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1 Introduction

Markov chains (or Markov processes) are very important subjects, which are not only studied in the
Theory of Probability but also have a lot of applications in other fields such as computer science,
physics, statistics, engineering, etc. First studied by Markov in 1906, after more than 100 years,
the theory of Markov processes is still an active and fruitful research domain.

Under some mild conditions, for many chains, there exists an unique stationary distribution,
and the law of the chain converges to the stationary distribution. The classical theory of Markov
processes studies fixed chains and their rate of convergence to equilibrium. However, in recent
decades, a huge amount of work is devoted to studying the case where the size of the state space
is large, says tend to infinity. An important family of such chains is interacting particle system
(Zero-Range process, Exclusion process, stochastic Ising model, etc), and we are interested in the
case where the number of particles tends to infinity. The time it takes for a system to get close
to equilibrium with respect to certain target distance is called the mixing times. Studying the
comportment of this parameter as the state space grows is a question that draws a lot of attention.

In this report, we recall some basic properties of Markov processes in continuous time and
discuss some result on the Zero-Range process.

2 Continuous time Markov processes

Markovian semigroup Let Ω be a finite set which we called the state space. A family of
transition matrices (Pt, t ∈ R+) on Ω is a Markovian semigroup if it satisfies the following conditions.
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(i) P0 = IdΩ.

(ii) ∀s, t ∈ R+, Pt · Ps = Ps · Pt = Ps+t.

We give here a rigorous definition of a Markov process.

Definition 1. A (càdlàg) Markov process taking values in Ω is given by the following objects:

• A measurable space (F,F).

• A filtration (Ft, t ∈ R+) on (F,F).

• A Markovian semigroup (Pt, t ∈ R+) on Ω, where we write Pt = (pt(i, j))i,j∈Ω.

• A process X = (Xt, t ∈ R) defined on (F,F) taking values in Ω such that X is adapted to
(Ft)t≥0.

• A collection of probability measures (Pµ, µ is a probability measure on Ω) such that for any µ,
under Pµ, X has càdlàg trajectories, and for any t0 = 0 < t1 < · · · < tn and any i0, ..., in ∈ Ω,

Pµ [X0 = i0, . . . , Xtn = in] = µ(i0)

n∏
k=1

ptk−tk−1
(ik−1, ik).

From now to the end of this section, letX = (Xt)t≥0 be a Markov process defined on (F,F , (Ft)t≥0),
taking values in Ω, with semigroup (Pt)t≥0. We can view X as a random variable taking values in
the set D(R+,Ω) of càdlàg function from R+ to Ω. The family of time-shift operators,

(θt)t≥0 : D(R+,Ω)→ D(R+,Ω),

is defined by θt(x)(s) = x(t+ s), ∀s, t ∈ R+. Analogously to the discrete time setting, we have the
weak and strong Markov properties:

Theorem 2 (Weak Markov property). For any law µ on Ω, for any bounded measurable function
Φ : D(R+,Ω)→ R,

Eµ [Φ(θt(X))|Ft] = EXt [Φ(X)] .

Theorem 3 (Strong Markov property). Let T be a (Ft, t ∈ R+) stopping time. Then

1. XT is FT measurable.

2. The map θTX : F → D(R+,Ω) is measurable.

3. For any probability measure µ on Ω, for any bounded measurable function Φ : D(R+,Ω)→ R,

Eµ
[
1{T<∞}Φ(θTX)|FT+

]
= 1{T<∞}EXt [Φ(X)] .

Infinitesimal generator. The classical theory of Markov processes says that there exists a square
matrix L = (Li,j , i, j ∈ Ω), called the infinitesimal generator such that Li,j ≥ 0 when i 6= j and∑

j∈Ω

Li,j = 0, ∀i ∈ Ω,

and P t = etL,∀t ∈ R+. The law of the process X is determined by L. Usually, we often define L
by its action on the observables:

Lϕ(x) =
∑
y 6=x
L(x, y)(ϕ(y)− ϕ(x)), ∀ϕ : Ω→ R.
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Martingale associated with an observable. For any observable ϕ : Ω → R, for any initial
distribution, the process M = (M(t))t≥0 given by

M(t) := ϕ(X(t))− ϕ(X(0))−
∫ t

0
Lϕ(X(u))du (1)

is a zero-mean martingale, see e.g [4]. Let ϕ1, ϕ2 be two observables, and let M1, M2 be the
associated martingales. Then the predictable covariation of M1 and M2 is given by

〈M1,M2〉t =

∫ t

0

∑
y∈Ω

L(X(u), y) (ϕ1(y)− ϕ1(X(u))) (ϕ2(y)− ϕ2(X(u))) du. (2)

Total variation distance. The total variation distance is a metric to measure the difference
between measures of probability on Ω, which is defined as

dtv (µ, ν) = max
A⊂Ω
|µ(A)− ν(A)| = 1

2

∑
x∈Ω

|µ(x)− ν(x)|.

Convergence to equilibrium. We say that L is irreducible if for any i, j ∈ Ω, there exists a
sequence i = i0, i1, . . . , in = j such that

n∏
k=1

Lik−1,ik > 0.

If L is irreducible, then the law of the process will converge to the stationnary distribution:

Theorem 4 (Convergence to equilibrium). Let L be an irreducible infinitesimal generator. Then
there exists a unique distribution π such that for any initial distribution µ,

lim
t→∞

dtv
(
µP t, π

)
= 0.

A fundamental question is to understand the speed of the convergence above, which leads to
the study of mixing times.

Mixing time. The speed of convergence to equilibrium is characterized by the so-called mixing
times, defined by

tmix(x; ε) := min{t ≥ 0 : dtv

(
P tx, π

)
≤ ε}

The worst-case mixing time is obtained by maximizing over the initial states x ∈ Ω.

tmix(ε) := max{tmix(x; ε) : x ∈ Ω}.

Understand the parameters above is in general a challenging task (see the book [11]).

Dirichlet form, Poincaré constant. We note by 〈·, ·〉π the scalar product on l2(Ω, π). The
Dirichlet form associated to the process is defined by

E(ϕ,ψ) := −〈ϕ,Lψ〉π .

The Poincaré constant is defined by

λ∗ := min

{
E(ϕ,ϕ)

Var [ϕ]

}
,

where the minimum is taken over all non constant observable.
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Reversibility. If there exists a distribution π such that for all x, y ∈ Ω, π(x)L(x, y) = π(y)L(y, x)),
we says that the generator L is reversible. We can prove that for any t > 0, for any x, y ∈ Ω,
π(x)P t(x, y) = π(y)P t(y, x). When L is reversible, λ∗ coincides with the absolute spectral gap:

λ∗ = lim
t→∞
−1

t
log max

x∈Ω
dtv

(
P tx, π

)
.

In other words, the convergence to equilibrium is exponentially fast with speed λ∗.

Cutoff phenomenon. We are interested in the case where the state space grows to infinity. More
precisely, let (Ωn, Ln)n∈N is a sequence of state spaces and infinitesimal generators. To lighten the
notation, we sometimes ignore the subscript n. For many family of chains, it happens that when n
tends to infinity, the asymptotic comportment of tmix(x; ε) does not depend on ε:

tmix(ε)

tmix(1− ε)
= 1 + o(1).

In other word, starting from the worst initial condition, the total variation distance will stay close
to 1 for a long time, and then drops abruptly to zero in a shorter time scale. This phenomenon is
known as cutoff, discovered by Diaconis and Aldous when study card shuffling in [1], [2].

3 The Zero-Range process

The Zero-Range process, introduced by Spitzer in [10], is a model of interacting particle system
in continuous time. It describes the evolution of m ≥ 1 particles jumping across a set V , whose
elements are called sites. More precisely, the state space is

Ω = {x ∈ ZV+ :
∑
v∈V

x(v) = m}.

The dynamic is characterized by the following functions:

1. A function r : V×N∗ → R>0 called the potential function, where r(v, k) is the rate at which site
v expels a particle if it is occupied by k particles. For convenience, we let r(v, 0) = 0, ∀x ∈ V
(no jump from empty sites).

2. An irreducible transition matrix P on V , which defines the geometry on V .

The infinitesimal generator L acts on an observable f : Ω→ R as follow:

Lf(x) =
∑

(u,v)∈V×V

r(u, x(u))P (u, v)(f(x− δu + δv)− f(x)),

where (δv)v∈V is the canonical basis of RV . Let µ be the unique invariant distribution of P . It is
easy to see that L is also irreducible and its invariant distribution is given by

π(x) ∝
∏
v∈V

x(v)∏
k=1

µ(v)

r(v, k)
.
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The model defined above is very general. We actually only discuss the case where r(v, k) does not
depend on v, which means the speed of a particle only depends on the number of its co-occuppants.
The most studied cases in literature is when V is the vertex set of a regular graph (the complete
graph, the torus, etc), and P is the transition matrix of the simple random walk on the graph. The
system exhibits different behaviors under different potential functions r.

3.1 Mean-field case, r = 1

In [9], the author studies the mean-field case for the potential function r = 1. He proves a strong
bound depending on the density for the spectral gap.

Theorem 5 (Morris 2006). Let λ∗ = λ∗(n) be the spectral gap of the mean-field Zero Range process

on n vertices. Then there exists a universal constant C such that λ∗ ≥
C

(ρ+ 1)2
, where ρ is the

density of particles.

And after that he uses comparison technique to extend the results to the torus model (Z/LZ)d.

Theorem 6. Let λ∗,2 be the spectral gap of the Zero-Range process on the lattice (Z/LZ)d, then

there exists a universal constant C such that λ∗,2 ≥
C

p2(ρ+ 1)2
.

3.2 Mean-field case, r increasing bounded

In [5], Hermon and Salez prove cutoff phenomenon for the mean-field case for the case r is increasing
but bounded in the regime where the number of sites tend to infinity and the density of particles per
site is bounded. They also give the explicit formula for the cutoff time when the density stabilizes.
More precisely, upon a rescaling, we can suppose that r increases to 1. In the regime

n→∞, m

n
→ ρ ∈ [0,∞), (3)

consider the state space

Ω :=

{
x = (x1, x2, ..., xn) ∈ Zn+ :

n∑
i=1

xi = m

}
,

and the Markov generator L acts on an observable ϕ : Ω→ R by

(Lϕ)(x) =
1

n

∑
1≤i,j≤n

r(xi)(ϕ(x− δi + δj)− ϕ(x)).

Theorem 7 (Hermon, Salez 2019). For any ε ∈ [0, 1) fixed,

tmix(ε)

n

n→∞−→ γ = γ(r, ρ),

where γ(r, ρ) is given explicitly.

By considering the initial configuration where all particles are on a same site, we easily see that
the worst-case mixing time is at least of order n. The authors use an argument of separation of
time-scale. They prove the following theorem.
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Theorem 8 (Fast mixing). There exists a dimension-free constant κ such that

tmix(x; ε) ≤ κ ‖x‖∞ + (log n)κ,

for every x ∈ Ω, and every ε ∈ [0, 1], provided that n ≥ κ

ε
.

The theorem above says that from a configuration x such that ‖x‖∞ = o(n), the system reaches
equilibrium at a time negligible compare to n. So to estimate the mixing time from any configu-
ration, we just need to estimate the time t such that ‖X(t)‖∞ = o(n). They provide the estimate
of that time for all configuration x, and then deduce the constant γ from the initial configuration
where all particles are on a same site. We only provide a sketch of the proof of Theorem 8.

Graphical construction. Let Ξ be a Poisson point process of intensity
1

n
dt⊗du⊗Card⊗Card

on [0,∞)×[0, 1]×[n]×[n], where Card denotes the counting measure. Define the piece-wise constant
process X = (X(t))t≥0 taking values in Ω as follows: X(0) = x, and for each point (t, u, i, j) of Ξ,

X(t) :=

{
X(t−)− δi + δj , if u ≤ r(Xi(t−))

X(t−) otherwise.
(4)

Then X is a càdlàg Markov process starting from x with generator L.
We can now couple Zero-Range processes with different number of particle by using the same
Poisson point process.

Mean-field jump rate. At all time, the rates of arriving into each site are equal and given by

ζ(t) :=
1

n

n∑
j=1

r(Xj(t)). (5)

Path coupling via tagged particle. For k ∈ Z+, define

∆(k) := r(k + 1)− r(k) ≥ 0. (6)

Let Θ be a Poisson point process of intensity
1

n
dt⊗du⊗Card on R+×R+× [n], independent of the

Poisson processes used in the graphical construction of X. For a site i ∈ [n], define an [n]- valued
process I = (I(t))t≥0 by setting I(0) = i and for each (t, u, k) in Θ,

I(t) :=

{
k if u ≤ ∆(XI(t−))

I(t−) otherwise,
(7)

where XI(t) := XI(t)(t). This definition means that conditionally on X, the process I(t) will jump
with the time-varying rate ∆(XI(t)), and the destination is uniformly chosen among all sites. A
simple but important observation is that (X(t) + δI(t))t≥0 has the same distribution as a Zero-
Range process starting at x+ δi. We call I a tagged particle. For j another site, similarly we can
construct a second tagged particle J starting from J(0) = j using the same process Θ. Thus we
have a coupling (X(t) + δI(t), X(t) + δJ(t))t≥0 of two Zero-Range processes starting at x + δi and
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x + δj respectively. We note Px,i.j for the law of the process (X, I, J) starting from (x, i, j) and
Ex,i,j for the expectation taken w.r.t Px,i,j . Let τ be the coalescence time of I and J :

τ := inf{t ≥ 0 : I(t) = J(t)}. (8)

By the classical relation between dtv (·, ·) and coupling, we have:

dtv

(
P tx+δi

, P tx+δj

)
≤ Px,i,j [τ > t] . (9)

They estimate the mixing time via the coalescence time of the path coupling above.

Sketch of the proof. The coalescence time depends on the jump rates of the tagged particles,
which can be very small (think of the case r ≡ 1), so we should think of a smart scenario of
coalescence. By a dimension-free constant, we refer to a real number that only depends on r, ρ.
First important observation is that there exists dimension free constant ε > 0 such that for any
t ≥ 1,

P [ζ(t) > 1− ε] ≤ e−εn.

1 − ε is smaller than r(k) for k large enough. So considering the observable ϕ(x) = eθxi , we can
prove the drift follow.

Ex
[
eθXi(t)

]
≤ κ(1 + eθ(xi−δt)), (10)

for some dimension-free constant κ, θ, δ. This gives us a very good concentration:

Px [Xi(t) ≥ a] ≤ 4e−θa, when t ≥ ‖x‖∞ /δ. (11)

It implies that after a time Θ(‖x‖∞), the system reaches a set of height O (log n) w.h.p, by an
argument of union bound over all the site. Then they prove that there exists a dimension-free
constant κ such that for the path coupling above,

P [τ ≥ κ(‖x‖∞ ∨ (log n)κ)] ≤ κ

n2
. (12)

This provides an upper bound for the total variation distance of the laws of two processes starting
from two adjacent configurations. By triangle inequality, this can be extended to two arbitrary

configurations dtv

(
P tx, P

t
y

)
≤ mκ

n2
for t = κ(‖x‖∞ ∨ ‖y‖∞ ∨ (log n)κ). Note that the set {y :

‖y‖∞ > (log n)κ} is of small probability under π, thanks to (10). Then we can prove that

dtv

(
P tx, π

)
= o(1),

for t = κ(‖x‖∞ + (log n)κ, which implies theorem 8.
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3.3 Mean-field case, r increases to infinity at sublinear speed

In the same setting as subsection 3.2, except we consider the case where potential function r
increases to infinity at sublinear speed, i.e. , r satisfies the following condition.

r(k + 1) ≥ r(k), ∀k ∈ Z+, (13)

lim
k→∞

r(k) =∞, (14)

sup
k∈Z+

r(k)

k
<∞. (15)

Let R : {1, 2, . . . } → R be the function defined by:

∀k ≥ 1; R(k) =
k∑
i=1

1

r(i)
.

In the regime 3, we have the following theorem.

Theorem 9 (T., 2021+). For ε ∈ (0, 1) fixed, for any initial state x,

tmix(x; ε) ≤ (1 + o(1))R(‖x‖∞) +O (log n) . (16)

In addition, if the initial state x = x(n) satisfies
∥∥x(n)

∥∥
∞

n→∞−−−→∞, then

tmix(x; ε) ≥ (1− o(1))R(‖x‖∞). (17)

Maximizing over all initial states x, we obtain

Corollary 10 (Cutoff). Suppose additionally that R(m)� log n. Then for ε ∈ (0, 1) fixed,

tmix(ε)

R(m)
= 1 + o(1). (18)

In other words, the system exhibits cutoff at time R(m).

The conditions imposed on r implies that the mean-field jump rate is always upper bounded by
a dimension free constant. As the potential function r is not bounded, we expect a stronger drift
than the case previous case. The proof of the lower bound in Theorem 9 is obtained by studying
the marginal law of a site at equilibrium, and to look at the observable that counts the number of
particles at the initially highest site. The proof of the upper bound in Theorem 9 also relies on an
argument of separation of time scaling. We prove that after a time t = (1+o(1))R(‖x‖∞)+O (log n),
‖X(t)‖∞ = O (log n). From such configuration, the system reaches equilibrium in O (log n). The
strategy is similar to that in the previous case, except for now we need a stronger version of (12):
There exists a dimension free constant κ such that for ‖x‖∞ = O (log n),

Px [τ > κ ‖x‖∞] ≤ κ

n2
. (19)

We can also prove that the Poincaré constant is bounded away from zero and infinity.

Theorem 11 (Poincaré constant). λ∗ = Θ(1).
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Mean-field case, r is linear. When r(k) = k, ∀k ∈ N, we see that all particles jump inde-
pendently. Then the system reaches equilibrium once every particle has jumped at least one time.
We can see easily that the model exhibits cutoff at time logm, which is due to the concentration
of sum of independent exponential variables. This implies that the upper bound in (16) is sharp,
at least up to the order. It happens that if we start from a very flat configuration, for example,
m = n;xi = 1, ∀i ∈ [n], the system also needs a time Θ(logn) to reach equilibrium.

Question 1. Can we prove that (16) is sharp for every configuration x, which means from any
configuration x, tmix(x; ε) = Θ(log n) ?

3.4 Comparision technique

In [6], Hermon and Salez prove a comparison technique that allows us to extend effortlessly the
result on the spectral gap in the mean-field model to other geometries. This comparison tech-
nique is more general and stronger than the one used by Morris in [9]. More precisely, let P and
Q be two irreducible transition matrices on V which admit the same stationary distribution µ.
Let ZRP (P, r,m) and ZRP (Q, r,m) denote the Zero-Range processes with m particles, poten-
tial function r, and transition matrices P and Q respectively. Let EP and λ(P ) (resp. EQ and
λ(Q), EZRP (P,r,m) and λ(P, r,m), EZRP (Q,r,m) and λ(Q, r,m)) be the Dirichlet form and Poincaré
constant associated to P (resp. Q,ZRP (P, r,m), ZRP (Q, r,m)) respectively. We have the follow-
ing theorem.

Theorem 12 (Hermon, Salez 2019). We have

inf

{EZRP (P,r,m)(f, f)

EZRP (Q,r,m)(f, f)

}
= inf

{
EP (ϕ,ϕ)

EQ(ϕ,ϕ)

}
, (20)

where the infimum of the left-hand side (resp. right-hand side) is taken over all non constant
function on Ω (resp. on V ).

The proof involves a combinatorial identity that relates the Dirichlet form of the Zero-Range
process with that of the underlying random walk. The statement is true for any potential function
r. If we take Q = Π to be the matrix such that all of its rows are equal to µ, then the right-hand
side is just the Poincaré constant λ(P ). Then we obtain

Corollary 13.
EZRP (P,r,m)(f, f) ≥ λ(P )EZRP (Π,r,m)(f, f)

In particular, if P is doubly stochastic, then µ is actually the uniform mesure on V . In particular,
ZRP (Π, r,m) is exactly the mean-field model. Dividing both side by the variance of f under
stationary distribution and optimizing, we deduce that

λ(P, r,m) ≥ λ(P )λ(Π), (21)

The authors prove another result for P doubly stochastic.

Lemma 14. Assume that P is doubly stochastic, then

λ(P, r,m) ≤
(

1− 1

n

)
λ(P )

E [r(x1)]

Var [x1]
,

where the expectation and the variance is taken with respect to the stationary measure.

Thanks to these comparison, we can obtain results on Poincaré constant of many models by
studying the mean-field model.
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3.5 When r is not increasing

For completeness, we mention an article discussing the case where the function r is not increasing.
This is from the paper [3] (for more recent result, see [7], [8]). The setting in this case is a little
different from other cases above. Here we fix a vertex set V , and we fix a transition matrix P ,
which we assume irreducible and reversible w.r.t the a probability measure µ, on V . The function
r is defined by

r(0) = 0, r(1) = 1, and r(k) =

(
k

k − 1

)α
, k ≥ 2,

for some constant α > 1. Consider the case where the number of particles m tend to infinity. This
system exhibits different kind of behavior to the above cases, notably condensation. More precisely,
let

µ∗ = max{µ(v), v ∈ V }, V∗ = {v ∈ V : µ(v) = µ∗}, κ∗ = |V∗|.

At equilibrium, with high probability, all but a finite number of particles are located on a same site
in V∗. We call the highest site the condensate. At time scale N1+α, the evolution of the condensate
converges to a certain random walk on V∗.

Question 2. Study the mixing time of this Zero-Range process ?
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