki invariant [Fut83]
being an example. It was suggested by Yau [Yau93] in the 1980’s that the existence
of Kähler-Einstein metric on Fano manifold should be equivalent to some notion
of stability. There were many notions of stability proposed and the K-stability
is the one that turned out to be right. While the formulation of K-stability by
Tian is analytic, Donaldson [Don02] introduced an algebraic version of K-stability.
Later it was shown by Li and Xu that the two notions are equivalent for Fano
manifolds. A breakthrough is the following result proved by Chen, Donaldson and
Sun [CDS15a], [CDS15b], [CDS15c]:

Theorem 3.1. A Fano manifold M admits a Kähler-Einstein metric if and only
if (M,K−1

M ) is K-stable.

More generally, we have the following Yau-Tian-Donaldson conjecture which is
still open:
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Conjecture 3.2. Let L be a positive holomorphic line bundle over M . Then there
is a Kähler metric with constant scalar curvature in the class c1(L) if and only if
(M,L) is K-stable.

Note that Theorem 3.1 is a special case of the YTD conjecture when we take
L = K−1

M . For more discussion on the YTD conjecture, we refer to [Don18].
The subjects of Calabi-Yau manifold, Fano manifold and the Yau-Tian-Donaldson

conjecture are huge. However, in this memoire, we will pay more attention to non-
compact spaces.

4. The flat metric on C2

As a first example of non-compact Ricci-flat Kähler metric, we have the flat met-
ric on C2. Explicitly, let u0, u1, u2, u3 be the coordinates of R4, then the standard
Euclidean metric is defined to be

g = du2
0 + du2

1 + du2
2 + du2

3.

Then we give a complex structure on R4 by identifying it with C2:

z1 = u0 + iu1, z2 = u2 + iu3.

Equivalently, the almost complex structure I is defined by Ie0 = e1, Ie2 = e3, where
the vector ei = ∂

∂ui
is the gradient of ui with respect to g. Finally we define the

Kähler form by

ω =
i

2
dz1 ∧ dz̄1 +

i

2
dz2 ∧ dz̄2.

One checks easily that dω = 0 and the relation (1.1) holds. So the triple (g, I, ω) is a
Kähler structure on C2. Using formulas (1.2) and (1.3), we see that the Riemannian
curvature and Ricci curvature of g is zero. In the sequel, we will refer it to be the
flat Kähler metric on C2, or simply the flat metric on C2. In the following, we will
use it as an example to illustrate many ideas around constructing Ricci-flat Kähler
metric.

5. Kähler cone metric and Sasakian geometry

A feature of the flat metric on C2 is that it is a Riemannian metric cone in the
following sense:

Let ρ =
√
u2

0 + u2
1 + u2

2 + u2
3 =

√
|z1|2 + |z2|2 to be the distance to the origin.

Then the level set ρ = 1, equipped with the induced Riemannian metric, is the unit
sphere (S3, gS3). The map S3 × R+ → C2 \ {0} given by (x, ρ) 7→ ρx is clearly a
diffeomorphism. Under this diffeomorphism, the flat metric on C2 can be expressed
as g = ρ2gS3 + dρ2.

Definition 5.1. A compact Riemannian manifold (S, gS) is Sasakian if and only
if its metric cone (C(S) = S × R+, gC(S) = ρ2gS + dρ2) is a Kähler manifold. S

is called the link of the cone. The vector field ρ ∂
∂ρ is called the Euler field, and

ξ = I(ρ ∂
∂ρ ) is called the Reeb field. The restriction ξ|S of the Reeb field to the link

is tangent to the link S, and we also call this restriction the Reeb field.

According to the above definition, we have already shown that the flat metric on
C2 is the Riemannian metric cone of (S3, gS3). Since the flat metric on C2 is Kähler,
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(S3, gS3) is Sasakian. Direct computation gives the Euler field and the Reeb field:

ρ
∂

∂ρ
= u0

∂

∂u0
+ u1

∂

∂u1
+ u2

∂

∂u2
+ u3

∂

∂u3
(5.1)

=
1

2
(z1dz̄1 + z̄1dz1) +

1

2
(z2dz̄2 + z̄2dz2);(5.2)

ξ = u0
∂

∂u1
− u1

∂

∂u1
+ u2

∂

∂u3
− u3

∂

∂u2
(5.3)

=
i

2
(−z1dz̄1 + z̄1dz1) +

i

2
(−z2dz̄2 + z̄2dz2).(5.4)

ξ is the generator of the S1-action on C2 and S3 defined by eit.(z1, z2) = (eitz1, e
itz2).

This S1-action is free on S3 and the quotient space (orbit space) is CP1. (In fact,
the quotient map S3 → CP1 is called the Hopf fibration.) In this way, we think of
C2 \ {0} as the Riemannian metric cone of the total space of a S1-principal bundle
over CP1. In fact, the associated line bundle of this S1-principal bundle is the tau-
tological line bundle O(−1). So we can identify C2 \ {0} with the complement of
the zero section in the total space of O(−1).

Note that (S3, gS3) is an Einstein manifold, (i.e. Ric(gS3) = λgS3 for some λ).
And the Fubini-Study metric is a Kähler-Einstein metric on CP1. The situation
described above is an example of the following proposition [MSY08, Proposition
1.9]:

Proposition 5.2. Let (S, gS) be a Sasakian manifold, then the followings are e-
quivalent:

(1) The Sasakian manifold (S, gS) is Einstein;
(2) The Kähler cone (C(S), gC(S)) is Ricci-flat;

Moreover, if the Reeb field generates a free S1-action on S, the the above two
conditions are equivalent to

(3) The quotient space S/S1 is Fano and Kähler-Einstein.

In fact, given a Kähler-Einstein Fano manifold, there is an explicit procedure to
reconstruct S and C(S), known as the Calabi ansatz. (See [MSY08, Theorem 2.1]
and [Cal79].)

According to the theorem, finding Ricci-flat Kähler cone metric is equivalent to
finding Sasakian-Einstein metric. And when the Reeb field generates a free S1-
action on S (such a Sasakian manifold is called a regular one) this is equivalent to
finding Kähler-Einstein metrics on Fano manifolds, which is discussed in Section 3.

We refer to [BG08] for a detailed discussion of Sasakian geometry and especially
of constructing Sasakian-Einstein metric.

6. Hyperkähler metric and hyperkähler structure

The flat metric on C2 is in fact a hyperkähler metric. We shall explain it in this
section.

We denote H the (skew) field of quaternions. One can identify H with R4 by
writing each quaternion u in the form u = u0 +u1i+u2j+u3k, (u0, u1, u2, u3) ∈ R4.
So we regard H as a smooth manifold diffeomorphic to R4. The multiplication in
H is determined by i2 = j2 = k2 = −1, ijk = −1. In particular, left multiplication
by i, j, k in H defines three integrable almost complex structures on R4, denoted
by I1, I2, I3. One checks easily that I1 is the same as the almost complex structure
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I defined in Section 4. Explicitly, we have I1e0 = e1, I1e2 = e3, I2e0 = e2, I2e3 =
e1, I3e0 = e3, I3e1 = e2, and I1I2I3 = −1.

Recall the flat metric g on C2 is defined by g = du2
0 + du2

1 + du2
2 + du2

3. Then the
corresponding Kähler forms, ωj = g(Ij ·, ·) are:

ω1 = du0 ∧ du1 + du2 ∧ du3, ω2 = du0 ∧ du2 + du3 ∧ du1, ω3 = du0 ∧ du3 + du1 ∧ du2.
(6.1)

It is clear that ωj is closed, j = 1, 2, 3. Hence we have three Kähler structures
(g, I1, ω1), (g, I2, ω2), (g, I3, ω3).

Definition 6.1. Let M be a 4n−manifold. A hyperkähler structure on M is a
set of data (g, I1, I2, I3, ω1, ω2, ω3) where each (g, Ij , ωj) is a Kähler structure and
I1I2I3 = −1. In this case, we call M a hyperkähler manifold, g a hyperkähler
metric. We refer to the Kähler forms ω1, ω2, ω3 of I1, I2, I3 as the hyperkähler
2-forms of M .

Thus, we have shown that C2 = H is a hyperkähler manifold and the standard
Euclidean metric g is a hyperkähler metric. Similarly Hn is also hyperkähler. We
shall see more examples of non-compact hyperkähler manifold later. As for exam-
ples of compact hyperkähler manifold, we have K3 surfaces in dimension 4, and the
Hilbert schemes of points on K3 surfaces in higher dimension [N+99].

From the point of view concerning the Ricci curvature, we are interested in
hyperkähler manifold mainly because of the following proposition [Joy00]:

Proposition 6.2. All hyperkähler metrics are Ricci-flat.

It should be noted that the converse is far from being true. However, if M is
four dimensional and simply connected, then any Ricci-flat metric is hyperkähler
(see [Joy00] for an explanation by Riemannian holonomy).

By Proposition 6.2, one can construct Ricci-flat metric by constructing hyper-
kähler manifold. One powerful method of producing new hyperkähler manifold
out of known ones is the hyperkähler quotient. It is an analogue of the symplec-
tic quotient, also known as symplectic reduction. The twistor method is another
way of producing hyperkähler manifold. See [Hit92] for these two methods and an
introduction to hyperkähler geometry.

7. Hyperkähler 4-manifold with an S1-symmetry

Recall that the almost complex structures I1, I2, I3 of the hyperkähler structure
of C2 = H is given by left multiplication by i, j, k, hence the hyperkähler structure
is preserved by right multiplication of quaternions of norm 1. In particular we have
a (right) S1-action which preserves the hyperkähler structure:

ueit = (u0 cos t− u1 sin t) + (u1 cos t+ u0 sin t)i

+ (u2 cos t+ u3 sin t)j + (u3 cos t− u2 sin t)k.

Equivalently, the action can be expressed by

(z1, z2)eit = (z1e
it, z2e

−it).

Note that this S1-action is different from the action discussed in Section 5, but they
are conjugate by sending z2 to z̄2. Let T denote the infinitesimal generator of the
action, then

T = −u1e0 + u0e1 + u3e2 − u2e3.
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Note that g(T, T ) =
∑3
i=0 u

2
i = ρ2. Denote by ιT the interior multiplication by T ,

then direct computation shows that

−ιTω1 = u0du0 + u1du1 − u2du2 − u3du3 = dx1,

−ιTω2 = u3du0 + u2du1 + u1du2 + u0du3 = dx2,

−ιTω3 = −u2du0 + u3du1 − u0du2 + u1du3 = dx3,

where the momenta x1, x2, x3 are given by

x1 =
1

2
(u2

0 + u2
1 − u2

2 − u2
3), x2 = u1u2 + u0u3, x3 = u1u3 − u0u2.

Observe that if we set r2 = x2
1 + x2

2 + x2
3, then ρ2 = 2r. Define θ to be the 1-form

dual to T with respect to g, i.e. θ(X) = g(T,X), then we have

θ = −u1du0 + u0du1 + u3du2 − u2du3.

Define η = θ
ρ2 , then η(T ) = 1.

Now we notice that { 1
ρdx1,

1
ρdx2,

1
ρdx3, ρη} is an orthonormal coframe of g, so

we infer that

g =
1

ρ2

3∑
j=1

dxj ⊗ dxj + ρ2η ⊗ η.(7.1)

Thus, with the help of this S1-symmetry, we get a new expression of the flat metric
on C2.

The following observation is crucial: Denote by π : R4 → R3 the moment map
defined by π(u) = (x1, x2, x3). Then in restriction to R4 \ {0}, π is a S1-principal
bundle whose fibers are orbits of the S1-action. η is a connection 1-form of this
principal bundle, so the curvature dη of this connection can be viewed as a 2-form
defined on the total space R4 \ {0} or on the base R3 \ {0}. By calculation, we get:

dη = −x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2

2r3
= ∗3d

(
1

2r

)
,(7.2)

where ∗3 denotes the Hodge operator on R3 oriented by dx1 ∧ dx2 ∧ dx3. Conse-
quently, since ddη = 0, we have ∆R3

1
2r = d ∗3 d 1

2r = 0, which means that 1
ρ2 = 1

2r

is a positive harmonic function on R3 \ {0}.
The Gibbons-Hawking ansatz is a procedure to produce hyperkähler 4-manifold

with an S1-symmetry: If V is a positive harmonic function defined a connected
open subset U of R3 such that 1

2π (∗3dV ) ∈ H2(U,Z) (more precisely, the image of

H2(U,Z) in H2(U,R)), then ∗3dV can be realized as the curvature form of some
S1-principal bundle π : M → U , equipped with a connection form η such that
dη = π∗(∗3dV ). Then the Riemannian metric g defined on M by

g = V

3∑
i=1

dxi ⊗ dxi +
1

V
η ⊗ η,(7.3)

is a hyperkähler metric. So the flat metric on C2 can be regarded as the result of
the Gibbons-Hawking ansatz applied to the harmonic function 1

2r .
Using the Gibbons-Hawking ansatz, one can construct hyperkähler metric easily.

Let r1, r2 be the distances in R3 to two different points, then V = 1
2r1

+ 1
2r2

is a positive harmonic function. The resulting hyperkähler metric is known as
the Eguchi-Hanson metric. If one takes V = 1

2r1
+ · · · + 1

2rk
, then the resulting
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hyperkähler metric is called the ALE gravitational instanton of type Ak−1. If one
take V = 1

2r + a2 where a > 0, then the resulting hyperkähler metric is called the

Taub-NUT metric. Finally starting with V = 1
2r1

+· · ·+ 1
2rk

+a2, the corresponding
metric is called the ALF gravitational instanton of type Ak−1, or multi-Taub-NUT
metric. We will explain these strange terminologies later, here we just remark that
the harmonic functions corresponding to the ALF metrics are bounded below by a
positive number a2. By formula (7.3), this means that the length of the S1-orbit is
bounded from above by 2π

a . While this is not the case for ALE metrics.

8. Kleinian singularities and their crepant resolutions

As said in the beginning of the previous section, the hyperkähler structure on
C2 is preserved by by right multiplication of quaternions of norm 1, i.e. the right
action of Sp(1) = {u ∈ H||u|2 = 1}. It is well-known that Sp(1) = SU(2). In
Section 7 we take a subgroup S1 of it. In this section we take G ⊂ SU(2) to be a
finite subgroup. Denote by X = C2/G the quotient space. The quotient space X
is not smooth, since it has 0 as a singularity. Such singularities were first classified
by Klein and are called Kleinian singularities, they are also called Du Val surface
singularities, or rational double points. They were very well understood, see for
instance [Slo80].

Definition 8.1. Let Y be a complex algebraic variety, and suppose that KY is
an invertible sheaf, then a resolution π : Ỹ → Y is called a crepant resoulution or
minimal resolution if KỸ = π∗(KY ).

As G ⊂ SU(2), KX is an invertible sheaf, and in fact each Kleinian singularity

admits a unique crepant resolution (X̃, π).
There is a 1-1 correspondence between nontrivial finite subgroups G ⊂ SU(2)

and the Dynkin diagrams Γ of type Ar(r ≥ 1), Dr(r ≥ 4), E6, E7, E8, which are
all simply laced. Each of these diagrams appear in the classification of Lie groups,
corresponding to a unique compact simple Lie group. The preimage π−1(0) of the

singular point is a union of finite number of rational curves in X̃. These curves
correspond to points of Γ and their intersection number corresponds to the Car-
tan matrix of Γ. This correspondence between the Kleinian singularities, Dynkin
diagrams, their crepant resolutions and other objects is known as the McKay cor-
respondence, which was first pointed by John McKay.

Since C2 is hyperkähler, and the hyperkähler structure is invariant by G, it is
natural to intuitively think of X = C2/G as a “singular hyperkähler manifold” (in
fact orbifold). To resolve the singularity, one hopes to pull back the hyperkähler
metric on the base. Of course the pulled back metric π∗g is not defined on π−1(0),
but it gives us a model when the radius is large enough. This heuristic thought will
be made precise in the next section.

9. Gravitational instantons

Hyperkähler ALE spaces are called ALE gravitational instantons by physicists.

Definition 9.1. Let G be a finite subgroup of SU(2), (g, I1, I2, I3, ω1, ω2, ω3) the
hyperkähler structure of the flat metric on C2, r : C2/G→ [0,+∞) the radius func-

tion on C2/G. We say that a hyperkähler 4-manifold (M, g̃, Ĩ1, Ĩ2, Ĩ3, ω̃1, ω̃2, ω̃3) is
Asymptotically Locally Euclidean, or ALE, and asymptotic to C2/G, if there exists
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a compact subset S ⊂ M and a map π : M \ S → C2/G that is a diffeomorphism
between X \ S and {u ∈ C2/G|r(u) > R} for some R > 0, such that

∇k(π∗(g̃)− g) = O(r−4−k),∇k(π∗(Ĩj)− Ij) = O(r−4−k)(9.1)

as r → +∞ for j = 1, 2, 3 and k ≥ 0, where ∇ is the Levi-Civita connection of g.

The definition means that a hyperkähler ALE space is a non-compact hyper-
kähler 4-manifold which at infinity looks like C2/G, with a prescribed rate of decay
of their difference.

We will not give explicit formula as example. Instead, some historical remark-
s are in order. The first examples of ALE gravitational instantons were written
down explicitly by Eguchi and Hanson [EH79] and are called Eguchi-Hanson s-
paces. They are asymptotic to C2/{±1}. They are soon generalized by Gibbons
and Hawking [GH78] [GH79] who constructed explicit examples of ALE gravita-
tional instantons asymptotic to C2/Zk, k ≥ 2, which is discussed in Section 7.
Using twistor methods, Hitchin [Hit79] constructed the same spaces. Finally Kron-
heimer [Kro89a] [Kro89b] gave a complete construction and classification of all ALE
gravitational instantons. His construction makes uses of the McKay correspondence
and hyperkähler quotient, while the classification relies on the twistor method and
facts about the deformations of C2/G. In his classification, all the ALE gravita-
tional instantons asymptotic to C2/G are hyperkähler manifolds whose underlying
space is the crepant resolution of C2/G.

Besides the ALE gravitational instantons, there are more general gravitational
instantons. They are hyperkähler manifolds of real dimension 4 satisfying a decay-
ing condition of its Riemannian curvature. Such an object plays an important role
in theoretical physics. According to its ‘dimension at infinity’ m, we have ALE
(m = 4), ALF (m = 3), ALG (m = 2) and ALH (m = 1) gravitational instantons
(see also [CC15] for a different definition). Roughly speaking, it means that the
metric is asymptotic to a T4−m-fibration over Rm at infinity. Here ‘ALF’ stands
for ‘asymptotically locally flat’ and ALG, ALH are named by induction: E,F,G,H.

As we have seen, the ALE gravitational instantons are very well-understood. As
for the ALF gravitational instanton, it is known that its ‘fundamental group at
infinity’ is either cyclic or binary dihedral. The family of cyclic type is classified
by [Min11], which corresponds to multi-Taub-NUT metrics as we have seen in
Section 7, they are asymptotic to R3 at infinity, known as ALF-Ak. [CK98] [CK99]
produced a family of dihedral type and it is conjectured that these two families are
all possible ALF gravitational instantons. The conjecture is confirmed in [CC19]
under the assumption of O(r−2−ε) decay of Riemannian curvature. Such instantons
are asymptotic to R3/Z2 and known as ALF-Dk. Under the same assumption of
Riemannian curvature decay, [CC20] classifies the ALG gravitational instantons
and proves a Torelli-type theorem for ALH gravitational instantons. They are
asymptotic to flat cones and R+ respectively.

It should be noted that there are many slightly different definitions of gravita-
tional instantons so one must be careful when using any classification results. In
fact, if one allows the decay of Riemannian curvature to be slower, then there ex-
ists examples of hyperkähler metrics with r

4
3 , r−

1
3 , r−2, (log r)−

1
2 rate of curvature

decay [Hei12].
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10. A glimpse to higher dimensions

So far, all the presented examples of non compact Ricci-flat metrics are of re-
al dimension 4. As we have pointed out in Section 6, this is closely related to
hyperkähler metrics. Taking account of many strong implication of hyperkähler
structure, 4-dimensional case is very special. However, one can still try to gener-
alize some concepts in dimension 4 to higher dimension, for example the condition
of being ALE and ALF.

Contrary to dimension 4, less is known for higher dimensional case. [BKN89]
proved that a decaying condition of Riemannian curvature and Euclidean volume
growth implies ALE. [CL19] then considered the situation where the volume growth
is not maximal (note that by Bishop-Gromov volume comparison theorem, the vol-
ume growth is at most Euclidean), with an additional assumption on the holonomy,
the authors gave a description of the geometry at infinity.

There are also some examples in higher dimensions. The method of Cherkis
and Kapustin produces higher dimensional spaces. And a series of works of Ronan
J. Conlon and Hans-Joachim Hein studies the asmptotically conical Calabi-Yau
manifolds (see [CH13] [CH15]).

Guided by the 4 dimensional case, one could ask a lot of questions. For example,
do there exists any (non-flat) ALF metric? Let us say, a complete 8 dimensional
Ricci-flat metric with a 7 dimensional tangent cone at infinity and a decaying
Riemannian curvature. Note that one cannot take the product of 4 dimensional
ALE and ALF space as example, since the Riemannian curvature of the product
space does not decay with the radius.

On the other hand, since the 4 dimensional case is so special, one expects to see
some new phenomenons when looking at the case of higher dimensions.
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[Cal79] Eugenio Calabi. Métriques kählériennes et fibrés holomorphes. In Annales scientifiques
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