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Introduction

This is a second course in algebra. It treats elementary properties of commutative rings (and modules
over them), field extensions and Galois theory, as well as basic commutative algebra from a geometric
perspective.

Throughout the course we are going to emphasise close links between abstract algebraic theory and
concrete questions arising in arithmetic and geometry (cf. [Re, 9.9]), even though the course will not quite
follow the historical development of the subject.

The purely abstract point of view, according to which a group is a set equipped with a binary operation
satisfying suitable axioms, completely misses the point that most groups of interest naturally occur as
symmetry groups. A typical example is provided by matrix groups – including orthogonal, symplectic and
unitary groups – studied in the course Algebra 1.

The groups appearing in this course – Galois groups – are symmetry groups of polynomial equations
in one variable. They can be realised concretely as permutation groups (subgroups of the symmetric group
Sn), but many of them are miraculously related to matrix groups, as predicted by the Langlands programme
(in fact, as we shall see, examples of Galois representations predated Galois theory itself).

Similarly, a commutative ring should not be considered merely as an abstract object, but as a ring
of functions on a suitable “space”. Depending on the context one can consider continuous functions (in
topology), smooth functions (in differential geometry), holomorphic functions (in complex geometry) or
polynomial functions (in algebraic geometry). We are going to be interested in purely algebraic objects (but
see IV.12 below), a typical example of which is the polynomial ring C[x1, . . . , xn] (the ring of functions on the
n-dimensional affine space over C with coordinates x1, . . . , xn) and its quotients C[x1, . . . , xn]/(f1, . . . , fm),
which are rings of functions on subsets of the affine space defined by systems of polynomial equations
f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0.

There is a natural duality between points and functions. At its origin is the equation

f(x) = 0 (f = function, x = point),

considered traditionally for fixed f and variable x, but ever since a pioneering work of Dedekind and Weber
in the 1880’s also for fixed x and variable f (see 2.6 below). This duality leads to a dictionary between intui-
tively obvious – but much less obvious to define – geometric concepts (point, map, dimension, reducibility,
singularity, multiplicity, localisation to a neighbourhood of a point) and their algebraic counterparts.

This geometric point of view applies equally well to rings naturally occurring in arithmetic, as anticipated
by Kronecker. For example, it is well-known that the rings Z and K[X] (for any field K) have very similar
algebraic properties. Going one step further, one can adjoin to Z (resp. to K[X]) a square root i of −1
(resp. a square root Y of X) and obtain rings

Z[i] = {a+ bi | a, b ∈ Z}, K[X,Y ]/(Y 2 −X) = {a+ bY | a, b ∈ K[X]} (Y 2 = X).

The ring K[X] (resp. K[X,Y ]/(Y 2 − X)) is the ring of functions on a line L over the field K (resp.
on the plane curve C over K defined by the equation C : Y 2 − X = 0). The inclusion of the rings
K[X] ⊂ K[X,Y ]/(Y 2 −X) corresponds to the projection map α : C −→ L, α(X,Y ) = X.

For any t ∈ K the fibre α−1(t) of α at t is given by the equation Y 2− t = 0. For t 6= 0 (resp. t = 0) this
represents two points – possibly defined over a bigger field than K – with multiplicity one (resp. a point with
multiplicity two). In other words, the map α is unramified outside t = 0 and ramified – with ramification
index equal to two – at t = 0.
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The inclusion of rings Z ⊂ Z[i] admits a similar geometric interpretation (see ?? below). In particular,
it is ramified at the prime number p = 2, which plays the rôle analogous to that of the point t = 0.

A slightly more complicated example is provided by the inclusion Z ⊂ Z[2i] = {a+ b · 2i | a, b ∈ Z} and
its geometric counterpart K[X] ⊂ K[X,Y ]/(Y 2 − X3), which corresponds to the curve C ′ : Y 2 − X3 = 0
with a singular point (X,Y ) = (0, 0) (and its projection to the line L).

To sum up, the rings Z and Z[i] are, from a geometric perspective, one-dimensional non-singular objects,
while Z[2i] is a one-dimensional object with a singular point above the prime number p = 2 (see ?? below).

Arithmetic properties of the ring Z[i] of gaussian integers are closely intertwined with arithmetic of the
quadratic form x2 + y2 = (x+ iy)(x− iy). Gauss showed that Z[i] is a unique factorisation domain (UFD):
any non-zero element can be written as a product of “prime elements” in an essentially unique way. Together
with an explicit description of such prime elements this yields a conceptual proof of a celebrated result of
Fermat, according to which

∃x, y ∈ Z q = x2 + y2 ⇐⇒ q ≡ 1 (mod 4),

for any prime number q 6= 2.
A study of representations of prime numbers by quadratic forms

x2 + xy + cy2 =

(
x+ y

1 +
√

1− 4c

2

)(
x+ y

1−
√

1− 4c

2

)
(c ∈ Z)

naturally leads to a consideration of the following rings

Z

[
1 +
√

1− 4c

2

]
=

{
u+ v

1 +
√

1− 4c

2
| u, v ∈ Z

}
.

If |1− 4c| is equal to a prime number p ≤ 19 (⇐⇒ c = ±1, 2,±3,−4, 5) – and for certain other values of p
as well – the corresponding ring is a UFD and an explicit description of its prime elements implies that

∃x, y ∈ Z q = x2 + xy + cy2 ⇐⇒ q ≡ square (mod p),

for any prime number q.
For c = 6 and p = |1 − 4c| = 23 the ring Z[(1 + i

√
23)/2] is no longer a UFD and representability of

prime numbers by the quadratic form x2 + xy + 6y2 is no longer given by a simple congruence condition.
Closely related rings Z[ζp] = {a0 + a1ζp + · · ·+ ap−2ζ

p−2
p | aj ∈ Z} (where p 6= 2 is a prime number and

ζp = e2πi/p) naturally appeared in attempts at proving “Fermat’s Last Theorem”, namely, that the equation

xp + yp = zp, xp + yp =

p−1∏
j=0

(x+ ζjpy)

has no solutions x, y, z ∈ Z \ {0}. If the ring Z[ζp] is a UFD (which was tacitly assumed by some authors),
then Fermat’s method of infinite descent applies and Fermat’s Last Theorem can be proved by this method.
However, Kummer discovered that Z[ζ23] is not a UFD (in fact, Z[ζp] is a UFD ⇐⇒ p ≤ 19), and
therefore the standard method does not work. By an amazing leap of imagination, he managed to come up
with a remedy: in each of the rings Z[ζp] unique factorisation holds for “ideal numbers”. Moreover, if the
“difference” between the ideal and usual numbers in Z[ζp] – the ideal class group – has size “prime to p”,
then a suitably modified method of infinite descent applies and Fermat’s Last Theorem holds for exponent
p. The exact nature of Kummer’s ideal numbers was not quite apparent (even though he described “prime
ideal numbers”). It was Dedekind who transformed them into ideals as we now know them. Rings such
as Z[ζp] in which there is unique factorisation for ideals are called Dedekind rings (see IV.15). They are
non-singular and one-dimensional (and are, essentially, characterised by these properties).

Being a UFD is a global property of the ring Z[ζp], analogous to the existence of functions on curves with
arbitrarily prescribed zeroes and poles. A geometric counterpart of the ideal class group is an obstruction
to the existence of such functions. In the complex analytic situation, this class group first appeared in the
context of Abel’s addition theorem for elliptic functions and their generalisations, and was studied by Abel,
Jacobi and Riemann, among others. However, these topics are beyond the scope of the present course.
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There will be many concrete examples scattered throughout these notes. The reader may begin by
contemplating the following question: the standard picture of the unit circle C : x2 + y2 − 1 = 0 shows
its real points C(R). What are its complex points C(C), rational points C(Q) or points C(Z/nZ) with
coordinates in Z/nZ?

Notation and conventions. The symbols ⊂ and ⊆ will be used interchangeably. A strict inclusion will
be denoted by (. The symmetric and the alternating group on n elements will be denoted, respectively, by
Sn and An. The dihedral group with 2n elements will be denoted by D2n (not Dn); thus Cn ⊂ D2n ⊂ Sn
(where Cn is the cyclic group of order n).
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I. Commutative rings (elementary properties)

1. Basic concepts

(1.1) Recall that a ring is a set A equipped with two binary operations, addition and multiplication,
satisfying the usual properties: (A,+) is an abelian group with neutral element 0, multiplication is associative
and the distributive law x(y + z) = xy + xz, (x + y)z = xz + yz holds for all x, y, z ∈ A. All rings in this
course will be unital (there is a (unique) unit 1 = 1A ∈ A such that 1x = x1 = 1 for all x ∈ A) and
commutative (xy = yx for all x, y ∈ A). Note that 1 6= 0 ⇐⇒ A 6= {0} = 0.

For a ring A we denote by A[x1, . . . , xn] the ring of polynomials in the variables x1, . . . , xn with coeffi-
cients in A.

(1.2) An element x ∈ A is invertible if there is y ∈ A (necessarily unique) such that xy = 1. The set of
invertible elements A∗ is a group with respect to multiplication.

A ring A 6= 0 is a domain (= integral domain) if x, y ∈ A \ {0} implies that xy ∈ A \ {0}. It is a
field if A∗ = A \ {0}. For example, Z/nZ is a domain ⇐⇒ Z/nZ is a field ⇐⇒ n = p is a prime number.

Any domain A naturally embeds into its fraction field Frac(A), which consists of fractions x
y (x ∈ A,

y ∈ A \ {0}) subject to the relations

x

y
=
x′

y′
⇐⇒ xy′ = yx′.

An element x ∈ A corresponds to x
1 ∈ Frac(A) and the operations are given by the usual formulas

x

y
+
x′

y′
=
xy′ + yx′

yy′
,

x

y

x′

y′
=
xx′

yy′
.

We have Frac(Z) = Q and, for any field K, Frac(K[x1, . . . , xn]) = K(x1, . . . , xn) (the field of rational
functions in n variables over K).

Most rings of interest to us will be related, in one way or another, to polynomial rings over Z or over a
field.

(1.3) A ring A is a subring of a ring B if A ⊂ B and if the operations “addition” and “multiplication” on
A are induced by those on B (in particular, A and B have the same zero 0 and the same unit 1). For any
subset S ⊂ B we denote by A[S] the intersection of all subrings of B containing A and S; it is a subring of
B. If S = {b1, . . . , bn} is finite, then A[b1, . . . , bn] = {f(b1, . . . , bn) | f ∈ A[x1, . . . , xn]}.

If, in addition, A and B are fields (in which case we say that A is a subfield of B), we denote by A(S)
the intersection of all subfields of B containing A and S; it is again a subfield of B and A(b1, . . . , bn) =
{f(b1, . . . , bn)/g(b1, . . . , bn) | f, g ∈ A[x1, . . . , xn], g(b1, . . . , bn) 6= 0}.
(1.4) A ring homomorphism f : A −→ B is a map between rings such that

∀x, y ∈ A f(x+ y) = f(x) + f(y), ∀x, y ∈ A f(xy) = f(x)f(y), f(1) = 1

(the third condition is not always a consequence of the first two: consider f : Z/6Z −→ Z/6Z, f(x) = 3x).
We say that f is a ring isomorphism if there exists a ring homomorphism g : B −→ A (necessarily unique)
inverse to f . In this purely algebraic context an isomorphism is the same thing as a bijective homomorphism
(which ceases to be the case if one considers algebraic objects equipped with a topology and continuous
homomorphisms between them, since a continuous bijection does not necessarily have a continuous inverse).

The image of f

Im(f) = {f(x) | x ∈ A} ⊂ B

is a subring of B. The kernel of f

Ker(f) = {x ∈ A | f(x) = 0} ⊂ A

is not a subring of A (unless f = 0). It is an ideal of A (and all ideals arise in this way). The morphism f
is injective ⇐⇒ Ker(f) = {0} = 0.

4



2. Ideals

(2.1) Why do we care about ideals? There are at least three different reasons: for an algebraist, ideals are
kernels of ring homomorphisms; for a geometer, any system of (say, polynomial) equations is equivalent to
a system given by an ideal; for a number theorist, ideals appear in the absence of unique factorisation.

(2.2) Definition. An ideal of a ring A is an additive subgroup I ⊂ (A,+) such that AI ⊂ I (i.e., such
that ax ∈ I for all a ∈ A and x ∈ I).

(2.3) Examples of ideals. For any non-empty subset S ⊂ A we denote by (S) the intersection of all ideals
of A containing S. It is an ideal of A, equal to the set of all finite linear combinations

∑
s∈S ass (as ∈ A,

all but finitely many as are equal to 0). If S = {x} consists of one element, then (S) = Ax = {ax | a ∈ A}
is the principal ideal generated by x. For example, (0) = {0} = 0, (1) = A (more generally, (x) = A ⇐⇒
x ∈ A∗). An ideal I is finitely generated if I = (S) for a finite set S.

(2.4) Proposition. (i) The kernel of any ring homomorphism f : A −→ B is an ideal of A.
(ii) For any ideal I of A the quotient abelian group A/I has a unique ring structure for which the canonical
projection pr : A −→ A/I (pr(x) = x+ I) is a ring homomorphism. The kernel of pr is equal to Ker(pr) = I.
(iii) (Universal property) For any ring homomorphism f : A −→ B and any ideal I of A such that I ⊂ Ker(f)
there is a unique ring homomorphism f : A/I −→ B satisfying f ◦ pr = f :

A
f //

pr

��>>>>>>>>>>> B

A/I

f

??�
�

�
�

�
�

(iv) (Isomorphism theorem) For any ring homomorphism f : A −→ B, the homomorphism f from (iii) for
I = Ker(f) induces a ring isomorphism f : A/Ker(f)

∼−→ Im(f).

Proof. (i) Immediate. (ii) One needs to check that the product pr(x)pr(y) := pr(xy) is well-defined. If
pr(x) = pr(x′) and pr(y) = pr(y′), then x − x′, y − y′ ∈ I, hence xy − x′y′ = x(y − y′) + y(x − x′) ∈
AI + AI ⊂ I + I = I, which means that pr(xy) = pr(x′y′). (iii) The map f(pr(x)) := f(x) is well-defined
and has the required properties. (iv) The ring homomorphism f : A/Ker(f) −→ Im(f) is bijective, hence is
an isomorphism.

(2.5) The ring A/I consists of the equivalence classes for the relation x ≡ y (mod I) ⇐⇒ x − y ∈ I.
The notation for the equivalence class containing x ∈ A will vary according to the author’s mood; it can be
written as pr(x) = x+ I = x = x (mod I).

If A is a ring and f = Xd + a1X
d−1 + · · · + ad ∈ A[X] a monic polynomial of degree d ≥ 1, then the

quotient ring A[X]/(f) is equal to {g (mod (f)) | g ∈ A[X], deg(g) < d}.
In particular, if f = X − a (a ∈ A) has degree deg(f) = 1, then the ideal (X − a) coincides with the

kernel of the evaluation map

eva : A[X] −→ A, g(X) 7→ g(a)

and we deduce from Proposition 2.4(iv) an isomorphism eva : A[X]/(X − a)
∼−→ A.

(2.6) Ideals in geometry. What is a geometric object? According to H. Cartan, such an object consists,
at least locally, of a space X and a ring of functions O(X) on X. The author of these notes likes to think of
X as being the body, and O(X) the soul.

For any subset Y ⊂ X the set of functions vanishing on Y

I = {f ∈ O(X) | ∀y ∈ Y f(y) = 0} ⊂ O(X)

is an ideal of O(X). If Y is a sufficiently nice subspace of X, then it makes sense to consider the ring
of functions O(Y ) on Y and the restriction map res : O(X) −→ O(Y ). In this case I = Ker(res) and
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res : O(X)/I
∼−→ Im(res) ⊂ O(Y ). In particular, if res is surjective (which will be the case in affine algebraic

geometry), then O(Y )
∼−→ O(X)/I can be recovered from I.

If Y ′ ⊃ Y , then the corresponding ideal satisfies I ′ ⊂ I. In particular, “small” subspaces Y (= points)
should correspond to “big” ideals I ⊂ A (and vice versa).

Conversely, for any non-empty subset S ⊂ O(X) its zero locus

Y = {x ∈ X | ∀f ∈ S f(x) = 0} = {x ∈ X | ∀f ∈ I f(x) = 0}

coincides with the zero locus of the ideal I = (S) generated by S. More precisely, the two systems of
equations ∀f ∈ S f(x) = 0 (resp. ∀f ∈ I f(x) = 0) are equivalent.

In the last part of this course we shall investigate the correspondence between subspaces and ideals in
the algebraic situation, when X is an n-dimensional affine space over an algebraically closed field K and
O(X) is the polynomial ring in n variables over K.

(2.7) Ideals in arithmetic. The ring of integers Z has the unique factorisation property: any non-zero
element can be written in a unique way (up to a sign) as a product of prime numbers. This is no longer the
case for more general rings occurring in number theory. For example, in the ring A = Z[i

√
5] = {a+ bi

√
5 |

a, b ∈ Z} the two factorisations

21 = 3 · 7 = (4 + i
√

5)(4− i
√

5)

cannot be refined any further – all elements 3, 7, 4 ± i
√

5 are “irreducible” in A. One can try to follow
Kummer’s ideas and imagine that there are additional factorisations involving new objects, “divisors”:

3 = P1P2, 7 = Q1Q2, 4 + i
√

5 = P1Q1, 4− i
√

5 = P2Q2.

If true, then one can identify each divisor D ∈ {P1, P2, Q1, Q2} with the set of elements of A divisible by D,
which will be an ideal of A. The above factorisations then become equalities between ideals (for a suitable
notion of product, defined in 2.8 below):

(3) = P1P2, (7) = Q1Q2, (4 + i
√

5) = P1Q1, (4− i
√

5) = P2Q2.

This is, indeed, true (see 6.9 below). Moreover, A is a Dedekind ring (see IV.15 below) which means that
unique factorisation holds for non-zero ideals of A.

(2.8) Operations on ideals. If I and J are ideals of A, so is their intersection I ∩ J , sum I + J =
{x + y | x ∈ I, y ∈ J}, product IJ = ({xy | x ∈ I, y ∈ J}) = {

∑r
α=1 xαyα | xα ∈ I, yα ∈ J, r ≥ 0} and

the radical of I:
√
I = {x ∈ A | ∃n ≥ 1 xn ∈ I}. More generally, the intersection of any collection of

ideals of A is an ideal. If I = (x1, . . . , xm) and J = (y1, . . . , yn), then I + J = (x1, . . . , xm, y1, . . . , yn) and
IJ = (x1y1, . . . , x1yn, . . . , xmyn).

For any ring homomorphism f : A −→ B, the inverse image of any ideal J of B is an ideal of A, since
I = f−1(J) = Ker(pr ◦ f : A −→ B −→ B/J).

For any ideal I of A there is a natural bijection between the set of ideals J of A/I and the set of ideals
J of A containing I: J = J/I and J = pr−1(J). Moreover, (A/I)/J = A/J .

(2.9) Example. If A = Z and I = (m), J = (n) for integers m,n ≥ 1, then (m) + (n) = (m,n) =
(gcd(m,n)), (m)∩(n) = (lcm(m,n)), (m)(n) = (mn) and

√
(m) = (m0), where m0 is the product of distinct

prime numbers dividing m.

3. Product of rings, idempotents

(3.1) This section is a variation on the Chinese remainder theorem, which states that Z/mnZ
∼−→ Z/mZ×

Z/nZ whenever (m,n) = (1).

(3.2) Let A1, . . . , An (n ≥ 2) be rings. The cartesian product A = A1×· · ·×An has a natural ring structure

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn), (x1, . . . , xn)(y1, . . . , yn) = (x1y1, . . . , xnyn),
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with 1A = (1, . . . , 1) = (1A1
, . . . , 1An). The projections

pk : A −→ Ak, pk(x1, . . . , xn) = xk

are ring homomorphisms, but the inclusions

ik : Ak −→ A, ik(xk) = (0, . . . , xk, . . . , 0)

are not, since ek := ik(1Ak) = (0, . . . , 1, . . . , 0) 6= 1A. The elements e1, . . . , en ∈ A have the following
properties.

(3.2.1) e2
k = ek (each ek is an idempotent);

(3.2.2) ejek = 0 if j 6= k (orthogonality);
(3.2.3) e1 + · · ·+ en = 1.

(3.3) Proposition. If A is a ring and e1, . . . , en ∈ A are elements satisfying (3.2.1)–(3.2.3), then, for each
k = 1, . . . , n, the subset Ak := ekA = {eka | a ∈ A} ⊂ A equipped with the operations addition and
multiplication coming from A is a ring with unit 1Ak = ek. The maps pk : A −→ Ak, pk(a) = eka are ring
homomorphisms and they induce a ring isomorphism

p = (p1, . . . , pn) : A
∼−→ A1 × · · · ×An, p(a) = (e1a, . . . , ena),

whose inverse is given by p−1(a1, . . . , an) = e1a1+· · ·+enan. For any ideal I in A the image Ik = pk(I) = ekI
is an ideal in Ak and p(I) = I1 × · · · × In.

Proof. Easy exercise.

(3.4) Proposition. If A is a ring and I, J are ideals such that I + J = (1), then I ∩ J = IJ and the map

A/(I ∩ J)
∼−→ A/I ×A/J, x+ (I ∩ J) 7→ (x+ I, x+ J)

is a ring isomorphism.

Proof. The map α : A −→ A/I × A/J , α(x) = (x + I, x + J) is a ring homomorphism with kernel
Ker(α) = I ∩ J , inducing an isomorphism α : A/(I ∩ J)

∼−→ Im(α). We must show that α is surjective:
by assumption there exist i ∈ I and j ∈ J such that i + j = 1; then α(i) = (0, 1), α(j) = (1, 0) and
α(xj + yi) = (x+ I, y + J) for all x, y ∈ A. The inclusion IJ ⊂ I ∩ J always holds. Conversely, if a ∈ I ∩ J ,
then a = ai+ aj ∈ JI + IJ = IJ .

(3.5) Corollary (Chinese remainder theorem). If A is a ring and I1, . . . , In are ideals of A such that
Ij + Ik = (1) whenever j 6= k, then I1 ∩ · · · ∩ In = I1 · · · In and the map

A/(I1 ∩ · · · ∩ In)
∼−→ A/I1 × · · · ×A/In, x+ (I1 ∩ · · · ∩ In) 7→ (x+ I1, . . . , x+ In)

is a ring isomorphism.

(3.6) Example of idempotents. For each n ≥ 1 we have the idempotents en, 1 − en ∈ Z/10nZ corre-
sponding to (1, 0), (0, 1) under the isomorphism

Z/10nZ
∼−→ Z/2nZ× Z/5nZ

(in other words, en ≡ 1 (mod 2n) and en ≡ 0 (mod 5n)). Here is a table of the first few values of en:

n en (mod 10n) 1− en (mod 10n)

1 5 6
2 25 76
3 625 376
4 0625 9376

If we keep increasing n, we obtain in the limit two numbers e = · · · 0625 and 1− e = · · · 9376 with infinitely
many decimal digits which satisfy e2 = e, (1− e)2 = 1− e.
Question: what are they? Where do e and 1− e live?

Answer: e and 1− e are 10-adic integers, living in the projective limit Z10 = lim←−n
Z/10nZ.
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(3.7) Definition. Let A1, A2, . . . be sets (resp. groups, resp. rings) and A1
f1←−A2

f2←−A3
f3←−· · · maps

(resp. group homomorphisms, resp. ring homomorphisms). The projective limit of this system consists of
compatible sequences of elements:

A = lim←−n
An = {a = (an)n≥1 | an ∈ An, fn(an+1) = an for all n ≥ 1}.

It is a set (resp. a group, resp. a ring, with respect to operations computed termwise in each An). If each
map fn is a continuous map between topological spaces An+1 and An, then A ⊂

∏∞
n=1An has a natural

topology, induced by the product topology of the An.

(3.8) Example. For any integer b > 1, the ring of b-adic integers is defined as

Zb = lim←−n
Z/bnZ = {(an)n≥1 | an ∈ Z/bnZ, an+1 ≡ an (mod bn)}

(with each finite ring Z/bnZ being considered with its discrete topology). The elements of Zb can be written
explicitly in terms of an infinite (to the left!) b-adic expansion

x = · · ·x2x1x0 =

∞∑
i=0

xib
i, xi ∈ {0, 1, . . . , b− 1}.

For example, · · · 1111 =
∑∞
i=0 b

i = 1/(1 − b) ∈ Zb. If we allow finitely many b-adic digits with negative
powers of b, then we obtain b-adic numbers Qb ⊃ Zb. Elements of Qb can be written as

x = · · ·x2x1x0, x−1 · · ·x−m =

∞∑
i=−m

xib
i, xi ∈ {0, 1, . . . , b− 1}

(with m depending on x). The sets x+ bnZb (x ∈ Qb, n ∈ Z) form a basis of the natural topology of Qb.
If b = pr11 · · · p

rk
k , where ri ≥ 1 and pi are distinct prime numbers, then the Chinese remainder theorem

Z/bnZ
∼−→ Z/pnr11 Z× · · · × Z/pnrkk Z

implies that

Zb
∼−→ Zp1 × · · · × Zpk , Qb

∼−→ Qp1 × · · · ×Qpk .

In particular, it is enough to consider p-adic numbers (and p-adic integers), for prime numbers p.

(3.9) Exercise. (i) Why is Z100 = Z10?
(ii) For any prime number p the ring Zp is a domain and Qp is a field (equal to Frac(Zp)).
(iii) Show that Z∗b = {a ∈ Zb | a (mod b) ∈ (Z/bZ)∗}.
(iv) All ideals of Zp (where p is a prime number) are of the form (pn) (n ≥ 0).
(v) There is a natural inclusion Z ⊂ Zb (resp. Q ⊂ Qb) whose image is dense in the natural topology of Qb.

(3.10) Example. For any ring A, the projective limit lim←−n
A[x]/(xn) is naturally identified with the ring of

formal power series

A[[x]] = {
∞∑
i=0

aix
i | ai ∈ A}.

Note that a power series lies in A[[x]]∗ ⇐⇒ its constant term lies in A∗, in analogy with 3.9(iii).
If A = K is a field, then the rings K[[x]] and Zp have very similar properties (both are complete discrete

valuation rings – see IV.14 below). The only ideals of K[[x]] are (xn) (n ≥ 0) and the fraction field of K[[x]]
is naturally identified with the field of Laurent series

K((x)) =
⋃
m≥0

{
∞∑

i=−m
aix

i | ai ∈ K}.
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(3.11) Exercise (Lifting of idempotents). Let I be an ideal of a ring A.
(i) If e ∈ A satisfies e2 ≡ e (mod In) (n ≥ 1), then e′ = 3e2 − 2e3 ∈ A satisfies e′2 ≡ e′ (mod In+1) and
e′ ≡ e (mod In).

(ii) If A/I = A1 ×A2 is a non-trivial product of two rings, so is Â = lim←−n
A/In.

(iii) Where does the expression 3e2 − 2e3 come from? [From an explicit version of Hensel’s Lemma 4.12.]

4. Regular functions and ring-valued points in algebraic geometry

In algebraic geometry one studies solutions of systems of polynomial equations. The question posed in the
Introduction suggests that it may be of interest to consider solutions with coordinates in arbitrary rings.

(4.1) Consider the circle C : x2 + y2−1 = 0 (over an arbitrary base ring A) as a subspace of the plane with
coordinates x and y. The discussion in 2.6 makes it plausible that the quotient

O(C) = A[x, y]/(x2 + y2 − 1)

of the polynomial ring A[x, y] (= the ring of regular functions on the plane over A) by the principal ideal
(x2 + y2 − 1) (= the ideal of functions which vanish on C) should be the ring of regular functions on C.

This is, indeed, a good object to consider – it determines the set of points of C with values in an
arbitrary ring B ⊃ A (more generally, in an arbitrary A-algebra), by Proposition 4.4 below.

Moreover, the ring O(C) also determines the tangent space TbC at each point b = (u, v) of C, as
explained in 4.6 below. Recall the standard formula for the tangent space in the case A = R: it is the affine
line

∂(x2 + y2 − 1)

∂x
(u, v) (x− u) +

∂(x2 + y2 − 1)

∂y
(u, v) (y − v) = 2u(x− u) + 2v(y − v) = 0. (4.1.1)

The terminology in algebraic geometry is somewhat awkward: one considers as the tangent space TbC the
line passing through the origin

∂(x2 + y2 − 1)

∂x
(u, v)x+

∂(x2 + y2 − 1)

∂y
(u, v) y = 2ux+ 2vy = 0, (4.1.2)

which is the direction of the “physical tangent space” (4.1.1).

(4.2) Definition. Let A be a ring. An A-algebra is a pair (B, i) consisting of a ring B and a ring
homomorphism i : A −→ B (which is often omitted from notation). A homomorphism of A-algebras
(B, i) −→ (B′, i′) is a ring homomorphism f : B −→ B′ such that f ◦ i = i′. The set of such homomorphisms
will be denoted by HomA−Alg(B,B′).

(4.3) If A is a subring of B, then B is an A-algebra via the inclusion map.
Any ring B has a canonical structure of a Z-algebra: n ∈ Z is mapped to 1B + · · ·+1B (sum of n terms)

if n > 0 (resp. to −(1B + · · ·+ 1B) (sum of −n terms) if n < 0). Ring homomorphisms then coincide with
homomorphisms of Z-algebras.

(4.4) Proposition-Definition. Let A be a ring.
(i) For any A-algebra B the map

HomA−Alg(A[x1, . . . , xn], B)
∼−→ Bn, α 7→ (α(x1), . . . , α(xn))

is bijective. Its inverse is given by sending b = (b1, . . . , bn) ∈ Bn to the evaluation map evb : A[x1, . . . , xn] −→
B, which assigns to a polynomial f ∈ A[x1, . . . , xn] its value at b: evb(f) = f(b) = f(b1, . . . , bn).
(ii) Let I be an ideal of A[x1, . . . , xn]. We would like to define Z to be the space defined by the system of
polynomial equations f = 0 for f ∈ I. In concrete terms, we define, for any A-algebra B,

Z(B) = {b = (b1, . . . , bn) ∈ Bn | ∀f ∈ I f(b) = 0}
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to be the set of B-valued points of Z. We also define the ring of regular functions on Z to be O(Z) =
A[x1, . . . , xn]/I.
(iii) For any A-algebra B the map

HomA−Alg(O(Z), B) −→ Bn, β 7→ (β ◦ pr(x1), . . . , β ◦ pr(xn))

gives rise to a bijection HomA−Alg(O(Z), B)
∼−→ Z(B) ⊂ Bn.

Proof. (i) Immediate. (iii) A homomorphism of A-algebras α : A[x1, . . . , xn] −→ B factors as β ◦ pr :
A[x1, . . . , xn] −→ A[x1, . . . , xn]/I = O(Z) −→ B (for unique β) if and only if α(I) = 0 ⇐⇒ ∀f ∈ I 0 =
α(f) = f(α(x1), . . . , α(xn)) ⇐⇒ (α(x1), . . . , α(xn)) ∈ Z(B).

(4.5) Why do we need B? Why is it not enough to consider only A-valued points? A simple reason is
that Z(A) may well be empty (for example, for the conic Z : x2 + y2 + 1 = 0 over A = R), while Z(B) can
be large for bigger rings B ⊃ A (such as C ⊃ R).

A more interesting example (for A = C) is provided by Z : y = 0 (a horizontal line) and Z ′ : y2 = 0 (the
same line with multiplicity two). These are different objects, but their complex points coincide: Z(C) =
Z ′(C) = {(x, 0) | x ∈ C}. Their respective rings of regular functions are equal to O(Z) = C[x, y]/(y) = C[x]
and O(Z ′) = C[x, y]/(y2) = C[x] + C[x]ε, where ε = y (mod (y2)) 6= 0 ∈ O(Z ′), but ε2 = 0. This is a typical
example of an infinitesimal element in algebraic geometry.

(4.6) Dual numbers and the tangent space. More generally, let O(Z) = A[x1, . . . , xn]/I be as in
Proposition 4.4(ii). For any A-algebra B we let the dual numbers over B be the B-algebra B[ε] = B+Bε,
where ε2 = 0. Intuitively, we should think of ε as a tangent vector attached to a point.

The Taylor expansion for polynomials implies that, for any f ∈ A[x1, . . . , xn] and any b + b′ε = (b1 +
b′1ε, . . . , bn + b′nε) ∈ B[ε]n, we have

f(b+ b′ε) = f(b) + ε

n∑
j=1

∂f

∂xj
(b) b′j .

In particular,

Z(B[ε]) = {b+ b′ε ∈ B[ε]n | b ∈ Z(B), b′ ∈ (TbZ)(B)},

where TbZ denotes the tangent space (as mentioned above, it is the direction of the physical tangent space,
but we are not going to argue with the standard terminology) of Z at b, defined by the system of linear
equations

TbZ : ∀f ∈ I ∂f

∂x1
(b)x1 + · · ·+ ∂f

∂xn
(b)xn = 0

(it is enough to consider these equations only for a set of generators of I).
In particular, in the situation considered in 4.5 we have

Z(C[ε]) = {(x, 0) | x ∈ C[ε]} 6= Z ′(C[ε]) = {(x, εy′) | x ∈ C[ε], y′ ∈ C}.

Indeed, tangent vectors to the double line Z ′ have enough space to move around, but tangent vectors to the
usual line Z have to be horizontal.

(4.7) Points in C(Z/nZ), tangent spaces and Hensel’s lemma. What can one say about the points
of the circle C : x2 + y2 − 1 = 0 with values in Z/nZ, i.e., about the set of all solutions of the congruence
x2 + y2 − 1 ≡ 0 (modn)?

If n = pr11 · · · p
rk
k , where pi are distinct prime numbers, then the Chinese remainder theorem implies

that C(Z/nZ) = C(Z/pr11 Z) × · · · × C(Z/prkk Z). We can assume, therefore, that n = pr (r ≥ 1) is a prime
power. The next step is to relate C(Z/prZ) and C(Z/pr+1Z): given a solution (u, v) ∈ Z2 of the congruence
x2 + y2 − 1 ≡ 0 (mod pr), we try to lift (u (mod pr), v (mod pr)) ∈ C(Z/prZ) to a solution (mod pr+1). In
other words, we are looking for (a, b) ∈ (Z/pZ)2 such that
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(u+ pra)2 + (v + prb)2 − 1
?≡ 0 (mod pr+1),

which is equivalent to

(u2 + v2 − 1)/pr + (2ua+ 2vb) ≡ 0 (mod p). (4.7.1)

If p 6= 2, then at least one of the coefficients 2u or 2v is relatively prime to p, which means that (4.7.1) has
a solution (a0, b0) ∈ (Z/pZ)2.

Note that the non-zero linear equation

2ux+ 2vy ≡ 0 (mod p) (4.7.2)

is precisely the equation for the Z/pZ-valued points of the (one-dimensional) tangent space T(u,v)C of C at
the Z/pZ-valued point (u, v) = (u (mod p), v (mod p)) ∈ C(Z/pZ). It follows that the set of all solutions of
(4.7.1) is of the form

(a0, b0) + (T(u,v)C)(Z/pZ),

i.e., it is an affine line over Z/pZ with direction T(u,v)C. In particular, |C(Z/pr+1Z)| = p |C(Z/prZ)|.
This argument works for p 6= 2 because the tangent space (4.7.2) has dimension dimT(u,v)C = 1 =

dim(C) (geometrically, (u, v) is a smooth point of C over Z/pZ), but fails for p = 2 (C has no smooth
points over fields containing Z/2Z, since x2 + y2 − 1 = (x + y + 1)2 over such fields – the circle becomes a
doble line).

The same argument proves the following statement (a version of Hensel’s Lemma).

(4.8) Proposition. Let f ∈ Z[x1, . . . , xn], let Z : f(x1, . . . , xn) = 0. Assume that p is a prime, r ≥ 1
and that a = (a1, . . . , an) ∈ Zn is a solution of the congruence f(x1, . . . , xn) ≡ 0 (mod pr) (in other words,
a (mod pr) is an element of Z(Z/prZ)). If a (mod p) ∈ Z(Z/pZ) is a smooth point of Z over Z/pZ in the sense
that (∂f/∂xj)(a) 6≡ 0 (mod p) for some j = 1, . . . , n, then the fibre of the map Z(Z/pr+1Z) −→ Z(Z/prZ)
over a (mod pr) is an affine space under the Z/pZ-valued points of the tangent space

Ta (mod p)Z : (∂f/∂x1)(a)x1 + · · ·+ (∂f/∂xn)(a)xn ≡ 0 (mod p).

In particular, if all points in Z(Z/pZ) are smooth over Z/pZ, then the map Z(Z/pr+1Z) −→ Z(Z/prZ) is
surjective (hence so is the map Z(Zp) −→ Z(Z/pZ)) and its fibres have cardinality pn−1.

(4.9) Exercise. (i) For each r ≥ 1 the congruence x5 ≡ 10 (mod 11r) (resp. x5 ≡ 10 (mod 13r)) has five
solutions in Z/11rZ (resp. one solution in Z/13rZ). The equation x5 = 10 has five 11-adic solutions x ∈ Z11

(resp. one 13-adic solution x ∈ Z13).
(ii) What about the equation xn = a in Zp, where p is a prime number not dividing integers a and n ≥ 1?

(4.10) Consider, on the other hand, the equation

C ′ : y2 − (x3 + p) = 0,

where p is a prime number. The point (0, 0) ∈ C ′(Z/pZ) is not smooth over Z/pZ, since C ′ over Z/pZ
simplifies as y2− x3 = 0, which has a singularity at the origin, as remarked already in the Introduction. We
see immediately that (0, 0) ∈ C ′(Z/pZ) does not lie in the image of C ′(Z/p2Z) (in other words, the solution
(0, 0) of y2 − (x3 + p) ≡ 0 (mod p) does not lift to any solution of y2 − (x3 + p) ≡ 0 (mod p2)).

(4.11) Theorem on implicit functions (example). Consider again the circle C : f(x, y) = x2 +y2−1 =
0, this time over a ring A such that 2 ∈ A∗.

The tangent space TbC to C at the point b = (0, 1) is horizontal, since (∂f/∂x)(b) = 0 6= (∂f/∂y)(b).
In the classical case A = R the fact that (∂f/∂y)(b) 6= 0 implies that, in a suitable neighbourhood U of b,
the projection of C onto the horizontal line is a diffeomorphism between U and its image.

Let us analyse this situation from a purely algebraic perspective. Write a point “close to b” as (u, 1−v),
with u, v being “close to 0”. The equation of C then becomes u2 + v2 − 2v = 0, which yields, recursively, a
power series expansion for v in terms of u2:
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v =
u2

2
+
v2

2
=
u2

2
+

(u2 + v2)2

8
=
u2

2
+
u4

8
+
u2(u2 + v2)2

16
+

(u2 + v2)4

27
=
u2

2
+
u4

8
+
u6

16
+ · · · ∈ A[[u2]].

Of course, this is just the standard power series expansion

v = 1−
√

1− u2 =

∞∑
n=1

(−1)n−1

(
1/2

n

)
u2n, (4.11.1)

but it is obtained by an iterative procedure of lifting a solution v ∈ A[u]/(u2r) of the congruence

v2 − 2v + u2 ≡ 0 (modu2r)

to a unique solution modulo u2(r+1), starting with the solution v = u2/2 for r = 2. In other words, this is a
variant of 4.7–4.8, with Zp being replaced by A[[u2]].

(4.12) Exercise (Hensel’s Lemma, one variable version). Let I be an ideal of a ring A, let f ∈ A[X]
and a ∈ A be such that f(a) ≡ 0 (mod In) (n ≥ 1) and f ′(a) (mod I) is invertible in A/I.
(i) There exists b ∈ A (unique (mod In+1)) such that b ≡ a (mod In) and f(a) ≡ 0 (mod In+1).

(ii) There exists unique â ∈ Â = lim←−n
A/In such that f(â) = 0 and the image of â in A/In is equal to a.

(iii) What is the relation to Newton’s iterative method xn+1 = xn−f(xn)/f ′(xn) for finding approximations
to the roots of the equation f(x) = 0?

(4.13) Exercise. (i) If p 6= 2 is a prime and u ∈ Zp satisfies u ≡ 0 (mod p), then the power series (4.11.1)
evaluated at u converges to an element v ∈ Zp such that (u, 1− v) (mod p) = (0, 1) ∈ C(Z/pZ). Relate this
to the story explained in 4.7–4.8.
(ii) What happens if p = 2?

(iii) Is it obvious that
(

1/2
n

)
∈ Z[1/2] for all n ≥ 0? Show that

(
a/b
n

)
∈ Z[1/b] for all a, b ∈ Z, b 6= 0 and n ≥ 0.

[Hint:
(
Z
n

)
⊂ Z implies that ∀x ∈ Zp

(
x
n

)
⊂ Zp, for all primes p, by continuity and Exercise 3.9(v).]

(4.14) Exercise. Let n ≥ 1 be an integer.
(i) There exists un ∈ R[X] such that un ≡ X (mod (X2 + 1)) and u2

n + 1 ≡ 0 (mod (X2 + 1)n).
(ii) The class cn = un (mod (X2 + 1)n) ∈ R[X]/(X2 + 1)n is unique. Give an explicit formula for cn+1 in
terms of cn.
(iii) The formulas

αn : C[Y ] −→ R[X]/(X2 + 1)n, a+ bi 7→ a+ bun, Y 7→ X − cn

define a surjective morphism of R-algebras.
(iv) αn induces an isomorphism of R-algebras αn : C[Y ]/(Y n)

∼−→ R[X]/(X2 + 1)n.
(v) For every non-constant polynomial f ∈ R[X] there exists an isomorphism of R-algebras

R[X]/(f)
∼−→

M∏
j=1

R[X]/(Xaj )×
N∏
k=1

C[Y ]/(Y bk) (aj , bk ≥ 1).

(vi) What happens if we replace R in (v) by an arbitrary perfect field (see III.6.2 below)?
(vii)∗∗ What happens if we replace R in (v) by a non-perfect field?

5. Divisibility and unique factorisation

Every non-zero integer n can be written in a unique way as a product n = ±pr11 · · · p
rk
k , where pi are distinct

prime numbers. This unique factorisation property holds in other rings of interest.

(5.1) We are going to study three classes of integral domains:
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• Euclidean rings, which admit a generalised euclidean algorithm (Z, Z[i] or K[X] for any field K);
• Unique factorisation domains (UFD), in which factorisation into prime elements exists and is unique;
• Principal ideal domains (PID), in which every ideal is principal,

which have the following properties:

A is euclidean =⇒ A is a PID =⇒ A is a UFD =⇒ A[X] is a UFD.

Note that this implies that C[X,Y ] is a UFD, but not a PID (the ideal (X,Y ) is not principal). In fact, the
ring C[x1, . . . , xn] has dimension n, but a PID is at most one-dimensional.

(5.2) Definition. An integral domain A is a euclidean ring (with respect to a function ϕ : A −→ N =
{0, 1, 2, . . .}) if the following two properties hold: (i) ϕ(a) = 0 ⇐⇒ a = 0.
(ii) For every a, b ∈ A with b 6= 0 there exist q, r ∈ A such that a = qb+ r and ϕ(r) < ϕ(b).

(5.3) Examples. (i) A = Z, ϕ(n) = |n|.
(ii) A = K[X] (where K is a field), ϕ(f) = deg(f) + 1 if f 6= 0 (alternatively, ϕ(f) = 2deg(f) also works).
(iii) A = Z[i] = {x + iy | x, y ∈ Z}, ϕ(x + iy) = (x + iy)(x − iy) = |x + iy|2 = x2 + y2. Indeed, if
a, b ∈ Z[i] and b 6= 0, we can write a/b = u + iv and take q = x + iy ∈ Z[i], where x (resp. y) is
the closest integer to u ∈ Q (resp. to v ∈ Q). In this case |u − x|, |v − y| ≤ 1/2, which implies that
|a/b − q|2 = |u − x|2 + |v − y|2 ≤ (1/2)2 + (1/2)2 = 1/2 < 1, hence a = bq + r with r ∈ Z[i] and
ϕ(r) = |r|2 = |a− qb|2 < |b|2 = ϕ(b), as required.
(iv) A = Z[i

√
2] = {x + iy

√
2 | x, y ∈ Z}, ϕ(x + iy

√
2) = |x + iy

√
2|2 = x2 + 2y2. The argument from (iii)

applies, since (1/2)2 + 2(1/2)2 = 3/4 < 1.
(v) However, this argument breaks down for A = Z[i

√
d] and ϕ(a) = |a|2 for integers d ≥ 3, since (1/2)2 +

d(1/2)2 ≥ 1. This is no accident – none of these rings is a UFD.
(vi) Exercise: modify (iii) to show that the rings Z[(1 + i

√
d)/2] = {x + y(1 + i

√
d)/2 | x, y ∈ Z} with

ϕ(a) = |a|2 are euclidean for d = 3, 7, 11.

(5.4) Proposition. A euclidean ring A is a PID.

Proof. Let I ⊂ A be an ideal. If I = 0, then I = (0). If I 6= (0), then there exists b ∈ I \ {0} with minimal
value of ϕ(b) ≥ 1. We have (b) = bA ⊂ A. Conversely, if a ∈ I, then there exist q, r ∈ A such that a = qb+ r
(thus r = a − qb ∈ I) and ϕ(r) < ϕ(b). Minimality of ϕ(b) implies that r 6∈ I \ {0}, hence r = 0 and
a = qr ∈ (b). It follows that I ⊂ (b), and so I = (b).

(5.5) Definition. Let A be an integral domain.
(i) For a, b ∈ A \ {0} we say that b divides a (notation: b | a) if there exists c ∈ A (in fact, c 6= 0) such that
a = bc (equivalently, a ∈ (b) ⇐⇒ (a) ⊂ (b)). [Note that (b | a and a | b) ⇐⇒ a = bu for some u ∈ A∗.]
(ii) An element a ∈ A is irreducible if a 6∈ A∗ ∪ {0} and whenever a = bc with b, c ∈ A, then b ∈ A∗ or
c ∈ A∗ (but not both). Equivalently, a 6∈ A∗∪{0} is not irreducible if there exist b, c ∈ A\A∗ with a = bc.
[In A = Z, irreducible elements are of the form n = ±p, where p is a prime number.]

(5.6) Definition. A unique factorisation domain (UFD) is an integral domain A such that
(i) Each element a ∈ A \ {0} is of the form a = ux1 . . . xr, where u ∈ A∗, each xi is irreducible and r ≥ 0;
(ii) If ux1 . . . xr = vy1 . . . ys, where u, v ∈ A∗, each xi and yj is irreducible and r, s ≥ 0, then r = s and there
are invertible elements u1, . . . , ur ∈ A∗ and a permutation σ ∈ Sr such that xi = uiyσ(i) for all i = 1, . . . , r.

(5.7) Proposition. An integral domain A is a UFD ⇐⇒ it satisfies 5.6(i) and the condition
(ii’) If an irreducible element x ∈ A divides ab (a, b ∈ A), then x divides a or b (“Euclid’s lemma” in the
case A = Z).

Proof. “=⇒” This implication is immediate: write ab = xc, factor each element a, b, c as in 5.6(i) and use
5.6(ii) to conclude that x coincides (up to an invertible element) with an irreducible factor of a or b.
“⇐=” Assume that, in the situation of 5.6(ii), r ≤ s. If r = 0, then s = 0. If r ≥ 1, then x1 | vy1 . . . ys, hence
x1 divides some yj , by (ii’). After renumbering, we can assume that j = 1. As y1 is irreducible, we have y1 =
u1x1 with u1 ∈ A∗. We can divide both sides by x1 and repeat the same procedure several times, obtaining
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(after renumbering the yj ’s) equalities yj = ujxj (j = 1, . . . , r, uj ∈ A∗) and u = vu1 . . . uryr+1 . . . ys, which
implies that r = s.

(5.8) Example. Let A = Z[i
√

5] = {x + iy
√

5 | x, y ∈ Z}. The norm map N : A −→ N given by
N(x+ iy

√
5) = |x+ iy

√
5|2 = x2 + 5y2 is multiplicative in the sense that N(ab) = N(a)N(b) and N(1) = 1,

which implies that A∗ ⊂ {a ∈ A | N(a) = 1}. However, x2 + 5y2 = 1 with x, y ∈ Z is possible only if x = ±1
and y = 0, hence A∗ ⊂ {±1}, and so A∗ = {±1}.

There are no elements a ∈ A with norm N(a) = 3 or N(a) = 7. It follows that the elements 3, 7, 4±i
√

5 ∈
A are all irreducible. The equality

21 = 3 · 7 = (4 + i
√

5)(4− i
√

5)

then shows that A is not a UFD.

(5.9) Theorem. A PID is a UFD.

Proof. We must check that the conditions 5.6(i) and 5.7(ii’) hold in any PID A.
If a ∈ A \ {0} cannot be written as in 5.6(i), then a 6∈ A∗ ∪ {0} is not irreducible, hence a = a1b1 with
a1, b1 6∈ A∗ and (a) ( (a1). Moreover, at least one of a1 and b1 (say, a1) cannot be written as in 5.6(i), either.
We can continue this procedure and obtain factorisations an = an+1bn+1 with the same properties for all
n ≥ 1. As a result, we obtain an infinite chain of ideals (corresponding to divisibilities · · · | a3 | a2 | a1 | a)

(a) ( (a1) ( (a2) ( (a3) ( · · ·

The union of this chain of ideals is again an ideal, necessarily of the form (c) for some c ∈ A. The element
c is contained in (an) for some n ≥ 1, which implies that (an) = (an+1), which is not true, by construction.
This contradiction shows that 5.6(i) holds.
It remains to check 5.7(ii’). Assume that x is an irreducible element of A dividing ab. The ideal (x, b) is of
the form (c), where c ∈ A \ {0} (morally, c is the greatest common divisor of x and b). By definition, c | x,
hence x = cd for some d ∈ A. Irreducibility of x implies that either d ∈ A∗ (=⇒ x | c | b), or c ∈ A∗ (=⇒
(x, b) = (1), hence 1 = xu+ bv for some u, v ∈ A, which implies that a = axu+ abv is divisible by x).

(5.10) Greatest common divisor. Let A be a UFD. Fix a set of representatives P of prime elements of
A modulo A∗. Any a ∈ A \ {0} can then be written uniquely as

a = u
∏
x∈P

xvx(a), u ∈ A∗, vx(a) ∈ N

(where all but finitely many exponents vx(a) are equal to 0). Uniqueness of this factorisation implies that

b | a ⇐⇒ ∀x ∈ P vx(b) ≤ vx(a).

It follows that, for any a, b ∈ A \ {0}, the element

c =
∏
x∈P

xmin(vx(a),vx(b)) ∈ A \ {0}

divides both a and b (c is a common divisor of a and b). In addition, any common divisor of a and b
divides c. Note that c depends on the chosen set of representatives P ; however, the class of c in (A\{0})/A∗
does not – we denote this class by gcd(a, b) (the greatest common divisor of a and b).

Alternatively, one can denote by gcd(a, b) the principal ideal generated by (c) (this is again independent
on the choice of P ). If A is a PID (but not for a general UFD) the ideal (a, b) coincides with (c).

(5.11) Exercise. (i) Let A be a UFD. Assume that a, b, c ∈ A \ {0} satisfy gcd(a, b) = 1 and ab = cn

(n ≥ 1). Show that a = ucn1 and b = vcn2 for some u, v ∈ A∗ and c1, c2 ∈ A.
(ii) If A is a PID and a = uxr11 · · ·x

rk
k , where u ∈ A∗ and x1, . . . , xk are distinct irreducible elements of A,

then Corollary 3.5 applies, yielding a canonical ring isomorphism

A/(a)
∼−→ A/(xr11 )× · · · ×A/(xrkk ).
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(iii) If K is a field and a1, . . . , an are distinct elements of K, then the evaluation maps evai : K[X] −→ K
(g 7→ g(ai)) induce a ring isomorphism

K[X]/((X − a1) · · · (X − an))
∼−→ K × · · · ×K, g (mod (X − a1) · · · (X − an)) 7→ (g(a1), . . . , g(an)).

(iv) Under the isomorphism (iii), the idempotent ei corresponds to f(X)/((X − ai)f ′(ai)) (mod f), where
f = (X − a1) · · · (X − an).

(5.12) A diophantine equation. Let us determine all solutions x, y ∈ Z of the equation

y2 + 2 = x3.

Firstly, if x is divisible by 2, so is y, but then 2 = x3 − y2 is divisible by 4, which is impossible. Thus 2 - xy.
Secondly, we factorise the original equation

(y + i
√

2)(y − i
√

2) = x3

in the ring Z[i
√

2], which is a UFD by Example 5.3(iv) + Proposition 5.4 + Theorem 5.9. We claim that
gcd(y+ i

√
2, y− i

√
2) = 1. If not, then there exists an irreducible element π ∈ Z[i

√
2] dividing both y± i

√
2,

hence also dividing their sum 2y and difference 2i
√

2. It follows that its norm N(π) = ππ ∈ N divides (in Z)
both (2y)2 and (2i

√
2)(−2i

√
2) = 8, hence their gcd = 4 (since y is odd). However, 4 = (i

√
2)4 and i

√
2 is

irreducible in Z[i
√

2] (consider its norm); thus π = ui
√

2 for some u ∈ Z[i
√

2]∗ = {±1} (the argument from
Example 5.8 applies). However, i

√
2 does not divide y+ i

√
2, since y is odd. This contradiction proves that

gcd(y + i
√

2, y − i
√

2) = 1, as claimed.
Exercise 5.11(i) then shows that y+ i

√
2 = ud3 for some u ∈ {±1} (hence u = u3) and d ∈ Z[i

√
2]; thus

y + i
√

2 = (a+ bi
√

2)3

for some a, b ∈ Z, which is equivalent to

y = a(a2 − 6b2), 1 = b(3a2 − 2b2).

The only possibilities are b = ±1, hence 3a2 = 2b2 ± 1 = 2± 1, and so b = 1, a = ±1, y = ∓5, x = 3.
Conclusion: the only solutions x, y ∈ Z are x = 3, y = ±5.

(5.13) Exercise. Find all solutions x, y ∈ Z of the equation y2 + 11 = x3 (resp. of y2 + 28 = x3).

(5.14) Exercise. What happens if we try to solve y2 + y + 1 = x3 (x, y ∈ Z) by the same method?

(5.15) Exercise. Find all solutions x, y ∈ C[T ] of the equation y2 = x3 + T 2 (resp. of y2 = x3 + T ).

6. Prime ideals and maximal ideals

Property 5.7(ii’) can be reformulated by saying that, for any irreducible element x of a UFD A, the quotient
ring A/(x) is a domain.

(6.1) Definition. Let I be an ideal of a ring A. We say that I is a prime ideal (resp. a maximal ideal)
if A/I is a domain (resp. a field). The set of all prime ideals (resp. maximal ideals) of A will be denoted by
Spec(A) (resp. by Max(A) = Specm(A) = Specmax(A)). Of course, Max(A) ⊂ Spec(A).

(6.2) Examples. (i) (0) ∈ Spec(A) ⇐⇒ the ring A is a domain.
(ii) If A = K is a field, then Spec(K) = Max(K) = {(0)}.
(iii) Max(Z) = {(p) | p = prime number}, Spec(Z) = {(0)} ∪Max(Z).
(iv) More generally, if A is a PID, then Max(A) = {(x) | x = irreducible element}, Spec(A) = {(0)}∪Max(A).
(v) In particular, Max(C[X]) = {(X − a) | a ∈ C} and Spec(C[X]) = {(0)} ∪Max(C[X]). If we interpret
C[X] as the ring of regular functions on a complex line L, then (X − a) (resp. (0)) is the ideal of functions
vanishing at the point a ∈ L(C) (resp. of functions vanishing at all elements of L(C)).
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(vi) More generally, consider C[X,Y ] as the ring of regular functions on a complex plane. We shall see
in IV.6 below that Max(C[X,Y ]) = {(X − a, Y − b) | a, b ∈ C} and Spec(C[X,Y ]) = {(0)} ∪ {(f) | f ∈
C[X,Y ] \C, f irreducible}∪Max(C[X,Y ]). Geometrically, for each prime ideal P ∈ Spec(C[X,Y ]), the set
of complex points of the plane at which all elements of P vanish is an irreducible algebraic subvariety
of C2: the full plane if P = (0), the irreducible curve {(x, y) ∈ C2 | f(x, y) = 0} if P = (f), and the point
(a, b) if P = (X − a, Y − b).
(vii) Exercise: describe Spec and Max of R[X] (and guess the answer for R[X,Y ]).

(6.3) Proposition. An ideal I of A is maximal ⇐⇒ I 6= A and I is maximal among ideals with this
property (i.e., the only ideal J satisfying I ⊂ J 6= A is J = I).

Proof. Let pr : A −→ A/I be the projection. I 6= A has the maximality property as in the proposition iff

∀x 6∈ I I + (x) = A ⇐⇒ ∀x 6∈ I (pr(x)) = A/I ⇐⇒ ∀x 6∈ I pr(x) ∈ (A/I)∗ ⇐⇒ (A/I)∗ = A/I \ {0}.

(6.4) Functoriality. (i) Any ring homomorphism f : A −→ B induces a map f∗ : Spec(B) −→ Spec(A)
given by f∗(Q) = f−1(Q) (note that A/f−1(Q) is a subring of B/Q via f , hence is also a domain).
(ii) If f is surjective, then f∗ injective, A/f−1(Q) = B/Q for any Q ∈ Spec(B), Im(f∗) = {P ∈ Spec(A) |
P ⊃ Ker(f)} and f∗(Max(B)) = {m ∈ Max(A) | m ⊃ Ker(f)} (we can assume that f = pr : A −→ A/I, in
which case the last sentence in 2.8 applies).
(iii) In general, f∗(Max(B)) 6⊂ Max(A) (consider the inclusion f : Z ↪→ Q: (0) ∈ Max(Q), but f−1((0)) =
(0) 6∈ Max(Z)).

(6.5) Reduced and non-reduced rings. Let A be a ring. The set of all nilpotent elements of A√
(0) = {x ∈ A | ∃n ≥ 1 xn = 0}

is an ideal, called the nilradical of A. The ring A is reduced if
√

(0) = (0). In general, Ared = A/
√

(0) is

the biggest reduced quotient ring of A. For any ideal I of A we have (A/I)red = A/
√
I. For example, in the

geometric situation considered in 4.5, O(Z ′) = C[x, y]/(y2) and O(Z ′)red = C[x, y]/(y) = O(Z).
The nilradical

√
(0) is contained in any prime ideal of A, which implies, by 6.4(ii), that the canonical

projection pr : A −→ Ared induces bijections

pr∗ : Spec(Ared)
∼−→ Spec(A), Max(Ared)

∼−→ Max(A).

(6.6) Theorem. If the ring A is non-zero, then Max(A) 6= ∅.

Proof. The set S of all ideals I 6= A is non-empty ((0) ∈ S), partially ordered by inclusion and inductive
(every totally ordered subset {Iα} ⊂ S admits an upper bound in S (namely, the union of all Iα)). By Zorn’s
Lemma – which is equivalent to the axiom of choice, and therefore can be considered mostly harmless – the
set S contains a maximal element.

(6.7) Corollary. Let A be a ring. (i) If I 6= A is an ideal, then there exists a maximal ideal m ⊃ I.
(ii) A \A∗ =

⋃
m∈Max(A) m.

Proof. (i) Take m = pr−1(m), where pr : A −→ A/I 6= 0 is the projection and m ∈ Max(A/I).
(ii) If x ∈ A∗, then we have, for each m ∈ Max(A), x (modm) ∈ (A/m)∗ = (A/m) \ {0}, hence x 6∈ m.
Conversely, if x 6∈ A∗, then (x) 6= A, hence there exists m ∈ Max(A) containing (x).

(6.8) Proposition. Let A be an integral domain, let x ∈ A \ {0}.
(i) If (x) ∈ Spec(A), then x is an irreducible element of A.
(ii) If A is a UFD and x is an irreducible element of A, then (x) ∈ Spec(A).

Proof. (i) Exercise. (ii) This is 5.7(ii’).

(6.9) Example. As noted in 5.8, the ring Z[i
√

5] is not a UFD, since 21 can be factored

3 · 7 = 21 = 42 + 5 · 12 = (4 + i
√

5)(4− i
√

5)
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in two distinct ways into products of irreducible elements. However, these factorisations admit a common
“refinement”, which was already alluded to in 2.7.

The morphism “evaluation at i
√

5” induces a ring isomorphism

Z[X]/(X2 + 5)
∼−→ A = Z[i

√
5], g(X) 7→ g(i

√
5),

which implies that the ring A/3A is isomorphic to

Z[X]/(3, X2 + 5) = F3[X]/(X2 + 5) = F3[X]/(X2 − 1) = F3[X]/((X − 1)(X + 1))
∼−→ F3 × F3, (6.9.1)

where the last isomorphism is induced by the evaluation maps X 7→ 1 and X 7→ −1, as in 5.11(iii). In
particular, (3) is not a prime ideal of A.

Consider the projections pr1 and pr2 on the two factors in (6.9.1). The surjective ring homomorphisms

α1 : A
∼−→ Z[X]/(X2 + 5) −→ Z[X]/(3, X2 + 5)

∼−→ F3 × F3
pr1−−→F3

α2 : A
∼−→ Z[X]/(X2 + 5) −→ Z[X]/(3, X2 + 5)

∼−→ F3 × F3
pr2−−→F3

are given by the formulas

a+ bi
√

5 7→ a+ bX 7→ a+ b (mod 3)

a+ bi
√

5 7→ a+ bX 7→ a− b (mod 3),

which implies that

P1 := Ker(α1) = {a+ bi
√

5 | a, b ∈ Z, a+ b ≡ 0 (mod 3)} = (3, i
√

5− 1)

P2 := Ker(α2) = {a+ bi
√

5 | a, b ∈ Z, a− b ≡ 0 (mod 3)} = (3, i
√

5 + 1).

The isomorphisms A/Pi
∼−→ F3 induced by α1 and α2 show that P1, P2 ⊃ (3) are maximal ideals of A.

They are not principal (since there are no elements of A of norm 3) and their product is equal to

P1P2 = (3, i
√

5− 1)(3, i
√

5 + 1) = (9, 3i
√

5 + 3, 3i
√

5− 3, −6) = (3, 3i
√

5) = 3A = (3).

In other words, 3 is an irreducible element, but the principal ideal (3) admits a non-trivial factorisation.

A similar calculation with 7 replacing 3 yields (exercise!) two non-principal maximal ideals Q1, Q2 ⊃ (7)
such that A/Qi

∼−→ F7 and

(7) = Q1Q2, Q1 = (7, i
√

5 + 3), Q2 = (7, i
√

5− 3).

Computing the products

P1Q1 = (3, i
√

5− 1)(7, i
√

5 + 3) = (21, 3i
√

5 + 9, 7i
√

5− 7, 2i
√

5− 8) = (21, 3i
√

5 + 9, 2i
√

5− 8) =

= (21, i
√

5 + 17, 2i
√

5− 8) = (21, i
√

5− 4) = (i
√

5− 4)

P2Q2 = (3, i
√

5 + 1)(7, i
√

5− 3) = (21, 3i
√

5− 9, 7i
√

5 + 7, 2i
√

5 + 8) = (21, 3i
√

5− 9, 2i
√

5 + 8) =

= (21, i
√

5− 17, 2i
√

5 + 8) = (21, i
√

5 + 4) = (i
√

5 + 4),

we obtain a refinement of the factorisation (6.9.1):

(3) = P1P2, (7) = Q1Q2, (i
√

5 + 4) = P2Q2, (i
√

5− 4) = P1Q1, (21) = P1P2Q1Q2.

The above calculations are a special case of the Kummer-Dedekind theorem.

(6.10) One can show that the ring A = Z[i
√

5] has the following properties.
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Non-zero ideals of A admit unique factorisation into products of maximal ideals (A is a Dedekind ring)
and the square of any ideal of A is principal (exercise: compute P 2

1 , Q
2
1). More precisely, if I is a non-principal

ideal of A, then IP1 is principal (the ideal class group of A has two elements).

One can deduce from these properties that the equation y2 + 5 = x3 (x, y ∈ Z) has no solution (cf. 5.12).

In fact, one can easily determine the factorisation of any prime number p 6= 2, 5 in A, as follows. The
quadratic reciprocity law implies that for p ≡ 1, 3, 7, 9 (mod 20) the polynomial X2 + 5 has two distinct
roots in Z/pZ = Fp, hence (p) = PP ′ with A/P

∼−→ A/P ′
∼−→ Fp, as in the case p = 3 or 7. For

p ≡ −1,−3,−7,−9 (mod 20) the polynomial X2 + 5 is irreducible in Fp[X], hence (p) ∈ Max(A) and

A/(p)
∼−→ Fp[X]/(X2 + 5)

∼−→ Fp2 . The ideal classes are distributed as follows: P and P ′ (resp. PP1 and
P ′P1) are principal ⇐⇒ p ≡ 1, 9 (mod 20) (resp. if p ≡ 3, 7 (mod 20)), which implies that

∃x, y ∈ Z p = x2 + 5y2 ⇐⇒ p ≡ 1, 9 (mod 20),

∃x, y ∈ Z p = 2x2 + 2xy + 3y2 ⇐⇒ p ≡ 3, 7 (mod 20).

(6.11) Exercise. Let A be a UFD in which every non-zero prime ideal is maximal (“A has dimension ≤ 1”).
(i) If x is an irreducible element not dividing a ∈ A, then (a, xn) = (1), for all n ≥ 1.
(ii) For every a, b ∈ A \ {0} the ideal (a, b) is principal, generated by gcd(a, b).
(iii) Every non-zero ideal I of A contains the greatest common divisor of all elements of I \ {0}.
(iv) A is a PID.

7. Irreducibility of polynomials

In this section we show, following Gauss, that A[X] is a UFD for any UFD A. In particular, Z[x1, . . . , xn]
(and K[x1, . . . , xn], for any field K) is a UFD.

(7.1) Definition. Let A be a UFD with fraction field K = Frac(A). The content of a non-zero polynomial
f ∈ A[X]\{0} is the greates common divisor of its coefficients, denoted by ct(f) ∈ (A\{0})/A∗. The content
of f ∈ K[X] \ {0} is defined as ct(f) = ct(af)/a ∈ (K \ {0})/A∗, for any a ∈ A \ {0} such that af ∈ A[X].
Note that ct(f) ∈ (A \ {0})/A∗ ⇐⇒ f ∈ A[X] \ {0}.

(7.2) Lemma (Gauss). For any f, g ∈ K[X] \ {0} we have ct(fg) = ct(f)ct(g).

Proof. After replacing f by f/ct(f) and g by g/ct(g) we can assume that f, g ∈ A[X] \ {0} and ct(f) =
ct(g) = 1. We must show that ct(fg) = 1; in other words, that for each prime element π of A there exists
a coefficient of fg not divisible by π. Write f =

∑
aiX

i, g =
∑
bjX

j and fg =
∑
ckX

k. If i ≥ 0 (resp.
j ≥ 0) is the smallest index for which π does not divide ai (resp. bj), then ci+j = aibj + πd for some d ∈ A.
The product aibj is not divisible by π (since neither of bi and cj is, and A is a UFD), which implies that π
does not divide ci+j , as required.

(7.3) Corollary. (i) If f ∈ A[X] \ {0} is a product f = gh with g, h ∈ K[X] \ K, then there exist
g1, h1 ∈ A[X] \A such that f = g1h1 [This is false, in general, for domains which are not UFD].
(ii) If f ∈ A[X] \ {0} and ct(f) = 1, then fK[X] ∩ A[X] = fA[X]. Equivalently, the canonical ring
homomorphism A[X]/(f) −→ K[X]/(f) is injective.

Proof. (i) We have f = g1h1, where g1 = g/ct(g) and h1 = h ct(g). Both g1 and h1 are non-constant and lie
in A[X], since ct(g1) = 1 and ct(h1) = ct(g)ct(h) = ct(f) ∈ (A \ {0})/A∗.
(ii) If g ∈ K[X] \ {0} satisfies fg ∈ A[X], then ct(g) = ct(f)ct(g) = ct(fg) ∈ (A \ {0})/A∗, hence g ∈ A[X].

(7.4) Proposition. If A is a UFD with fraction field K, then the irreducible elements of A[X] are as follows.
(i) Irreducible elements of A.
(ii) Non-constant polynomials f ∈ A[X] \A with ct(f) = 1 which are irreducible in K[X].

Proof. Firstly, the fact that A is a domain implies that so is A[X] and that A[X]∗ = A∗. Assume that f is
an irreducible element of A[X].
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If deg(f) = 0, then f is necessarily an irreducible element of A. Conversely, for any irreducible f ∈ A
the quotient ring A[X]/(f) = (A/(f))[X] is a domain, since A/(f) is, hence f is irreducible in A[X] (use
both parts of Proposition 6.8).

If deg(f) > 0, then ct(f) = 1 (otherwise there would be a non-trivial factorisation f = ct(f) (f/ct(f)))
and f is irreducible in K[X], by Corollary 7.3(i). Conversely, if f ∈ A[X]\A has ct(f) = 1 and is irreducible
in K[X], then K[X]/(f) is a domain by Proposition 6.8(ii) (since K[X] is a UFD), hence so is A[X]/(f), by
Corollary 7.3(ii). It follows that f is irreducible in A[X], by Proposition 6.8(i).

(7.5) Theorem. If A is a UFD, so is A[X].

Proof. We must check that A[X] satisfies 5.6(i) and 5.7(ii’). The second condition was verified in the course
of the proof of Proposition 7.4, so it is enough to check that any non-zero element f of A[X] is a product of an
invertible element and finitely many irreducible elements. If f ∈ A, then 5.6(i) holds in A and we conclude by
Proposition 7.4(i). If f 6∈ A, write f = g1 · · · gr, where each gi is an irreducible non-constant element of the
UFD K[X] (K = Frac(A)). The rescaled polynomials hi = gi/ct(gi) satisfy ct(hi) = 1, thus hi ∈ A[X] \ A
and hi is irreducible in A[X], by Proposition 7.4(ii). Writing f = ct(g1) · · · ct(gr)h1 · · ·hr = ct(f)h1 · · ·hr
and factoring ct(f) ∈ A \ {0} into a product of irreducible elements of A we obtain the desired factorisation
of f in A[X].

(7.6) Theorem (Eisenstein’s irreducibility criterion). Let A be a domain, let P ∈ Spec(A). Any
monic polynomial f = Xn + an−1X

n−1 + · · · + a0 ∈ A[X] such that a0, . . . , an−1 ∈ P and a0 6∈ P 2 is an
irreducible element of A[X].

Proof. If f = gh with g, h ∈ A[X] \ ({0} ∪ A∗), then g, h 6∈ A and we can assume that both g and h
are monic polynomials. Denote by g (resp. h) the image of g (resp. h) in (A/P )[X] ⊂ (Frac(A/P ))[X].
As gh = f = Xn, unique factorisation in (Frac(A/P ))[X] implies that g = Xr and h = Xn−r for some
1 ≤ r ≤ n. In other words, g = Xr + br−1X

r−1 + · · · + b0 and h = Xn−r + cn−r−1X
n−r−1 + · · · + c0 with

bj , ck ∈ P for all j, k. It follows that a0 = b0c0 ∈ P 2, which contradicts our assumptions.

(7.7) Corollary. If, in addition, A is a UFD with fraction field K, then f is irreducible in K[X].

Proof. Apply Corollary 7.3(i).

(7.8) Exercise. Let a(Y ) ∈ C[Y ] \C be a polynomial which has at least one simple root. Show that, for
any n ≥ 1, the polynomial Xn + a(Y ) is an irreducible element of C[X,Y ].
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II. Modules

1. Basic concepts

Modules (in particular, ideals) are linear objects. As a result, they are easier to study than rings themselves.
On the other hand, modules over rings other than fields tend not to have a basis (i.e., are not free in general).

(1.1) Let R be a ring (commutative and unital, of course). Recal that an R-module is an abelian group M
equipped with multiplication by elements of R (R×M −→M , (r,m) 7→ rm) satisfying the usual properties
(r(m+m′) = rm+ rm′, (r+ r′)m = rm+ r′m, r(r′m) = (rr′)m, 1m = m for all r, r′ ∈ R and m,m′ ∈M).
In particular, if R = K is a field (resp. if R = Z), then M is a K-vector space (resp. an abelian group).

The standard concepts of a submodule, quotient module and the submodule 〈S〉 ⊂ M generated by a
subset S ⊂M work analogously as in the case of vector spaces.

The multiplication in the ring itself makes R into an R-module; its submodules are the ideals of R.
For any ideal I of R the set of elements of M killed by I

M [I] := {m ∈M | ∀a ∈ I am = 0}
is a submodule of M . If I = (x) is principal, then M [(x)] = M [x] := {m ∈ M | xm = 0}. If I ′ is another
ideal, then M [I] ∩M [I ′] = M [I + I ′].

We denote by IM ⊂M the submodule generated by the products am, where a ∈ I and m ∈M .

(1.2) A homomorphism of R-modules is a homomorphism of abelian groups f : M −→ N satisfying
f(rm) = rf(m), for all r ∈ R and m ∈ M . The set of all such homomorphisms HomR(M,N) is an
abelian group with respect to addition (f + f ′)(m) = f(m) + f ′(m), in fact an R-module for the operation
(rf)(m) = f(rm) = rf(m) (this is true only for modules over commutative rings). The kernel of f

Ker(f) = {m ∈M | f(m) = 0} ⊂M
is a submodule of M , the image of f

Im(f) = {f(m) | m ∈M} ⊂ N
is a submodule of N and the cokernel of f , Coker(f) = N/Im(f), is a quotient module of N .

(1.3) Change of the ring. If f : R′ −→ R is a ring homomorphism, then any R-module M becomes an
R′-module via f , with multiplication given by r′m := f(r′)m.

In particular, an R/I-module (for an ideal I of R) can be identified with an R-module M such that
M = M [I] (via the projection pr : R −→ R/I). This implies that a Z/nZ-module is an abelian group M
such that nM = 0 (for any n ∈ Z).

(1.4) Direct sums and products. Let J be a non-empty set. Assume that we are given, for each α ∈ J ,
an R-module Mα. The direct product of these modules is the cartesian product∏

α∈J
Mα = {(mα)α∈J | mα ∈Mα}

with the R-module structure given by

(mα) + (m′α) = (mα +m′α), r(mα) = (rmα).

For each β ∈ J the projection map pβ :
∏
α∈JMα −→ Mβ , pβ((mα)α∈J) = mβ is a (surjective) module

homomorphism. The direct product is the “smallest” module with this property: for each R-module N
equipped with module homomorphisms fβ : N −→ Mβ there exists a unique module homomorphism f :
N −→

∏
α∈JMα such that fβ = pβ ◦ f for all β ∈ J , namely, f(n) = (fα(n))α∈J .

N

fβ

##GGGGGGGGGGGG
f //____ ∏

α∈JMα

pβ

��
Mβ
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Dually, the direct sum of the modules Mα is the submodule⊕
α∈J

Mα = {(mα)α∈J ∈
∏
α∈J

Mα | mα = 0 for all but finitely many α ∈ J} ⊂
∏
α∈J

Mα

(in particular, it coincides with the direct product if the set J is finite). For each β ∈ J the inclusion
iβ : Mβ ↪→

⊕
α∈JMα, iβ(x) = (mα) with mα = x for α = β and mα = 0 otherwise is an (injective) module

homomorphism. Again, the direct sum is the “smallest” module with this property: for each R-module
N equipped with module homomorphisms gβ : Mβ −→ N there exists a unique module homomorphism
g :

⊕
α∈JMα −→ N such that gβ = g ◦ iβ for all β ∈ J , namely, g(

∑s
k=1 iβk(xk)) =

∑s
k=1 gβk(xk).

This uses the fact that each element of the direct sum admits a unique decomposition as a finite sum
iβ1

(x1) + · · ·+ iβs(xs) for distinct β1, . . . , βs ∈ J , xk ∈Mβk and s ≥ 0.

Mβ

iβ

��

gβ

##GGGGGGGGGGGG

⊕
α∈JMα

g //____ N

The previous discussion can be summed up by saying that the maps f 7→ (pα◦f)α∈J and g 7→ (g◦iα)α∈J
induce bijections of sets (in fact, isomorphisms of R-modules)

HomR(N,
∏
α∈J

Mα)
∼−→
∏
α∈J

HomR(N,Mα), HomR(
⊕
α∈J

Mα, N)
∼−→
∏
α∈J

HomR(Mα, N). (1.4.1)

If J is empty, it is useful to define the corresponding direct sum and product to be the zero module 0 = {0}.
In the special case when Mα = M for all α ∈ J we are going to use the notation

M (J) =
⊕
α∈J

M ⊂
∏
α∈J

M = MJ .

The direct sum (= the direct product) of n copies of M will be denoted by Mn. In another special case
when each Mα is a submodule of a fixed R-module M there is a canonical morphism⊕

α∈J
Mα −→M, (mα) 7→

∑
α∈J

mα (a finite sum!). (1.4.2)

Its image is the submodule
∑
α∈JMα ⊂M generated by the Mα. If the morphism (1.4.2) is injective (which

is equivalent to Mβ ∩
∑
α∈J\{β}Mα = 0 for all β ∈ J), it identifies

⊕
α∈JMα with

∑
α∈JMα ⊂M .

(1.5) Free modules. The free R-module on a set J is the R-module R(J) =
⊕

α∈J R. Its elements
are finite linear combinations

∑
α∈J rαe(α) (with only finitely many rα ∈ R non-zero), where e(α) are the

elements of the “canonical basis” of R(J): e(α)β = 1 if β = α (resp. e(α)β = 0 if β 6= α). There is no
R-linear relation between the e(α): for any R-module N and any collection of elements n(α) ∈ N (α ∈ J)
there is a unique homomorphism of R-modules f : R(J) −→ N such that f(e(α)) = n(α) for all α ∈ J ,
namely, f(

∑
α∈J rαe(α)) =

∑
α∈J rαn(α) (this is a special case of (1.4.1) for Mα = R).

(1.6) Proposition-Definition. Assume that the ring R is non-zero. An R-module M is free if there exists
an isomorphism of R-modules f : R(J) ∼−→ M for some set J . A basis of M is the image of the canonical
basis of R(J) under any such f . The rank of the free module M is the cardinality of J ; it depends only on
M . [In the special case R = Z we obtain the notion of a free abelian group.]

Proof. Assume that there exists an isomorphism of R-modules f : R(J) ∼−→ R(J′). We must show that J and
J ′ have the same cardinality. According to Theorem I.6.6 there exists a maximal ideal I of R; the quotient
ring R/I = K is then a field. The isomorphism f induces an isomorphism (R/I)(J) = R(J)/IR(J) ∼−→
R(J′)/IR(J′) = (R/I)(J′) of R/I-modules, hence an isomorphism K(J) ∼−→ K(J′) of K-vector spaces. The
statement follows from the fact that two bases of any vector space have the same cardinality.
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(1.7) Examples. (i) For a field K, all K-modules (= K-vector spaces) are free.

(ii) Exercise: the additive group of Q is not contained in any free abelian group.

(1.8) Generators and relations. Let N be an R-module. If we are given elements n(α) ∈ N (α ∈ J)
which generate N (a set of not necessarily distinct generators of N), then the module homomorphism
f : R(J) −→ N constructed in 1.5 is surjective. Its kernel consists of finite linear combinations

∑
α∈J rαe(α)

for which
∑
α∈J rαn(α) = 0 ∈ N , in other words, of R-linear relations between the generators n(α).

(1.9) Definition. An R-module N is finitely generated (or is an R-module of finite type) if it admits
a finite generating set ( ⇐⇒ there exists a surjective homomorphism of R-modules f : Ra −→ N for some
a ∈ N). It is finitely presented if there exists f as above for which the module of relations Ker(f) is also
finitely generated ( ⇐⇒ N is defined by finitely many generators and finitely many relations). [These two
properties are equivalent if the ring R is noetherian; see Proposition 3.6 below.] N is cyclic if there is a
surjective homomorphism of R-modules f : R −→ N (⇐⇒ N is isomorphic to R/I, for some ideal I of R).

(1.10) Modules over a product. Let R = R1 × · · · × Rn be a product of rings, let ek ∈ R be the
corresponding idempotents (Rk = ekR) as in I.3.2. Proposition I.3.3 has an obvious analogue for modules:
any R-module M defines Rk-modules Mk := ekM ⊂ M with respect to the product (ekr)(ekm) := ek(rm)
and the map

M −→M1 ⊕ · · · ⊕Mn, m 7→ (e1m, . . . , enm)

is an isomorphism of R-modules (with each Mk considered as an R-module via the projection pk : R −→ Rk).
The inverse map is the sum of the inclusions Mk ↪→M , as in (1.4.2).

(1.11) Torsion modules. Assume that M is a module over a domain R. An element m ∈M is torsion if
there is a ∈ R \ {0} such that am = 0. The union of all torsion elements is the torsion submodule of M :

Mtors =
⋃
a6=0

M [a] =
⋃
I 6=0

M [I] ⊂M,

where I runs through all non-zero ideals of R. We say that M is a torsion module (resp. a torsion-free
module) if M = Mtors (resp. if Mtors = 0). For any M the module M/Mtors is torsion-free. Any free
module is torsion-free.

The structure theorem for finitely generated abelian groups (= Z-modules) proved in Algebra 1 implies
that a finitely generated torsion-free abelian group is free. Example 1.7(ii) shows that this is no longer true
for abelian groups which are not finitely generated.

(1.12) Proposition-Definition (Primary decomposition for torsion abelian groups). Let X be a
torsion abelian group. For every prime number p denote by X(p) := {x ∈ X | ∃a ≥ 1 pax = 0} =

⋃
a≥1X[pa]

the p-primary component of X.
(i) If X = X[n], where n = pa11 · · · parr , r ≥ 0, ai ≥ 1 and pi are distincts prime numbers, then the inclusions
X[paii ] ↪→ X[n] = X give rise – as in (1.4.2) – to an isomorphism of abelian groups

X[pa11 ]⊕ · · · ⊕X[parr ] = X(p1)⊕ · · · ⊕X(pr)
∼−→ X = X[n] = X[pa11 · · · parr ].

In particular, X(p) = 0 for every prime number p not dividing n.
(ii) If X is arbitrary, then the inclusions X(p) ↪→ X give rise to an isomorphism⊕

p prime

X(p)
∼−→ X.

Proof. (i) This is a consequence of 1.10 for the isomorphism Z/nZ
∼−→ Z/pa11 Z × · · · × Z/parr Z. (ii) Every

element of the left hand side (resp. right hand side) is contained in some X[pa11 ]⊕· · ·⊕X[parr ] (resp. in some
X[pa11 · · · parr ]); the statement (i) implies injectivity (resp. surjectivity) of the corresponding map (1.4.2).
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(1.13) Exercise. State and prove a generalisation of 1.12 for torsion modules over a PID.

(1.14) Exercise. Let A be a finite abelian group. The set {m ∈ Z | mA = 0} is a non-zero subgroup of Z;
its positive generator is called the exponent of A. Show that:
(1) The exponent of A divides the order of A.
(2) The exponent of A is equal to the product of the exponents of the p-primary components of A.
(3) There exists an element of A whose order is equal to the exponent of A.

(1.15) Exercise (Duality and the structure theorem for finite abelian groups). Let A be a finite
abelian group. A character of A is a homomorphism of abelian groups χ : A −→ C∗. Show that:
(1) The characters of A form an abelian group Â (the dual group) with respect to multiplication : (χχ′)(a) =
χ(a)χ′(a).

(2) The exponent of Â divides the exponent of A.

(3) If A is cyclic of order n, so is Â.

(4) If A = B ⊕ C, then Â = B̂ ⊕ Ĉ.

[If one admits (9) below, deduce from (3) and (4) that Â is isomorphic to A, for every A.]

(5) Every homomorphism of abelian groups α : B −→ A defines a dual homomorphism α̂ : Â −→ B̂,
α̂(χ) = χ ◦ α : B

α−→A
χ−→C∗.

(6) α is surjective =⇒ α̂ is injective.
(7)∗ α is injective =⇒ α̂ is surjective.
(8) Let a ∈ A be an element whose order is equal to the exponent of A (see 1.14(3)); denote by B the cyclic

subgroup generated by a and by α : B −→ A the inclusion. Thanks to (3) and (7) there exists χ ∈ Â for
which the order of χ(a) is equal to the order of a. Show that A = B ⊕Ker(χ).
(9) Every finite abelian group is a direct sum of cyclic groups.

(10) The biduality homomorphism A −→ ̂̂
A, a 7→ (χ 7→ χ(a)) is an isomorphism.

(11) Let B ⊂ A be a subgroup; set C = A/B. Show that Ĉ is a subgroup of Â and B̂ = Â/Ĉ.

(12) The map B 7→ B̂ defines a bijection between the set of all subgroups of A and the set of all quotient

groups of Â.
(13) Every subgroup of A is isomorphic to a quotient group of A.

(1.16) Exercise. Let A be a finite abelian group. For every integer d ≥ 1 denote by sd(A) (resp. qd(A))
the number of subgroups (resp. of quotient groups) of A of order d. Let s(A) =

∑
d sd(A) (resp. q(A) =∑

d qd(A)) be the number of all subgroups (resp. of all quotient groups) of A.
(1) Determine sd(A) and qd(A) if A is a cyclic group of order n.
(2) Show that sd(A) = sd(A[d]) and qd(A) = qd(A/dA).
(3) Show that, if de = |A|, then sd(A) = qe(A). Deduce from this the equality s(A) = q(A).
(4) If the order of A is relatively prime to the order of B, then s(A⊕B) = s(A)s(B).
(5) Show that s(A) =

∏
p|n s(A(p)), where n = |A|.

(6) Let p be a prime number. Determine, for every i ≥ 0,

spi(Z/pZ⊕ Z/pZ), spi(Z/pZ⊕ Z/p2Z), spi(Z/pZ⊕ Z/pnZ) (n ≥ 2).

(7) Determine all finite abelian groups A for which s(A) = 4 (resp. s(A) = 5).

(8) Show that sd(A) = qd(Â) = qd(A), where Â is the dual group (see 1.15).

2. The language of exact sequences

(2.1) Definition. A sequence of homomorphisms of R-modules

Ma −→ · · · −→Mi−1
fi−1−→Mi

fi−→Mi+1 −→ · · · −→Mb

is exact at the term Mi if Im(fi−1) = Ker(fi) (which implies that fifi−1 = 0 and Coker(fi−1)
∼−→ Im(fi));

it is exact if it is exact at Mi for all a < i < b. A morphism (resp. an isomorphism) between such an
exact sequence and another exact sequence

Na −→ · · · −→ Ni−1
gi−1−→Ni

gi−→Ni+1 −→ · · · −→ Nb

23



is given by homomorphisms (resp. isomorphisms) of R-modules ui : Mi −→ Ni (a ≤ i ≤ b) such that
gi ◦ ui = ui+1 ◦ fi for all i = a, . . . , b− 1.

(2.2) Examples. (1) 0 −→M
f−→N is exact ⇐⇒ Ker(f) = 0 ⇐⇒ f is injective.

(2) M
f−→N −→ 0 is exact ⇐⇒ Im(f) = N ⇐⇒ Coker(f) = 0 ⇐⇒ f is surjective.

(3) 0 −→M
f−→N −→ 0 is exact ⇐⇒ f is an isomorphism.

(4) If M is a submodule of N , then 0 −→ M
i−→N

p−→N/M −→ 0 is exact, where i and p denote the
inclusion and the canonical projection, respectively.
(5) Any short exact sequence 0 −→ M

f−→N
g−→P −→ 0 is naturally isomorphic to a sequence of the

form considered in (4), namely, to the sequence 0 −→ f(M) −→ N −→ N/f(M) −→ 0.
(6) For any morphism f : M −→ N , the sequence 0 −→ Ker(f) −→M

f−→N −→ Coker(f) −→ 0 is exact.
(7) For any short exact sequence 0 −→M

f−→N
g−→P −→ 0 the following conditions are equivalent (if they

are satisfied, we say that the sequence is split):
(a) there exists a morphism s : P −→ N such that gs = idP ;
(b) there exists a morphism r : N −→M such that rf = idM ;
(c) the 7-tuple (M,N,P, f, g, r, s) is isomorphic to (X1, X1 ⊕ X2, X2, i1, p2, p1, i2), where pi(x1, x2) = xi,
i1(x1) = (x1, 0) and i2(x2) = (0, x2).
In concrete terms, a splitting s is equivalent to a choice of submodule M ′ ⊂ N complementary to f(M) ⊂ N
in the sense that f(M) ⊕M ′ = N (M ′ = Im(s) and s is the inverse of the isomorphism M ′ ↪→ N

g−→P
composed with the inclusion M ′ ↪→ N).
(8) An exact sequence from Definition 2.1 can be cut into short exact sequences

0 −→ Pi
αi−→Mi

βi−→Pi+1 −→ 0 (a < i < b− 1), Pi = Im(fi−1) = Ker(fi), αi+1βi = fi,

and vice versa.

(2.3) Remarks. (1) In particular, an R-module M is finitely generated ⇐⇒ there exists an exact sequence

Rn −→M −→ 0.

It is finitely presented ⇐⇒ there exists an exact sequence

Rm −→ Rn −→M −→ 0.

It is useful to continue this process and consider exact sequences of the form

Ran −→ · · · −→ Ra1 −→ Ra0 −→M −→ 0

(“relations between relations between relations. . . ”). An important result of Hilbert states that for R =
K[x1, . . . , xn] (where K is a field) every finitely generated R-module M sits in an exact sequence

0 −→ Ran −→ · · · −→ Ra1 −→ Ra0 −→M −→ 0

(M admits a “free resolution of length n”).
(2) Exercise 1.15(6),(7),(11) implies that the “duality functor” which associates to a finite abelian group A

its dual group Â = HomZ(A,C∗) is exact: for any exact sequence of finite abelian groups

0 −→ A
f−→B

g−→C −→ 0

the sequence

0 −→ Ĉ
ĝ−→ B̂

f̂−→ Â −→ 0

is also exact.
(3) In fact, this property holds for exact sequences of arbitrary abelian groups (C∗ is an “injective abelian
group”), but a proof of 1.15(7) in the general situation requires a use of Zorn’s Lemma.
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(2.4) Snake Lemma. Let

(0 −→) A
f−→ B

g−→ C −→ 0yα yβ yγ
0 −→ A′

f ′−→ B′
g′−→ C ′ (−→ 0)

be a commutative diagram with exact rows. Then there is an exact sequence

(0 −→) Ker(α)
f−→ Ker(β)

g−→ Ker(γ)
∆−→ Coker(α)

f ′−→ Coker(β)
g′−→ Coker(γ) (−→ 0),

in which the non-obvious morphism ∆ : Ker(γ) −→ Coker(α) is given by “∆ = f ′−1βg−1”.

Proof. We only give a definition of ∆ and leave the verification of exactness as an exercise. Let c ∈ Ker(γ).
As g is surjective, there exists b ∈ B such that g(b) = c. As g′β(b) = γg(b) = γ(c) = 0, there exists a′ ∈ A′
(unique, since f ′ is injective) such that f ′(a′) = β(b). We wish to define ∆(c) := a′ + α(A) ∈ Coker(α). In
order to check that this definition makes sense we must analyse what happens if we take two different elements
b1, b2 ∈ B satisfying g(bi) = c. As b1− b2 ∈ Ker(g) = Im(f), we have b1− b2 = f(a) for some a ∈ A; thus the
corresponding elements a′i ∈ A′ (where f ′(a′i) = β(bi)) satisfy f ′(a′1 − a′2) = β(b1 − b2) = βf(a) = f ′α(a),
hence a′1 − a′2 = α(a) ∈ α(A) (since f ′ is injective), which implies that ∆(c) := a′1 + α(A) = a′2 + α(A) ∈
Coker(α) is, indeed, independent of the choice of b. As ∆ is a composition of possibly multivalued R-linear
maps, it is also R-linear.

(2.5) Exercise. For any homomorphisms of R-modules X
f−→Y

g−→Z the following sequence is exact.

0 −→ Ker(f) −→ Ker(g ◦ f)
f−→ Ker(g) −→ Coker(f)

g−→ Coker(g ◦ f) −→ Coker(g) −→ 0.

(2.6) Exercise. If 0 −→ M
f−→N

g−→P −→ 0 is an exact sequence, then every module homomorphism
h : R(J) −→ P is of the form h = g ◦ h′ for some homomorphism h′ : R(J) −→ N (“free modules are
projective”).

(2.7) Exercise. (i) Let 0 −→ M −→ N −→ P −→ 0 be an exact sequence. If M and P are R-modules of
finite type, so is N .
(ii) If M is an R-module of finite presentation, then for every surjective homomorphism g : Rb −→M (with
b ∈ N) the kernel Ker(g) is an R-module of finite type.
(iii) Why did we wait with (ii) until §2?

3. Noetherian (after Emmy Noether) rings and modules

(3.1) Definition. An R-module M is noetherian if it satisfies the following equivalent conditions.
(i) Every submodule N of M is finitely generated.
(ii) Ascending chain condition. Every ascending chain of submodules M1 ⊂ M2 ⊂ · · · ⊂ M of M
stabilises: there is an index j such that Mk = Mj for all k ≥ j.
(iii) Every non-empty set S of submodules of M contains a maximal element P ∈ S with respect to inclusion
(i.e., there is no P ′ ∈ S such that P ( P ′).

Proof (of the fact that the three conditions are equivalent). (i) =⇒ (ii) The union N =
⋃∞
i=1Mi is a submodule

of M , hence generated by a finite set of elements n1, . . . , nr ∈ N , by (i). If j ≥ 1 is large enough for Mj to
contain all n1, . . . , nr, then N = Mj and Mk = Mj for all k ≥ j.
(ii) =⇒ (iii) There exists M1 ∈ S, since S is non-empty. If S does not have a maximal element, then there
exist M2 ∈ S such that M1 ( M2, M3 ∈ S such that M2 ( M3 etc., hence a strictly increasing chain of
submodules M1 (M2 (M3 · · · ⊂M , in contradiction with (ii).
(iii) =⇒ (i) Let S be the set of finitely generated submodules of a fixed submodule N of M . It is non-empty,
since 0 ∈ S, hence it contains a maximal element P , by (iii). If P 6= N , then there exists n ∈ N \ P . The
submodule module P + Rn ⊂ N generated by P and n is again finitely generated, hence P + Rn ∈ S. On
the other hand, P ( P + Rn, which contradicts the maximality of P . It follows that P = N , hence N is
finitely generated.
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(3.2) Proposition. If M is an R-module and N a submodule of M , then M is noetherian ⇐⇒ both N
and M/N are noetherian.

Proof. Denote by pr : M −→ M/N the canonical projection. If M is noetherian, so are N (by 3.1(i)) and
M/N (indeed, for any submodule X ⊂ M/N the submodule pr−1(X) ⊂ M is finitely generated, hence so
is X = pr(pr−1(X))). Conversely, if N and M/N are noetherian and M1 ⊂ M2 ⊂ · · · ⊂ M is a chain of
submodules, then the chains of submodules

M1 ∩N ⊂M2 ∩N ⊂ · · · ⊂ N, pr(M1 +N) ⊂ pr(M2 +N) ⊂ · · · ⊂M/N

must stabilise: there exists j such that Mk ∩ N = Mj ∩ N and pr(Mk + N) = pr(Mj + N) for all k ≥ j.
Lemma 3.3 below then implies that Mk = Mj for k ≥ j. Thus M is noetherian, by 3.1(ii).

(3.3) Lemma. If X ⊂ Y ⊂ M are submodules such that X ∩ N = Y ∩ N and pr(X + N) = pr(Y + N),
then X = Y .

Proof. Let y ∈ Y ; we must show that y ∈ X. The condition pr(X+N) = pr(Y +N) implies that there exist
x ∈ X and n ∈ N such that y = x+n. It follows that n = y−x ∈ N ∩Y = N ∩X, hence y = x+(y−x) ∈ X.

(3.4) Definition. A ring R is noetherian if R is noetherian as an R module, i.e., if the following equivalent
conditions are satisfied.
(i) Every ideal I of R is finitely generated.
(ii) Ascending chain condition. Every ascending chain of ideals I1 ⊂ I2 ⊂ · · · ⊂ R of R stabilises: there
is an index j such that Ik = Ij for all k ≥ j.
(iii) Every non-empty set S of ideals of R contains a maximal element I ∈ S with respect to inclusion (i.e.,
there is no I ′ ∈ S such that I ( I ′).

(3.5) Examples. (i) Any PID (in particular, any field) is a noetherian ring.
(ii) The polynomial ring R = C[x1, x2, . . .] =

⋃∞
n=1 C[x1, . . . , xn] in an infinite number of variables is not

noetherian, since the ideal I = (x1, x2, . . .) is not finitely generated (in other words, M = R is a finitely
generated R-module which is not noetherian). Note that R is a UFD.
(iii) According to a theorem of I.S. Cohen ([Ma, Thm. 3.4]), a ring R is noetherian ⇐⇒ every prime ideal
of R is finitely generated.

(3.6) Proposition. Let R be a noetherian ring. An R-module M is noetherian ⇐⇒ M is finitely
generated. In particular, every finitely generated R-module is finitely presented.

Proof. The implication “=⇒” is automatic. Conversely, the isomorphisms of R-modules Rn/R
∼−→ Rn−1

imply, by induction and Proposition 3.2, that each Rn (n ≥ 1) is a noetherian R-module. A finitely generated
R-module is of the form Rn/N for some n ≥ 1, hence is noetherian, again by Proposition 3.2.

(3.7) Proposition. Let f : R −→ R′ be a surjective ring homomorphism. If R is noetherian, so is R′.

Proof. For any chain of ideals J1 ⊂ J2 ⊂ · · · ⊂ R′ of R′ the chain f−1(J1) ⊂ f−1(J2) ⊂ · · · ⊂ R of ideals
of R must stabilise: there exists j such that f−1(Jk) = f−1(Jj) for all k ≥ j. Surjectivity of f then yields
Jk = f(f−1(Jk)) = f(f−1(Jj)) = Jj for all k ≥ j, which means that R′ is noetherian.

(3.8) Theorem (“Hilbert’s basis theorem”). If R is a noetherian ring, so is R[x1, . . . , xn] (n ≥ 1).

Proof. By induction, we can assume that n = 1. We must show that any ideal I ⊂ R[x] is finitely generated.
For any i ≥ 0 consider

Ii = {a ∈ R | ∃ axi + ai−1x
i−1 + · · · a0 ∈ I} ⊂ R.

This is an ideal of R and these ideals form a chain I0 ⊂ I1 ⊂ · · · ⊂ R. The noetherian assumption on R
implies that there exists r ≥ 0 such that Ik = Ir for all k ≥ r. Moreover, I0, . . . , Ir are finitely generated
ideals of R. As a results, there exist fij ∈ I (0 ≤ i ≤ r, 1 ≤ j ≤ m, deg(fij) ≤ i) such that, for each
i = 0, . . . , r, the ideal Ii is generated by the coefficients at xi of the polynomials fi1, . . . , fim. Denote by
J ⊂ I the ideal generated by the (finite set of) polynomials fij (0 ≤ i ≤ r, 1 ≤ j ≤ m). It is enough to
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show that any f ∈ I \ {0} is contained in J (=⇒ I = J is finitely generated). If d = deg(f), then there exist
c1, . . . , cm ∈ R such that the polynomial gd = (c1fr1 + · · · cmfrm)xmax(d−r,0) ∈ J satisfies deg(f − gd) < d
(or f −gd = 0). By decreasing induction on d we obtain, after at most d+1 steps, g ∈ J such that f −g = 0,
hence f ∈ J .

(3.9) Corollary. If R is a noetherian ring, so is R[x1, . . . , xn]/I, for any ideal I of R[x1, . . . , xn].

Proof. Combine Theorem 3.8 with Proposition 3.7.

(3.10) Exercise. If R is a noetherian ring, so is the power series ring R[[X]].

(3.11) Proposition. In an noetherian ring R, every ideal I contains a suitable product P1 · · ·Pr (r ≥ 0)
of prime ideals (in particular, the zero ideal (0) is a product of prime ideals).

Proof. Let S be the set of all ideals of R which do not contain any product of prime ideals. If S is non-empty,
then it contains a maximal element I. By definition of S, I is not a prime ideal, hence there exist x, x′ ∈ R
such that x, x′ 6∈ I and xx′ ∈ I. As I ( J = I+(x) and I ( J ′ = I+(x′), there exist prime ideals Pi, P

′
j such

that J ⊃ P1 · · ·Pr and J ′ ⊃ P ′1 · · ·P ′s, which implies that I ⊃ JJ ′ ⊃ P1 · · ·PrP ′1 · · ·P ′s. This contradiction
shows that S is empty, as claimed.

(3.12) Proposition. The condition I.5.6(i) is satisfied in any noetherian integral domain A.

Proof. As in the proof of Theorem I.5.9, if I.5.6(i) does not hold, then there exists an infinite chain of
principal ideals (a1) ( (a2) ( (a3) ( · · · ⊆ A contradicting the noetherian assumption.

(3.13) Corollary. A noetherian integral domain A is a UFD ⇐⇒ the principal ideal generated by any
irreducible element of A is a prime ideal.

Proof. Combine Proposition I.5.7 with Proposition 3.12.

4. Finitely generated modules over principal ideal domains

(4.1) Matrices. Let R be a ring. If we write elements of Rn as column vectors with entries in R, then a
module homomorphism f : Rm −→ Rn can be identified with a matrix A ∈ Mn×m(R): f(x) = Ax for any
x ∈ Rm.

The morphism f is invertible ⇐⇒ m = n (by Proposition 1.6) and the matrix A is invertible, i.e.,
there exists a matrix B ∈Mn(R) such that AB = BA = In. The latter condition implies that det(A) ∈ R∗.
Conversely, the identity

A · adj(A) = adj(A) ·A = det(A)In

(“Cramer’s rule for solving a system of linear equations”) satisfied by the adjoint matrix adj(A) ∈ Mn(R)
(where (−1)i+jadj(A)ij is the determinant of the matrix obtained by removing from A the i-th column and
the j-th row) shows that A is invertible if det(A) ∈ R∗, with inverse B = det(A)−1adj(A). To sum up,
isomorphisms Rn

∼−→ Rn correspond to matrices in GLn(R) = {A ∈Mn(R) | det(A) ∈ R∗}.
(4.2) Submodules of Rn. Let R be a noetherian ring, let X be a free R-module of finite rank n. Any
submodule Y ⊂ X is finitely generated, by Proposition 3.6. Choose an isomorphism α : X

∼−→ Rn (i.e., a
basis of X) and a surjective homomorphism Rm −→ Y (i.e., a system of m generators of Y ). The composite
homomorphism (where i is the inclusion of Y into X)

A = α ◦ i ◦ β : Rm −→ Y ↪→ X
∼−→ Rn, A ∈Mn×m(R)

is identified with a matrix A, as in 4.1. In concrete terms, the columns of A are the coordinates of the fixed
set of generators of Y in the fixed basis of X. A choice of another basis of X is equivalent to replacing α by
α′ = P ◦ α for P ∈ GLn(R). Similarly, if we replace β by β′ = β ◦ Q with Q ∈ GLm(R), then we obtain
another system of m generators of Y . The matrix A is then replaced by

A′ = PAQ, P ∈ GLn(R), Q ∈ GLm(R). (4.2.1)
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(4.3) If R = K is a field, the Gauss elimination method yields, for any A ∈ Mn×m(K), matrices P and Q
(obtained as a composition of elementary row and column operations, respectively) such that

A′ = PAQ =

(
Ir 0

0 0

)
, r = rk(A).

It was shown in the course Algebra 1 that a variant of this method works for R = Z (in fact, for any euclidean
ring) and yields, for any A ∈Mn×m(Z), matrices P ∈ GLn(Z) and Q ∈ GLm(Z) such that

A′ = PAQ =



d1 0 · · · 0 · · · · · · 0

0 d2 · · · 0 · · · · · · 0
...

...
. . .

... · · · · · ·
...

0 0 · · · dr · · · · · · 0
...

...
...

... · · · · · ·
...

0 0 · · · 0 · · · · · · 0


, (4.3.1)

where d1 | · · · | dr are positive integers depending only on A (and 0 ≤ r ≤ min(m,n)). The structure
theorems for subgroups of Zn and for finitely generated abelian groups are immediate consequences of this
statement.

We are going to show that an analogue of (4.3.1) holds if R is an arbitrary PID (but the matrices P
and Q cannot be expressed as products of elementray operations, in general).

(4.4) Theorem. Let A ∈Mn×m(R), where R is a PID.
(i) There exist matrices P ∈ GLn(R) and Q ∈ GLm(R) such that A′ = PAQ is of the form (4.3.1), where
d1, . . . , dr are non-zero elements of R such that d1 | · · · | dr (and 0 ≤ r ≤ min(m,n)).
(ii) The integer r and the ideals (d1), . . . , (dr) depend only on A: r is the rank of A (considered as a matrix
with entries in the fraction field of R) and d1 · · · dk is the greatest common divisor of all k × k minors of A.

Proof. (i) We can assume that A 6= 0. By induction, it is enough to transform A into(
d1 0

0 d1B

)
, B ∈Mn−1,m−1(R) (?)

by applying row operations A 7→ gA, g ∈ GLn(R) (resp. column operations A 7→ Ah, h ∈ GLm(R)). In
particular, we can permute the rows (resp. the columns).

We use the following observation: if a column C (resp. a row L) of A contains a, b ∈ R \ {0}, then there
exists a row (resp. a column) operation which replaces the couple a, b by d, 0 (d = gcd(a, b)), but which does
not change the remaining elements of C (resp. of L).

Indeed, there exist u, v ∈ R such that au + bv = d (=⇒ gcd(u, v) = 1 =⇒ there exist u′, v′ ∈ R such

that

∣∣∣∣∣ u v

u′ v′

∣∣∣∣∣ = 1), which yields the following row operations(
u v

u′ v′

)(
a

b

)
=

(
d

d′

)
,

(
1 0

−d′/d 1

)(
d

d′

)
=

(
d

0

)
(d′ = au′ + bv′ is divisible by d).

This observation allows us (after permuting the columns) to replace the first column by

C1 =


d

0
...

0

 , d 6= 0.
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If d divides all elements of A, it is easy to obtain (?) by subtracting from each column a multiple of C1. If
d does not divide all elements of A, we must distinguish two cases:
(a) there exists an element of the first row L1 which is not divisible by d;
(b) d divides all elements of L1, but does not divide an element of the i-th row Li.
After replacing L1 by L1 + Li we can assume (a). After applying the above observation to L1 and then to
the first column, we replace C1 by

C ′1 =


d′

0
...

0

 ,

where d′ | d is a proper divisor of d (d/d′ 6∈ R∗). If d′ does not divide all elements of A, we repeat the
same procedure. Since d has only finitely many divisors (up to elements of R∗), we obtain (?) after a finite
number of steps.
(ii) We have r = rk(A′) = rk(A). The set of all k × k minors of A (up to elements of R∗) does not change
if we replace A by A′ = PAQ. For A′ as in (4.3.1) with d1 | · · · | dr the gcd of the k × k minors is equal to
d1 · · · dk, for all k ≤ r.

(4.5) Theorem on elementary divisors. Let R be a PID, let X be a free module of rank n over R and
Y ⊂ X a submodule.
(i) Y ⊂ X is free of rank r ≤ n.
(ii) There exist non-zero elements d1, . . . , dr of R such that d1 | · · · | dr and a basis e1, . . . , en of X such that
d1e1, . . . , drer is a basis of Y .
(iii) The quotient module X/Y is isomorphic to Rn−r⊕R/(d1)⊕· · ·⊕R/(dr). [Of course, if d1, . . . , di ∈ R∗,
then R/(d1)⊕ · · · ⊕R/(di) = 0 and we can remove these terms.]
(iv) The ideals (d1), . . . , (dr) depend only on the pair Y ⊂ X.

Proof. A choice of a basis of X and of a (finite) system of generators of Y yields a matrix A ∈Mn×m(R), as
in 4.2. Theorem 4.4(i) implies that there is another basis e1, . . . , en of X and non-zero elements d1, . . . , dr
of R such that d1 | · · · | dr (and r ≤ n) for which Y is generated by d1e1, . . . , drer. There is no R-linear
relation between these r elements of X, hence they form a basis of Y (which is then free of rank r). This
proves (i) and (ii). The statement (iii) is an immediate consequence of (ii). The remaining statement (iv)
follows from Theorem 4.6 below (the reader may check that our reasoning is not circular).

(4.6) Theorem. Let R be a PID, let M be a finitely generated module over R. There is an isomorphism
M

∼−→ Ra ⊕R/(d1)⊕ · · · ⊕R/(dr), where d1, . . . , dr (r ≥ 0) are non-zero non-invertible elements of R such
that d1 | · · · | dr. The integer a ∈ N and the ideals (d1), . . . , (dr) depend only on the isomorphism class of
M . [One can use 5.11(i) to further decompose each term R/(di).]

Proof. By assumption, there exists a surjective homomorphism of R-modules f : X −→ M , where X is a
free R-module of finite rank. Thus M

∼−→ X/Y , where Y = Ker(f) ⊂ X. Applying Theorem 4.5(iii) we
obtain the desired isomorphism.

We have Mtors
∼−→ R/(d1)⊕ · · · ⊕ R/(dr) and M/Mtors

∼−→ Ra, which implies that a depends only on
the isomorphism class of the R-module M (by Proposition 1.6). In order to prove the uniqueness of the
ideals (d1), . . . , (dr) we must analyse, for each irreducible element x of R, the sequence of exponents

0 ≤ vx(d1) ≤ · · · ≤ vx(dr) (4.6.1)

with which x occurs in d1, . . . , dr. The goal is to show that they are determined by Mtors. For k ≥ 0 set
rk(x) = |{i | vx(di) ≥ k}| (in particular, r0(x) = r). In other words, the sequence (4.6.1) contains each
integer k ≥ 0 with multiplicity rk(x)− rk+1(x). The sequence of submodules

M [x] ⊃ xM [x2] ⊃ x2M [x3] ⊃ · · · (4.6.2)
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is isomorphic to

(R/(x))r1(x) ⊃ (R/(x))r2(x) ⊃ (R/(x))r3(x) ⊃ · · · , (4.6.3)

which implies that the non-zero exponents in (4.6.1) depend only on the isomorphism class of Mtors.
As d1 is not invertible, it is divisible by some irreducible element x0, which means that r = r1(x0) =

max(r1(x)). This determines the value of r, hence also the number of exponents equal to zero in (4.6.1),
namely r − r1(x). Theorem is proved.

(4.7) In the special case R = Z, Theorems 4.4–4.6 were proved in the course Algebra 1.
We are now going to discuss another important special case R = K[T ], where K is a field. An R-module

M is the same thing as a K-vector space M equipped with a K-linear endomorphism f : M −→M (= the
action of T ). A general polynomial P (T ) ∈ K[T ] acts on M as P (f).

If M 6= 0 is finite-dimensional over K, then it is finitely generated as a K[T ]-module. According to
Theorem 4.6 it is isomorphic to a direct sum

M
∼−→ K[T ]/(P1)⊕ · · ·K[T ]/(Pr), (4.7.1)

where r ≥ 0 and P1 | · · · | Pr are non-constant monic polynomials (the integer a in Theorem 4.6 is equal to
zero, since R = K[T ] has infinite dimension over K). We have

r∑
i=1

deg(Pi) =

r∑
i=1

dimK(K[T ]/(Pi)) = dimK(M) = m.

We can choose a K-basis of M and consider f ∈Mm(K) as a matrix. The uniqueness statement in Theorem
4.6 then says that two matrices f, f ′ ∈ Mm(K) give rise to the same sequence of polynomials P1 | · · · | Pr
⇐⇒ f ′ = gfg−1 for some g ∈ GLm(K).

The formula (4.7.3) below implies that the characteristic polynomial of f is equal to det(X · I − f) =
P1 · · ·Pr. On the other hand, the minimal polynomial of f (the monic polynomial P ∈ K[T ] of smallest
degree such that P (T )M = 0) is equal to Pr. In particular,

M
∼−→ K[T ]/(P1) ⇐⇒ the minimal and the characteristic polynomials of f coincide. (4.7.2)

Let us consider a special case when M 6= 0 is a cyclic R-module (which we assume until the end of 4.7):
M

∼−→ K[T ]/(Q) for some non-constant monic polynomial Q = T d + ad−1T
d−1 + · · · + a0 (d ≥ 1) and

1, T, . . . , T d−1 (modQ) is a basis of M over K. The matrix of f : M −→M (= multiplication by T ) in this
basis is equal to

C(Q) =



0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2

...
...

. . .
...

...

0 0 . . . 1 −ad−1


and the characteristic polynomial of f is equal to

det(X · I − C(Q)) = Q. (4.7.3)

Write Q = Qn1
1 · · ·Q

nk
k , where ni ≥ 1 and Qi are distinct irreducible non-constant monic polynomials; then

M
∼−→ K[T ]/(Qn1

1 )⊕ · · · ⊕K[T ]/(Qnkk )

and the matrix of f in the union of the bases 1, T, . . . , Tni deg(Qi)−1 (modQnii ) is given by a block matrix
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
C(Qn1

1 ) 0 · · · 0

0 C(Qn2
2 ) · · · 0

...
...

. . .
...

0 0 · · · C(Qnkk )


If the field K is algebraically closed, then Qi = T − λi for some λi ∈ K. In the basis 1, (T − λi), . . . , (T −
λi)

ni−1 (mod (T − λi)ni) multiplication by T has matrix

λi 0 0 · · · 0 0

1 λi 0 · · · 0 0

0 1 λi · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · λi 0

0 0 0 · · · 1 λi


and we recover from Theorem 4.6 the existence and uniqueness of the Jordan normal form of a matrix over
an algebraically closed field.

(4.8) Exercise. For any square matrix A ∈Mn(Z), the index of the subgroup AZn ⊂ Zn (= the subgroup
generated by the columns of A) is equal to

(Zn : AZn) =

{
∞, det(A) = 0

|det(A)|, det(A) 6= 0.

(4.9) Exercise (Subgroups of finite index of Z2). For an abelian group A and an integer n ≥ 1 denote
by S(A,n) the set of all subgroups X ⊂ A of index (A : X) = n.
(i) If (A : X) = n, then nA ⊂ X.
(ii) There is a natural bijection between S(A,n) and S(A/nA, n).
(iii) If m ≥ 1 and gcd(m,n) = 1, then there is a natural bijection between S((Z/mnZ)N ,mn) and
S((Z/mZ)N ,m)× S((Z/nZ)N , n), for all N ≥ 1.
(iv) S(Z2, 2) has three elements, namely

Z

(
1

0

)
⊕ Z

(
0

2

)
, Z

(
2

0

)
⊕ Z

(
0

1

)
, Z

(
2

0

)
⊕ Z

(
1

1

)
.

(v) For each positive divisor a | n there exist exactly a elements X ∈ S(Z2, n) such that X∩(Z⊕0) = aZ⊕0;
describe them explicitly. Deduce that

|S(Z2, n)| =
∑
a|n

a

(vi) Give an explicit formula for the generating series

∞∑
r=0

|S(Z2, pr)|T r,
∞∑
n=1

|S(Z2, n)|n−s,

where p is a prime number.
(vii) What happens if Z2 is replaced by Z3 (or by Zm)?

(4.10) Exercise (Hecke operators and the Bruhat-Tits tree). Let X = Z2, let p be a prime number.
(1) There exist precisely p + 1 subgroups Y ⊂ X of index (X : Y ) = p ( ⇐⇒ X/Y

∼−→ Z/pZ). [Hint:
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consider Y/pX ⊂ X/pX.]
(2) If Y ⊂ X is a subgroup of index (X : Y ) = pn for some n ≥ 0, then there exists a unique integer a ≥ 0
such that Y = paY ′ and X/Y ′ is a cyclic group (in fact, isomorphic to Z/pn−2aZ).
(3) Consider the graph with vertices {Y subgroup of X | X/Y ∼−→ Z/pmZ for some m ≥ 0}, with vertices
Y, Y ′ joined by an edge ⇐⇒ Y/Y ′

∼−→ Z/pZ or Y ′/Y
∼−→ Z/pZ. Show that this graph is an infinite tree,

in which each vertex has degree p+ 1.
(4) For each n ≥ 1 determine the number of subgroups Y ⊂ X such that X/Y

∼−→ Z/pnZ (resp. such that
(X : Y ) = pn).
(5) Let A be the free abelian group on symbols [Y ], where Y ⊂ X runs through all subgroups of X of
index pm (for all possible values of m ∈ N). For each n ≥ 0 consider the homomorphisms of abelian groups
T (pn), S(pn) : A −→ A defined on the basis elements as follows.

T (pn) : [Y ] 7→
∑

(Y :Y ′)=pn

[Y ′], S(pn) = S(p)n : [Y ] 7→ [pnY ].

Show that
∀n ≥ 1 T (p)T (pn) = T (pn+1) + pS(p)T (pn−1).

(6) Deduce that all homomorphisms T (pn) (n ≥ 0) commute with each other (and with S(p)) and that there
is an equality of formal generating series

∞∑
n=0

T (pn)un = (1− T (p)u+ pS(p)u2)−1,

where u is a formal variable.
(7)∗∗ What happens for subgroups of Z3?
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III. Field extensions and Galois theory

1. Solving equations of degree 2, 3 and 4

(1.1) Consider a polynomial equation

xn + a1x
n−1 + · · ·+ an = 0 (1.1.1)

of degree n ≥ 1with complex coefficients a1, . . . , an ∈ C. According to a fundamental result of Gauss, the
equation (1.1.1) has n complex roots x1, . . . , xn ∈ C (not necessarily distinct) for which the polynomial
(1.1.1) splits as

xn + a1x
n−1 + · · ·+ an = (x− x1) · · · (x− xn) (1.1.2)

in C[x]. After comparing the coefficients of both sides of (1.1.2) we obtain

a1 = −σ1, a2 = σ2 . . . an = (−1)nσn, (1.1.3)

where

σ1 = x1 + · · ·+ xn =
∑
i

xi

σ2 = x1x2 + x1x3 + · · ·+ xn−1xn =
∑
i<j

xixj

· · ·

σk =
∑

1≤i1<···<ik≤n

xi1 · · ·xik

· · ·
σn = x1 · · ·xn

(1.1.4)

are the elementary symmetric functions of the roots x1, . . . , xn. In other words, solving the equation
(1.1.1) amounts to solving the system of equations (1.1.4) for σk = (−1)kak.

The expressions (1.1.4) are symmetric functions of the roots x1, . . . , xn in the sense that they do not
change if we permute the roots. A fundamental idea of Lagrange was to try to solve (1.1.4) by breaking this
symmetry.

In this section we recall the classical approach to solving equations of degree n ≤ 4. After that we
reformulate it using Lagrange’s idea of resolvents and show that this method does not permit to solve
equations of degree n ≥ 5. The history of the subject can be found in [Ti 2].

(1.2) Quadratic equations. A quadratic equation

x2 + px+ q = 0, (1.2.1)

is solved by completing the square:

0 =
(
x+

p

2

)2

+ q −
(p

2

)2

.

Equivalently, one can write x = u+ v, which yields

0 = (u+ v)2 + p(u+ v) + q = u2 + u(2v + p) + v2 + pv + q. (1.2.2)

For v such that 2v + p = 0 the equation (1.2.2) simplifies as

0 = u2 +
(
−p

2

)2

+ p
(
−p

2

)
+ q = u2 + q −

(p
2

)2

. (1.2.3)

The solutions x1, x2 of (1.2.1) can be written in terms of the solutions u1, u2 = −u1 of (1.2.3) as
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x1 = −p
2

+ u1, x2 = −p
2

+ u2 = −p
2
− u1. (1.2.4)

Conversely,

2u1 = x1 − x2, 2u2 = x2 − x1. (1.2.5)

(1.3) Cubic equations. A general cubic equation

x3 + ax2 + bx+ c = 0

can be transformed to a simpler equation

x3 + px+ q = 0 (1.3.1)

by completing the cube, i.e., by replacing x+ a/3 by x. In order to solve (1.3.1) one writes x = u+ v (as in
1.2), which gives

0 = (u+ v)3 + p(u+ v) + q = u3 + v3 + (3uv + p)(u+ v) + q. (1.3.2)

If 3uv + p = 0, then the equation (1.3.2) simplifies as

u3 + v3 + q = 0,

hence

u6 + qu3 −
(p

3

)3

= 0, v6 + qv3 −
(p

3

)3

= 0.

In other words, the two roots T1, T2 of an auxiliary quadratic equation

T 2 + qT −
(p

3

)3

= 0 (1.3.3)

are equal to u3 et v3 (of course, T1T2 = (−p/3)3 = u3v3).
If p = 0, then the roots of 1.3.1 are the cubic roots of −q. If p 6= 0, then each cubic root u1, u2 = ρu1,

u3 = ρ2u1 of T1 6= 0 (where ρ = e2πi/3) determines a unique cubic root vj = −3p/uj of T2 (v2 = ρ2v1,
v3 = ρv1) for which xj = uj + vj is a root of (1.3.1):

x1 = u1 + v1, x2 = ρu1 + ρ2v1, x3 = ρ2u1 + ρv1, (1.3.4)

hence

3u1 = x1 + ρ2x2 + ρx3, 3v1 = x1 + ρx2 + ρ2x3. (1.3.5)

(1.4) Quartic equations. Let us consider a general quartic equation

x4 + ax3 + bx2 + cx+ d = 0.

As above, it can be transformed to a simpler equation

x4 + px2 + qx+ r = 0 (1.4.1)

by replacing x + a/4 by x. The trick used in 1.2 and 1.3 (x = u + v) does not lead to a significant
simplification of (1.4.1). Instead, one can try to write the quartic polynomial in (1.4.1) as a product of two
quadratic polynomials:
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x4 + px2 + qx+ r = (x2 + ax+ b)(x2 + cx+ d)

= (x2 + ax+ b)(x2 − ax+
r

b
)

= x4 +
(
b+

r

b
− a2

)
x2 + a

(r
b
− b
)
x+ r,

(1.4.2)

which is equivalent (under the assumption that ab 6= 0; the case ab = 0 is left to the reader) to

r

b
+ b = p+ a2,

r

b
− b =

q

a
⇐⇒ 2b = p+ a2 − q

a
,

2r

b
= p+ a2 +

q

a
,

where

4r =
(
p+ a2 − q

a

)(
p+ a2 +

q

a

)
= (p+ a2)2 − q2

a2
. (1.4.3)

After multiplying (1.4.3) by a2 we obtain an auxiliary cubic equation for a2:

(a2)3 + 2p(a2)2 + (p2 − 4r)a2 − q2 = 0. (1.4.4)

Conversely, each root a of (1.4.4) gives rise to a factorisation as in (1.4.2), with b = 1
2 (p+ a2 − q

a ).
Let us investigate the relationship between the roots ±a1,±a2,±a3 of (1.4.4) and the roots x1, . . . , x4

of the original equation (1.4.1). The two quadratic factors

x2 + ax+ b = (x− xi)(x− xj) = x2 − (xi + xj)x+ xixj

x2 + cx+ d = (x− xk)(x− xl) = x2 − (xk + xl)x+ xkxl

correspond to a choice of indices such that {1, 2, 3, 4} = {i, j}∪{k, l} (of course, x1 +x2 +x3 +x4 = 0, hence
xk + xl = −(xi + xj)).

In particular, the three roots a2
1, a

2
2, a

2
3 of the cubic equation

T 3 + 2pT 2 + (p2 − 4r)T − q2 = 0 (1.4.5)

are equal to

a2
1 = (x1 + x2)2 = −(x1 + x2)(x3 + x4) = −y2 − y3 = y1 − p
a2

2 = (x1 + x3)2 = −(x1 + x3)(x2 + x4) = −y1 − y3 = y2 − p
a2

3 = (x1 + x4)2 = −(x1 + x4)(x2 + x3) = −y1 − y2 = y3 − p,

where

y1 = x1x2 + x3x4, y2 = x1x3 + x2x4, y3 = x1x4 + x2x3. (1.4.6)

Note that y1, y2, y3 are the roots of the cubic equation

0 = (y − p)3 + 2p(y − p)2 + (p2 − 4r)(y − p)− q2 = y3 − py2 − 4ry + (4pr − q2). (1.4.7)

In order to determine the roots x1, x2, x3, x4 one must first solve (1.4.4) and then use the following relations:

x1 + x2 + x3 + x4 = 0

{±a1,±a2,±a3} = {x1 + x2, x1 + x3, x1 + x4, x2 + x3, x2 + x4, x3 + x4}

The formulas

(x1 + x2) + (x1 + x3) + (x1 + x4) = 2x1

(x1 + x2) + (x1 + x3) + (x2 + x3) = −2x4

(1.4.8)
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show that the sum ±a1 ± a2 ± a3 is equal, for any choice of the signs, to ±2xi (i = 1, . . . , 4).
We have (a1a2a3)2 = q2 and

−q = x1x2x3 + (x1x2 + x1x3 + x2x3)x4 = x1x2x3 − (x1x2 + x1x3 + x2x3)(x1 + x2 + x3)

= −2x1x2x3 − (x2
1x2 + · · ·+ x2x

2
3) = (x1 + x2)(x1 + x3)(x1 + x4) = −(x1 + x2)(x1 + x3)(x2 + x3),

which allows us to distinguish between the two cases in (1.4.8): for an arbitrary choice of square roots
a1, a2, a3 of the roots Tj = a2

j of the cubic equation (1.4.5) there exists a root xi of (1.4.1) such that

a1 + a2 + a3 =

{
2xi, if a1a2a3 = −q

−2xi, if a1a2a3 = q.
(1.4.9)

(1.5) Let us now reconsider equations of degree n ≤ 4 from a more scientific point of view. All coefficients
ak = (−1)kσk of the equation

xn + a1x
n−1 + · · ·+ an = 0

are symmetric functions of the roots x1, . . . , xn. The idea of Lagrange was to break this symmetry step by
step, by considering expressions which are slightly less symmetric.

(1.6) Quadratic equations. In order to solve the system

x1 + x2 = −a1, x1x2 = a2 (1.6.1)

we consider the function

y = x1 − x2, (1.6.2)

which is not symmetric in x1 in x2, but its square is:

y2 = (x1 − x2)2 = x2
1 + x2

2 − 2x1x2 = (x1 + x2)2 − 4x1x2 = σ2
1 − 4σ2 = a2

1 − 4a2, (1.6.3)

which gives the standard formulas

y = ±
√
a2

1 − 4a2, x1, x2 =
1

2
((x1 + x2)± y) =

1

2
(−a1 ±

√
a2

1 − 4a2). (1.6.4)

(1.7) Cubic equations. A general cubic equation

x3 + a1x
2 + a2x+ a3 = 0 (1.7.1)

is equivalent to

σ1 = x1 + x2 + x3 = −a1, σ2 = x1x2 + x1x3 + x2x3 = a2, σ3 = x1x2x3 = −a3. (1.7.2)

It is natural to try to generalise (1.6.2) by considering “Lagrange’s resolvents”

y1 = x1 + ρx2 + ρ2x3

y2 = x1 + ρ2x2 + ρx3,
(1.7.3)

where

ρ = e2πi/3 = −1+i
√

3
2 , ρ2 = ρ−1 = e−2πi/3 = −1−i

√
3

2 = −1− ρ

are as in 1.3. What are the symmetries of the functions y1, y2? If we permute x1 and x2 (resp. x2 and x3),
the transformation rules are
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y1 7→ x2 + ρx1 + ρ2x3 = ρy2, y2 7→ x2 + ρ2x1 + ρx3 = ρ2y1

resp.

y1 7→ x1 + ρx3 + ρ2x2 = y2, y2 7→ x1 + ρ2x3 + ρx2 = y1.

It follows that the functions y1y2 and y3
1 + y3

2 are symmetric en x1, x2, x3:

y1y2 = x2
1 + x2

2 + x2
3 − x1x2 − x1x3 − x2x3 = s2 − σ2

y3
1 + y3

2 = 2(x3
1 + x3

2 + x3
3) + 12x1x2x3 − 3(x2

1x2 + x1x
2
2 + x2

1x3 + x1x
2
3 + x2

2x3 + x2x
2
3)

= 2s3 + 12σ3 − 3s2,1

(1.7.4)

We wish to express them (equivalently, the functions s2,1 and sk = xk1 + xk2 + xk3 for k = 2 and 3) in terms
of σ1, σ2 and σ3. This can be done as follows:

σ2
1 = (x1 + x2 + x3)2 = x2

1 + x2
2 + x2

3 + 2(x1x2 + x1x3 + x2x3) = s2 + 2σ2

σ1σ2 = (x1 + x2 + x3)(x1x2 + x1x3 + x2x3) = s2,1 + 3x1x2x3 = s2,1 + 3σ3

σ1s2 = (x1 + x2 + x3)(x2
1 + x2

2 + x2
3) = (x3

1 + x3
2 + x3

3) + s2,1 = s3 + s2,1,

(1.7.5)

which implies that

s2 = σ2
1 − 2σ2, s2,1 = σ1σ2 − 3σ3, s3 = σ1s2 − s2,1 = σ3

1 − 3σ1σ2 + 3σ3 (1.7.6)

and

y1y2 = σ2
1 − 3σ2, y3

1 + y3
2 = 2σ3

1 − 9σ1σ2 + 27σ3 (1.7.7)

(we shall see in Theorem 2.7 below that any symmetric polynomial F (x1, . . . , xn) can be written in terms
of σ1, . . . , σn).

To sum up, the cubes y3
1 , y

3
2 are the roots of an auxiliary quadratic equation

(t− y3
1)(t− y3

2) = t2 − (2σ3
1 − 9σ1σ2 + 27σ3)t+ (σ2

1 − 3σ2)3 = 0 (1.7.8)

and

y1y2 = σ2
1 − 3σ2. (1.7.9)

The roots of the original equation (1.7.1) are given by

3x1 = y1 + y2 + σ1, 3x2 = ρ2y1 + ρy2 + σ1, 3x3 = ρy1 + ρ2y2 + σ1. (1.7.10)

In the special case of the equation (1.3.1) we recover the formulas (1.3.4) and (1.3.5).

(1.8) Quartic equations. Consider the simplified quartic equation (1.4.1)

x4 + px2 + qx+ r = 0, (1.8.1)

for which

σ1 = 0, σ2 = p, σ3 = −q, σ4 = r. (1.8.2)

Let us try to generalise (1.7.3). A natural guess would be to consider the following linear expressions

x1 + ix2 − x3 − ix4, x1 − x2 + x3 − x4, x1 − ix2 − x3 + ix4. (1.8.3)

We must study their behaviour under all permutations of the roots x1, . . . , x4.
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The first and the third polynomial in (1.8.3) do not behave well, even if we raise them to the fourth
power: they give rise to six different expressions. On the other hand, the second polynomial in (1.8.3) works:
the set of the following three polynomials

u1 = x1 + x2 − x3 − x4, u2 = x1 + x3 − x2 − x4, u3 = x1 + x4 − x2 − x3

is preserved – up to a sign – by arbitrary permutations of the roots. As a result, the coefficients of an
auxiliary cubic polynomial

(u− u2
1)(u− u2

2)(u− u2
3) (1.8.4)

are symmetric in x1, x2, x3, x4 and one can write them down explicitly by a calculation similar to that in
(1.7.5). The resulting auxiliary cubic equation is given, up to rescaling the variable, by the formula (1.4.4),
since u2

j = 4a2
j for all j = 1, 2, 3.

Alternatively, one can consider the cubic polynomial whose roots are given by the expressions (1.4.6)

y1 = x1x2 + x3x4 = p+ (u1/2)2, y2 = x1x3 + x2x4 = p+ (u2/2)2, y3 = x1x4 + x2x3 = p+ (u3/2)2.

These three expressions are permuted under arbitrary permutations of the roots x1, x2, x3, x4 and we can
again compute the coefficients of

(y − y1)(y − y2)(y − y3)

in terms of p, q and r as in (1.7.5), arriving at the formula (1.4.7).

(1.9) The general mechanism should now be clear. Given an equation (1.1.1), the goal is to choose in an
intelligent way an auxiliary polynomial g(x1, . . . , xn) = g1 in the roots x1, . . . , xn (a “resolvent”) which will
be a root of a new polynomial equation (the “resolvent equation”)

(y − g1) · · · (y − gd) = 0, (1.9.1)

hopefully simpler than the original equation. The distinct roots of (1.9.1) are obtained from g by applying
to it all possible permutations of the roots x1, . . . , xn (but keeping each expression obtained in this way only
once, disregarding multiplicities with which they appear). The coefficients of (1.9.1) are symmetric under
all permutations of x1, . . . , xn, and therefore expressible in terms of the coefficients of the original equation
(1.1.1).

For n = 2, 3, 4 we can take, respectively, g1 = (x1 − x2)2, (x1 + ρx2 + ρx3)3 and x1x2 + x3x4 (or
(x1 + x2 − x3 − x4)2), obtaining resolvent equations for g1 of respective degrees d = 1, 2 and 3.

(1.10) Question. What happens for n ≥ 5?

2. Symmetric functions and resolvents

In this section we first show that any polynomial in x1, . . . , xn which is symmetric (in the sense of 2.3 below)
can be expressed as a polynomial in σ1, . . . , σn. After that we briefly discuss Lagrange’s theory of resolvents
and answer Question 1.10.

(2.1) The symmetric group. Recall that a permutation of a set X is a bijection σ : X −→ X. The
permutations of X form a group SX with respect to composition στ = σ ◦ τ , (στ)(x) = σ(τ(x)). For an
integer n ≥ 1 the symmetric group Sn is defined to be Sn = SX for X = {1, . . . , n}. The sign of a
permutation σ ∈ Sn (n ≥ 2) is defined as

sgn(σ) = (−1)|{(i,j) | 1≤i<j≤n, σ(i)>σ(j)}|.

The map

sgn : Sn −→ {±1}
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is a group homomorphism. Its kernel is the alternating group An = Ker(sgn) ⊂ Sn. We have |Sn| = n!,
|An| = n!/2.

There are two types of notation for elements of Sn. One can write σ ∈ Sn either as(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
,

or as a product of disjoint cycles (= orbits under the action of σ on {1, . . . , n}). For example, the element

σ =

(
1 2 3 4 5 6

4 5 3 6 2 1

)
∈ S6

is a product of the following disjoint cycles:

1 7→ 4 7→ 6 7→ 1, 2 7→ 5 7→ 2, 3 7→ 3,

hence

σ = (146)(25)(3).

(2.2) Definition (Action of Sn on polynomials). Let R be a ring (commutative and unital, as usual).
The polynomial ring R[x1, . . . , xn] has a natural left action of Sn, given by

(σ · f)(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) (σ ∈ Sn, f ∈ R[x1, . . . , xn]).

If R = K is a field, the same formula defines an action of Sn on the field of rational functions K(x1, . . . , xn) =
Frac(K[x1, . . . , xn]).

(2.3) Definition. A polynomial f ∈ R[x1, . . . , xn] (resp. a rational function f ∈ K(x1, . . . , xn), if R = K
is a field) is symmetric if ∀σ ∈ Sn σ · f = f . They form a subring R[x1, . . . , xn]Sn (resp. a subfield
K(x1, . . . , xn)Sn) of R[x1, . . . , xn] (resp. of K(x1, . . . , xn)).

(2.4) Example. The polynomials x1x2x3 and x7
1 + x7

2 + x7
3 ∈ R[x1, x2, x3] are symmetric, but x2

1x2 +
x2

2x3 + x2
3x1 is not.

(2.5) Symmetrised monomials. For any set I = (i1, . . . , in) of integers i1 ≥ i2 ≥ · · · ≥ in ≥ 0 we define

sI = si1,...,in =
∑
f∈AI

f ∈ R[x1, . . . , xn]Sn , where AI = {σ · (xi11 · · ·xinn ) |σ ∈ Sn}.

We often omit the values ik = 0. For example,

s1 = σ1, s1,1 = σ2, s1,1,1 = σ3, . . .

are the elementary symmetric functions from (1.1.4) and

sk = xk1 + · · ·+ xkn, s2,1 = x2
1x2 + x1x

2
2 + x2

1x3 + x1x
2
3 + · · ·+ x2

n−1xn + xn−1x
2
n.

For I = (i1, . . . , in) and J = (j1, . . . , jn) (where i1 ≥ i2 ≥ · · · ≥ in ≥ 0 and j1 ≥ j2 ≥ · · · ≥ jn ≥ 0) we define

I + J = (i1 + j1, . . . , in + jn).

If I 6= J , we say that I < J (resp. I > J) if i1 = j1, . . . , ik = jk and ik+1 < jk+1 (resp. and ik+1 > jk+1),
0 ≤ k < n.

39



(2.6) Proposition. (i) Each symmetric polynomial f ∈ R[x1, . . . , xn]Sn can be written as a finite sum
f =

∑
cIsI , cI ∈ R.

(ii) For every I, J as in (2.5) we have

sIsJ = sI+J +
∑

K<I+J

cKsK (cK ∈ R).

Proof. (i) If f contains a monomial cxi11 · · ·xinn (with exponents not necessarily ordered), it contains all
monomials cxi1σ(1) · · ·x

in
σ(n).

(ii) This is a general version of (1.7.5).

(2.7) Theorem on symmetric functions. We have R[σ1, . . . , σn] = R[x1, . . . , xn]Sn and there is no
polynomial relation between the elements σ1, . . . , σn. In other words, every symmetric polynomial over R
can be written in a unique way as a polynomial over R in σ1, . . . , σn.

Proof. Existence: one can generalise the calculations in (1.7.5), as follows. Thanks to Proposition 2.6(i)
it is enough to show that (∀I) sI ∈ R[σ1, . . . , σn]. As s0,...,0 = 1, we can assume, by induction, that
I = (i1 = · · · ik > ik+1 ≥ · · · ≥ in ≥ 0 (1 ≤ k ≤ n) and that we already know that sK ∈ R[σ1, . . . , σn] for
all K < I. We can write I = I ′ + J , where I ′ = (1, . . . , 1, 0, . . . , 0) (and 1 appears k times). It follows from
Proposition 2.6(ii) that

sI = σksJ +
∑
K<I

cKsK (cK ∈ R),

which lies in R[σ1, . . . , σn], by the induction hypothesis.
Uniqueness: for every set of exponents A = (a1, . . . , an), a1, . . . , an ≥ 0, we have

σA := σa11 · · ·σann = sI+
∑
J<I

cJsJ , I = I(A) = (a1+· · ·+an, a2+· · ·+an, . . . , an), (cJ ∈ R). (2.7.1)

Let

g(y1, . . . , yn) =
∑

ga1,...,any
a1
1 · · · yann =

∑
A

gA y
A

be a non-zero polynomial. The set {I(A) | gA 6= 0} contains the biggest element (necessarily unique!) with
respect to the order “<” I = I(A) (for a unique valued of A, gA 6= 0). It follows from de (2.7.1) that
g(σ1, . . . , σn) contains the monomial gAsI , hence g(σ1, . . . , σn) 6= 0.

(2.8) Example. Let us write s2,2 = x2
1x

2
2 + x2

1x
2
3 + · · ·+ x2

n−1x
2
n in terms of σ1, . . . , σn. As

σ2
2 = s2

1,1 = (x1x2 + x1x3 + · · ·+ xn−1xn)2 = (x2
1x

2
2 + · · ·) + 2(x2

1x2x3 + · · ·) + 6(x1x2x3x4 + · · ·) =

= s2,2 + 2s2,1,1 + 6σ4,

σ1σ3 = s1s1,1,1 = (x1 + · · ·+ xn)(x1x2x3 + · · ·) = (x2
1x2x3 + · · ·) + 4(x1x2x3x4 + · · ·) =

= s2,1,1 + 4σ4,

we have

s2,1,1 = σ1σ3 − 4σ4, s2,2 = σ2
2 − 2σ1σ3 + 2σ4.

(2.9) Corollary. If K is a field, then K(σ1, . . . , σn) = K(x1, . . . , xn)Sn .

Proof. If f, g ∈ K[x1, . . . , xn] (g 6= 0) and f/g ∈ K(x1, . . . , xn)Sn , then
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h1 :=
∏
σ∈Sn

(σ · g) ∈ K[x1, . . . , xn]Sn \ {0} = K[σ1, . . . , σn] \ {0}

and

h2 := h1f/g = f
∏

σ∈Sn\{1}

(σ · g) ∈ K[x1, . . . , xn]Sn = K[σ1, . . . , σn],

hence f/g = h2/h1 ∈ K(σ1, . . . , σn).

(2.10) Exercise (Newton’s formulas). The polynomials sk = xk1 + · · ·+ xkn satisfy recursive relations

sk − σ1sk−1 + · · ·+ (−1)k−1σk−1s1 + (−1)kkσk = 0 (k ≥ 1)

(of course, σk = 0 for k > n).

(2.11) Discriminant. Let n ≥ 2. The polynomial

∆ :=
∏
i<j

(xi − xj) ∈ Z[x1, . . . , xn]

is not symmetric, since

∀τ ∈ Sn τ ·∆ = sgn(τ)∆,

but its square

∆2 =
∏
i<j

(xi − xj)2 ∈ Z[x1, . . . , xn]Sn = Z[σ1, . . . , σn]

is. Writing ∆2 in terms of the coefficients ak = (−1)kσk of the polynomial

f = xn + a1x
n−1 + · · ·+ an = (x− x1) · · · (x− xn) ∈ Z[a1, . . . , an][t],

we obtain the discriminant disc(f) ∈ Z[a1, . . . , an] of f .

(2.12) Exercise. (i) Compute the discriminants disc(xn + ax + b) for n = 2, 3, 4. [Hint: relate the
discriminant of a cubic (resp. quartic) polynomial to the discriminant of its quadratic (resp. cubic) resolvent
(1.7.8) (resp. (1.4.7)).]
(ii) What happens for general n ≥ 2?

(2.13) Exercise. Let K be a field such that 2 ∈ K∗. Show that, for any n ≥ 2, the field of rational
functions invariant under An is equal to

K(x1, . . . , xn)An = {f + g∆ | f, g ∈ K(σ1, . . . , σn)}.

(2.14) Resolvents revisited. Fix a base field K and consider (1.1.1) as a “generic equation”, i.e., let
x1, . . . , xn be variables. Fix a polynomial u = u(x1, . . . , xn) ∈ K[x1, . . . , xn] (a “resolvent”). Its orbit
O(u) = {τ · u | τ ∈ Sn} under the action of the symmetric group is in a canonical bijection with the coset
space Sn/H, where H = {τ ∈ Sn | τ · u = u} is the stabiliser of u (τH ∈ Sn/H corresponds to τ · u).

Let y be a new variable. The polynomial

U(y) =
∏

v∈O(g)

(y − v) =
∏

v∈O(u)

(y − v(x1, . . . , xn)) =
∏

τH∈Sn/H

(y − u(xτ(1), . . . , xτ(n)))

lies in

K[x1, . . . , xn]Sn [y] = K[σ1, . . . , σn][y].
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In other words, u(x1, . . . , xn) is a root of the polynomial U(y) = U(y;σ1, . . . , σn), whose coefficients can be
written in terms of the coefficients of the original polynomial f(x) = (x − x1) · · · (x − xn). The degree of
U(y) is equal to

degy(U) = |O(u)| = (Sn : H).

The resolvents studied in 1.6–1.8 correspond to the following polynomials.

(2.14.1) n = 2, K ⊃ Q, u = (x1 − x2)2, H = S2.
(2.14.2) n = 3, K ⊃ Q(ρ), u = (x1 + ρx2 + ρ2x3)3, H = A3 ⊂ S3.
(2.14.3) n = 4, K ⊃ Q, u = x1x2 + x3x4 (or (x1 − x2 + x3 − x4)2), H = D8 ⊂ S4.

More generally, Lagrange’s resolvents are given by u = (
∑n
j=1 ζ

jxj)
m, where m | n and ζm = 1. If m = n

and ζ is a primitive m-th root of unity (i.e., if ζa 6= 1 for 0 < a < m), then H = Cn is the cyclic group
generated by (12 · · ·n). If m | n is arbitrary and ζ is a primitive m-th root of unity, then H is a semi-direct
product H = (Sn/m)m o Cm. The case n = m = 3 (resp. n = 4, m = 2) corresponds to (2.14.2) (resp. to
the second resolvent in (2.14.3)).

If we take u = ∆ =
∏

1≤i<j≤n(xi − xj) (assuming that 2 ∈ K∗ and n ≥ 2), then H = An and
O(∆) = {∆,−∆}, which implies that

U(y) = (y −∆)(y + ∆) = y2 −∆2 = y2 − disc(f).

Conversely, Exercise 2.13 implies that ∆ is, essentially, the only resolvent for which H = An.

(2.15) Question. If n ≥ 5, is there a resolvent u (apart from u = ∆) for which 1 6= degy(U) < n?

(2.16) Answer (Lagrange and his followers): no. This follows from the discussion in 2.14 and
Proposition 2.17 below.

(2.17) Proposition. Let H ⊂ Sn be a subgroup.
(i) If (Sn : H) = 2, then H = An.
(ii) If n ≥ 5 and H C Sn is a normal subgroup of Sn, then H = {e}, An or Sn.
(iii) If n ≥ 5 and H 6= An, Sn, then (Sn : H) ≥ n.
(iv) If n ≥ 5 and H ( An, then (An : H) ≥ n.

Proof. (i) Exercise. (ii) We use the fact that An is a simple group for n ≥ 5 ([De 1], Thm. I.5.1), which
implies that H ∩ An is equal to An (=⇒ H = An, Sn) or to {e} (=⇒ H ↪→ Sn −→ Sn/An

∼−→ {±1} is
injective =⇒ |H| ≤ 2; a subgroup of order two is never normal in Sn, hence H = {e}).
(iii) The action of Sn on X = Sn/H gives rise to a group homomorphism α : Sn −→ SX . We claim that this
action is faithful (i.e., that α is injective). Indeed,

Ker(α) =
⋂
τ∈Sn

τHτ−1 C Sn, Ker(α) ⊂ H 6= An, Sn,

which implies, by (ii), that Ker(α) = {e}. It follows that n ≤ |X| = (Sn : H).
(iv) The same argument as in (iii) shows that the action of An on Y = An/H is faithful, hence |An| =
n!/2 ≤ |SY | = (An : H)!, which implies that (An : H) ≥ n.

3. Field extensions (basic properties)

We saw in §1 classical formulas for solving cubic and quartic equations discovered in the 16th century
and in §2 Lagrange’s reformulation (and generalisation) in terms of symmetric functions. This theory covers
general equations (1.1.1), in which the coefficients ai appear as independent variables. Galois realised that it
was possible – and extremely useful – to study symmetries of the equation (1.1.1) even in the case when the
coefficients have numerical values. In somewhat vague terms, the Galois group of the equation (1.1.1) is the
subgroup Gal(f) ⊂ Sn which preserves all polynomial relations between the roots of f . For example, for the
equation xn − 1 = 0 (“division of the circle in n parts”) there are many relations between the roots, which
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impose rather severe restrictions on Gal(f). This group was implicitly computed by Gauss (in the case when
n = p is a prime number) before Galois was even born. The corresponding problem for the division of the
lemniscate was also considered by Gauss (unpublished) and Abel.

The “modern” formulation of what we call Galois theory is due to E. Artin. One considers the equation
(1.1.1) for a polynomial f with coefficients in an arbitrary field K. The fundamental object is not the set
of roots α1, . . . , αn of (1.1.1) (whose existence somewhere in the mathematical universe needs to be proved
first – see Theorem 3.26 below), but the set of all expressions such as α1/(α

3
1 − 5α2α3), in other words, the

field L = K(α1, . . . , αn) generated over K by the roots of f . The Galois group in this context depends only
on the extension of fields K ↪→ L (strictly speaking, this works in full generality only for fields containing
Q; for fields containing Fp one needs to be more careful; see §6 below). The fundamental objects of study
will be, therefore, field extensions K ↪→ L of finite degree.

(3.1) Fields. Let K be a field. The kernel of the canonical ring morphism i : Z −→ K (see I.4.3) is a
principal ideal Ker(i) ⊂ Z.

If Ker(i) = (0), then K contains i(Z) = Z, hence also Frac(Z) = Q. We say that K is a field of
characteristic zero (notation: char(K) = 0).

If Ker(i) = (n) for some n ≥ 1, then n = p is a prime number, since Im(i)
∼−→ Z/nZ ⊂ K is a domain.

We say that K is a field of characteristic p (notation: char(K) = p). The field K then contains the finite
field Fp = Z/pZ with p elements.

(3.2) Homomorphisms (= embeddings) of fields. Let K and L be fields. A ring homomorphism
f : K −→ L is called a homomorphism of fields. Its kernel Ker(f) 6= (1) is an ideal of K, hence equal
to (0), which means that f is automatically injective. We consider, therefore, f as an embedding of fields
f : K ↪→ L (equivalently, we say that f : K ↪→ L is a field extension). Note that, for fixed K and L, there
can be many different field embeddings K ↪→ L (example: the identity map and the complex conjugation
C ↪→ C). In general, the subfield f(K) ⊂ L depends on f , not just on K and L (see Example 3.12(iv)
below). We say that the field extension f : K ↪→ L (sometimes denoted simply as L/K) is of finite type if
there exist finitely many elements α1, . . . , αn ∈ L such that L = K(α1, . . . , αn). A simple extension is a
field extension generated by one element: L/K = K(α)/K.

(3.3) Proposition. Let K be a field. Any finite subgroup A ⊂ K∗ of the multiplicative group of K is
cyclic.

Proof. We can assume that |A| = pn1
1 · · · pnrr > 1. Fix a prime number p = pi dividing |A|. The p-primary

part of A is isomorphic to

A(p)
∼−→ Z/pa1Z× · · · × Z/pakZ (ai ≥ 1),

which implies that

pk = |{x ∈ A(p) |xp = 1}| ≤ |{x ∈ A |xp = 1}| ≤ |{x ∈ K |xp − 1 = 0}| ≤ deg(Xp − 1) = p,

hence k = 1, which means that the group A(p) = A(pi)
∼−→ Z/pnii Z is cyclic. As a result, the group

A
∼−→ A(p1)⊕ · · · ⊕A(pr)

∼−→ Z/pn1
1 Z⊕ · · · ⊕ Z/pnrr Z

∼−→ Z/|A|Z is cyclic, too.

(3.4) Definition. Let K ↪→ L be a field extension. A basis (resp. the degree) of this extension is any
basis of L (resp. the dimension [L : K] := dimK(L) ∈ N ∪ {∞} of L) considered as a K-vector space. If
[L : K] <∞, we say that K ↪→ L (or L/K) is a finite extension.

(3.5) Examples. [C : R] = 2 and {1, i} (or {2− 3i, i+ 17}, for example) is a basis of C/R. On the other
hand, [C : Q] =∞ and [K(X) : X] =∞, for any field K.

(3.6) Proposition (multiplicativity of the degree). Let K ↪→ L ↪→ M be fields, let {`i}i∈I (resp.
{mj}j∈J) be a basis of L/K (resp. of M/L). Then S = {`imj}(i,j)∈I×J is a basis of M/K. In particular,

[M : K] = |I × J | = |I| · |J | = [L : K][M : L].
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Proof. The set S generates M as a K-vector space, since each m ∈M can be written as

m =
∑
j∈J

yjmj (yj ∈ L)

and each yj as

yj =
∑
i∈I

xij`i (xij ∈ K),

which yields

m =
∑
i∈I

∑
j∈J

xij`imj (xij ∈ K).

Conversely, the set S is linearly independent over K, since any relation

∑
i∈I

∑
j∈J

xij`imj =
∑
j∈J

(∑
i∈I

xij`i

)
mj = 0 (xij ∈ K),

implies

(∀j ∈ J)
∑
i∈I

xij`i = 0

(since the mj are linearly independent over L), hence xij = 0 for all i, j (since the `i are linearly independent
over K).

(3.7) Corollary. The extension M/K is finite ⇐⇒ both extensions L/K and M/L are finite.

(3.8) Definition. Let K ↪→ L be a field extension. An element α ∈ L is algebraic over K (resp.
transcendental over K) if there exists a non-zero polynomial f ∈ K[X] such that f(α) = 0 (resp. if
f(α) 6= 0 for all non-zero f ∈ K[X]). The extension L/K is algebraic if all elements of L are algebraic
over K.

(3.9) This definition has a useful reformulation in terms of the map “evaluation at α”:

evα : K[X] −→ L, g(X) 7→ g(α). (3.9.1)

This is a homomorphism of K-algebras, whose image Im(evα)
∼−→ K[X]/Ker(evα) is equal to K[α] ⊂

K(α) ⊂ L (hence is a domain).
If α is transcendental over K, then Ker(evα) = (0) and the map (3.9.1) induces isomorphisms of K-

algebras K[X]
∼−→ K[α] and K(X)

∼−→ K(α). In particular, [K(α) : K] =∞ in this case.

(3.10) Proposition. If α ∈ L is algebraic over a subfield K ↪→ L, then:
(1) Ker(evα) = (f), for a unique non-constant monic polynomial f ∈ K[X] of minimal degree satisfying
f(α) = 0. We say that f is the minimal polynomial of α over K and its degree n = deg(f) ≥ 1 is the
degree of α over K.
(2) The map (3.9.1) induces an isomorphism of K-algebras evα : K[X]/(f)

∼−→ K[α].
(3) The K-algebra K[α] is a domain of dimension dimK K[α] = n. The elements 1, α, . . . , αn−1 form a basis
of K[α] as a K-vector space.
(4) The polynomial f is irreducible in K[X] (conversely, if g(α) = 0 for an irreducible monic polynomial
g ∈ K[X], then g = f).
(5) The K-algebra K[α] is a field; thus K[α] = K(α) and [K(α) : K] = n.
(6) Conversely, if f ∈ K[X] is an irreducible monic polynomial of degree n ≥ 1, then the K-algebra
L = K[X]/(f) is a field extension of K, the element α = X (mod f) ∈ L is algebraic over K, its minimal
polynomial over K is equal to f and L = K[α] = K(α) (in particular, [L : K] = n).

Proof. The statement (1) (resp. (2)) follows from the fact that K[X] is a PID and (1) 6= Ker(evα) 6= (0)

(resp. is automatic). The statement (3) is a consequence of (2) and the fact that the elements 1, X, . . . ,X
n−1
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(where X = X (mod f) ∈ K[X]/(f)) form a basis of K[X]/(f) as a K-vector space, since evα(X) = α and
K[X]/(f) = K[X]. The statement (5) (resp. the first part of (4)) is a special case of Lemma 3.11 below
(resp. of Proposition I.6.8(i)). The second part of (4) follows from the fact that f | g, hence g is a constant
multiple of f (since both are irreducible). In (6), K[X]/(f) is a field, by Lemma 3.11 below, of degree deg(f)
over K (as in (3)). Finally, the element α satisfies f(α) = f(X) = f(X) = 0, so we conclude by the second
part of (4).

(3.11) Lemma. If R is a PID and f ∈ R is an irreducible element, then R/(f) is a field. [This was used
implicitly in I.6.2(iv).]

Proof. A non-zero element of the domain R/(f) can be written as g = g (mod f), where g ∈ R, g 6∈ (f). We
must show that g is invertible. The ideal (f, g) = (h) is principal, with h | g and h | f . Irreducibility of f
implies that h = uf or h = u, for some u ∈ R∗. If h = uf , then f | h | g, which contradicts our assumptions;
thus h ∈ R∗ and (f, g) = (1). In particular, there exist a, b ∈ R such that af + bg = 1, which implies that
b = b (mod f) is a multiplicative inverse of g in R/(f).

(3.12) Examples. (i) For each n ≥ 1, the polynomial Xn−2 is irreducible in Q[X], thanks to Eisenstein’s
criterion (Corollary I.7.7 for A = Z and P = (2)). Let n

√
2 be its unique positive real root. Then

Q(
n
√

2) = Q[
n
√

2] = {a0 + a1
n
√

2 + · · ·+ an−1(
n
√

2)n−1 | aj ∈ Q}

is a subfield of R of degree [Q( n
√

2) : Q] = n over Q.
(ii) The quadratic polynomial f = X2 + X + 1 ∈ F2[X] has no root in F2 (since f(0) = f(1) = 1 ∈ F2),
hence F2[X]/(X2 +X + 1) is a field with 4 elements (namely, 0, 1, α, α+ 1, where α = X (mod f)).
(iii) According to Proposition 3.15(4) below, the set of algebraic numbers

Q = {α ∈ C | α is algebraic over Q}

is a subfield of C. The example (i) shows that [Q : Q] = ∞. On the other hand, the set of polynomials
Q[X] is countable, which implies that Q is countable, too. In other words, “most” complex numbers are
transcendental (over Q).
(iv) The polynomial f = X3 − 2 ∈ Q[X] has three distinct complex roots, namely, α = α1 = 3

√
2 ∈ R,

α2 = ρα1 and α3 = ρ2α1, where ρ = e2πi/3.
The three subfields Q(αj) ⊂ C are physically distinct, but they are all isomorphic to the abstract field

Q[X]/(X3 − 2), via the evaluation map evαj . In particular, [Q(αj) : Q] = 3 for each j = 1, 2, 3. The field
L = Q(α1, α2, α3) ⊂ C is equal to Q(α1, ρ), hence [L : Q] = [L : Q(α1)][Q(α1) : Q] = 2 · 3 = 6 (the degree
of the first extension is equal to 2, since ρ ∈ L satisfies a quadratic equation ρ2 + ρ+ 1 = 0 over Q(α1), but
ρ 6∈ Q(α1) ⊂ R).

(3.13) Exercise (Liouville’s Theorem). Let α ∈ Q ⊂ C be an algebraic number of degree n ≥ 2 (over
Q). Show that there exists a constant c > 0 such that

∀p/q ∈ Q

∣∣∣∣α− p

q

∣∣∣∣ ≥ c

|q|n
(p, q ∈ Z).

Deduce that the number
∑∞
k=0 10−k! ∈ C is transcendental (over Q). [Hint: consider f(p/q) = f(p/q)−

f(α) = (p/q − α)g(p/q), where f is the minimal polynomial of α over Q and g(X) = f(X)/(X − α).]

(3.14) For n ≥ 3 the exponent n in Liouville’s theorem was first improved by Thue to n/2 + 1 + ε (for any
ε > 0 and c = c(ε) > 0 depending on ε). Thue’s result implies, among other things, that equations such as
xn − 2yn = c have only finitely many solutions x, y ∈ Z, for fixed n ≥ 3 and c ∈ Z \ {0} (exercise: explain
the relevance of Thue’s theorem to I.5.14). The exponent n/2 + 1 + ε was subsequently improved by Siegel
and others; the optimal exponent 2 + ε was obtained by K. Roth (Fields medal).

(3.15) Proposition. Let K ↪→ L be a field extension.
(1) L/K is a finite extension =⇒ L/K is algebraic and of finite type.
(2) If L = K(α1, . . . , αn), where each αi is algebraic over K, then the extension L/K is finite, hence algebraic.
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(3) The implication “=⇒” in (1) is an equivalence.
(4) K ′ = {α ∈ L | α is algebraic over K} is a subfield of L.

Proof. (1) If α1, . . . , αd is a basis of L/K (d = [L : K] < ∞), then L = K(α1, . . . , αd); thus L/K is a field
extension of finite type. If β ∈ L, then the d+ 1 elements 1, β, . . . , βd are linearly dependent over K, which
implies that there exist a0, . . . , ad ∈ K (not all zero) such that a0 + a1β + · · ·+ adβ

d = 0.
(2) Consider the tower of simple extensions

K = K0 ⊂ K1 = K(α1) ⊂ · · · ⊂ Ki−1 ⊂ Ki = Ki−1(αi) = K(α1, . . . , αi) ⊂ · · · ⊂ Kn = K(α1, . . . , αn).

Let fi ∈ K[X] (resp. gi ∈ Ki−1[X]) be the minimal polynomial of α over K (resp. over Ki−1), for each
i = 1, . . . , n. The divisibility gi | fi in Ki−1[X] implies that

[Ki : Ki−1] = [Ki−1(αi) : Ki−1] = deg(gi) ≤ deg(fi) = [K(αi) : K],

hence

[L : K] =

n∏
i=1

[Ki : Ki−1] ≤
n∏
i=1

[K(αi) : K] <∞.

(3) The implication “⇐=” was proved in (2).
(4) For any α, β ∈ K ′ the subfield K(α, β) ⊂ L is a finite extension of K, by (2), hence is algebraic over K,
by (1). In particular, the elements α± β, αβ and αβ−1 (if β 6= 0) also lie in K ′.

(3.16) Corollary. Let K ↪→ L ↪→ M be field extensions. The extension M/K is algebraic ⇐⇒ both
extensions L/K and M/L are algebraic.

Proof. The implication “=⇒” is automatic. Conversely, if both L/K and M/L are algebraic, then each
β is a root of a suitable polynomial f = Xn + a1X

n−1 + · · · + an ∈ L[X] (n ≥ 1). The subfield L′ =
K(a1, . . . , an) ⊂ L is a finite extension of K, by (2). Moreover, [L′(β) : L′] ≤ deg(f) <∞, since f ∈ L′[X].
It follows that

[K(β) : K] ≤ [L′(β) : K] = [L′(β) : L′][L′ : K] <∞,

hence β is algebraic over K.

(3.17) Computing the inverse. The ring K[X] is euclidean for any field K, which means that the proof
of Proposition 3.10(5) can be made completely algorithmic. As an example (for K = Q), let us compute the
inverse of

β = 3− 2
3
√

2 +
3
√

4 = g(
3
√

2), g(X) = X2 − 2X + 3.

An application of Euclid’s algorithm to the polynomials f(X) = X3 − 2 and g(X) yields

X3 − 2 = (X2 − 2X + 3)(X + 2) + (X − 8)

X2 − 2X + 3 = (X − 8)(X + 6) + 51,

hence

51 = (X2 + 8X + 13)(X2 − 2X + 3)− (X + 6)(X3 − 2) = h(X)g(X)− (X + 6)f(X).

For X = 3
√

2, we obtain

β h(
3
√

2) = g(
3
√

2)h(
3
√

2) = 51 =⇒ β−1 =
h( 3
√

2)

51
=

13 + 8 3
√

2 + 3
√

4

51
.

(3.18) Explicit equations and characteristic polynomials. The proof of Proposition 3.15(1) does not
give an effective method for finding a polynomial equation for β ∈ L. Instead, one can proceed as follows.
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If L/K is a finite extension and α1, . . . , αn is a set of generators of L as a K-vector space, then we can
write, for each j = 1, . . . , n, βαj =

∑n
i=1Mijαi, where Mij ∈ K. This system of equations can be written

in matrix terms as

β


α1

...

αn

 = M


α1

...

αn

 , M = (Mij)1≤i,j≤n ∈Mn(K),

which means that β is an eigenvalue of the matrix M . In particular, it is a root of the characteristic
polynomial det(X · I −M) ∈ K[X] of M .

(3.19) In the special case when α1, . . . , αn is a basis of L/K (hence n = [L : K]), the matrix M = M(β)
is the matrix of the K-linear map

m(β) : L −→ L, x 7→ βx

given by multiplication by β in the basis α1, . . . , αn. The characteristic polynomial

PL/K,β(X) = det(X · I −M(β)) ∈ K[X]

does not depend on the choice of a basis. As a result, we obtain a canonical polynomial equation of degree
n = [L : K] with coefficients in K (for any β ∈ L):

PL/K,β(β) = 0. (3.19.1)

The matrices M(β) ∈Mn(K) (β ∈ L) have the following properties:

M(α)+M(β) = M(α+β), M(α)M(β) = M(αβ), ∀α ∈ K M(α) = α ·I, β 6= 0 =⇒M(β) 6= 0
(3.19.2)

(since (α + β)x = αx + βx and α(βx) = (αβ)x for all x ∈ L). In other words, we have constructed an
injective homomorphism of K-algebras (“the regular representation of L over K”)

L ↪→Mn(K), β 7→M(β) (3.19.3)

(the matrix ring Mn(K) is the only non-commutative ring appearing in this course; the structure map
K −→Mn(K) identifies K with the set of scalar matrices {λI | λ ∈ K}).

(3.20) Definition. Let K ↪→ L be a field extension of degree n = [L : K] < ∞. The norm (resp. the
trace) of an element β ∈ L is defined as

NL/K(β) = det(M(β)) ∈ K, TrL/K(β) = Tr(M(β)) ∈ K.

(3.21) Example. If L = K(
√
d), where d ∈ K \ K2, then [L : K] = 2 and 1,

√
d is a basis of L/K.

Multiplication by β = a+ b
√
d (a, b ∈ K) in this basis is given by

mβ :
1 7→ β = a · 1 + b ·

√
d

√
d 7→ β

√
d = db · 1 + a ·

√
d,

hence

M(a+ b
√
d) =

(
a db

b a

)
, PL/K,β(X) = X2 − 2aX + (a2 − db2) = (X − β)(X − β′),

where β = a+ b
√
d and β′ = a− b

√
d. In particular,
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NL/K(a+ b
√
d) = a2 − db2 = ββ′, TrL/K(a+ b

√
d) = 2a = β + β′.

(3.22) Theorem (minimal polynomial and the characteristic polynomial). Let K ↪→ L be a finite
extension, let β ∈ L. Denote by f ∈ K[X] the minimal polynomial of β over K; then PL/K,β = f [L:K(β)].

Proof. Let α1, . . . , αd (resp. ω1, . . . , ωm) be a basis of K(β)/K (resp. of L/K(β)). The matrix M(β) in the
basis αiωj of L/K is a block matrix

M(β) =


A 0 . . . 0

0 A . . . 0
...

...
. . .

...

0 0 . . . A

 ,

where A is the matrix of multiplication by β with respect to the basis α1, . . . , αd of K(β)/K. In particular,

PL/K,β(X) = PK(β)/K,β(X)m.

Both polynomials PK(β)/K,β(X), f(X) ∈ K[X] are monic, have the same degree [K(β) : K] and satisfy
PK(β)/K,β(β) = f(β) = 0. It follows that PK(β)/K,β(X) = f(X), by uniqueness of the minimal polynomial.

One can also compute explicitly the matrix A for α1, . . . , αd = 1, β, . . . , βd−1; in the notation of II.4.7
we have A = C(f) and a short calculation shows that det(X · I − C(f)) = f(X).

(3.23) Exercise. Under the assumptions of 3.20,
(i) ∀α, β ∈ L TrL/K(α + β) = TrL/K(α) + TrL/K(β), NL/K(αβ) = NL/K(α)NL/K(β). In other words,
the trace (resp. the norm) is a group homomorphism TrL/K : L −→ K (resp. NL/K : L∗ −→ K∗).

(ii) ∀α ∈ K, ∀β ∈ L TrL/K(αβ) = αTrL/K(β), NL/K(αβ) = α[L:K]NL/K(β).
(iii) If M/L is a finite extension, then NL/K ◦NM/L = NM/K , TrL/K ◦ TrM/L = TrM/K .

(3.24) We are now ready to make sense of the statement “let L be the field generated over K by the roots
of a given polynomial f ∈ K[X]”.

(3.25) Definition. Let K be a field, let f ∈ K[X] be a polynomial of degree n ≥ 1. A splitting field
of f over K is a field extension K ↪→ L such that f splits in L[X] as f(X) = c(X − α1) · · · (X − αn)
(where c ∈ K∗ and α1, . . . , αn ∈ L) and L = K(α1, . . . , αn) (according to Proposition 3.15(2), L/K is a
finite extension).

(3.26) Theorem. A splitting field of any non-constant polynomial f ∈ K[X] exists. Two splitting fields of
f are isomorphic as K-algebras. [As a result, we can use the terminology “the splitting field of f over K”.]

Proof. Existence: fix an irreducible factor g | f , g ∈ K[X]. The quotient ring K1 = K[X]/(g) is a field
containing K and K1 = K(α1), where α1 = X (mod g) ∈ K1 satisfies g(α1) = 0, hence f(α1) = 0. This
means that f(X) = (X − α1)f1(X), f1 ∈ K1[X]. After replacing (K, f) by (K1, f1) and repeating this
procedure we obtain a tower of simple extensions

K = K0 ⊂ K1 = K(α1) ⊂ · · · ⊂ Ki−1 ⊂ Ki = Ki−1(αi) = K(α1, . . . , αi) ⊂ · · · ⊂ Kn = K(α1, . . . , αn)

such that f(X) = c(X − α1) · · · (X − αn) ∈ Kn[X]. The field Kn is then a splitting field of f over K.

Uniqueness: let K ↪→ L and K ↪→ L′ be two splitting fields of f over K. Fix an irreducible factor g | f ,
g ∈ K[X]. By definition of a splitting field, the polynomial g splits both in L and L′, which means that
there exist α ∈ L and α′ ∈ L′ such that g(α) = 0 and g(α′) = 0. The evaluation morphisms evα and evα′

give rise to isomorphisms of K-algebras

evα : K[X]/(g)
∼−→ K(α) = K1 ⊂ L, evα′ : K[X]/(g)

∼−→ K(α′) = K ′1 ⊂ L′
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and σ = evα′ ◦ (evα)−1 : K1
∼−→ K ′1. Consider K1 as a subfield of both L (via the inclusion) and L′ (via

σ and the inclusion K ′1 ⊂ L′). As above, f = (X − α)f1, where f1 ∈ K1[X] and L,L′ are splitting fields of
f1 over K1. After replacing (K, f) by (K1, f1) and repeating this procedure we obtain two towers of simple
extensions

K = K0 ⊂ K1 = K(α1) ⊂ · · · ⊂ Ki−1 ⊂ Ki = Ki−1(αi) = K(α1, . . . , αi) ⊂ · · · ⊂ Kn = K(α1, . . . , αn) ⊂ L
K = K0 ⊂ K ′1 = K(α′1) ⊂ · · · ⊂ K ′i−1 ⊂ K ′i = K ′i−1(α′i) = K(α′1, . . . , α

′
i) ⊂ · · · ⊂ K ′n = K(α′1, . . . , α

′
n) ⊂ L′

such that f = c(X − α1) · · · (X − αn) ∈ Kn[X] and f = c(X − α′1) · · · (X − α′n) ∈ K ′n[X] (which implies
that L = Kn and L′ = K ′n), and field isomorphisms σi : Ki

∼−→ K ′i satisfying σi|Ki−1
= σi−1. In particular,

σn : L
∼−→ L′ is an isomorphism of K-algebras.

(3.27) Proposition-Definition. Let K ↪→ L be a field extension, let α ∈ L. The derivative of a
polynomial f =

∑n
i=0 aiX

i ∈ K[X] is defined to be f ′ =
∑n
i=1 iaiX

i−1 ∈ K[X] (where iai = (i · 1K)ai).
(1) The polynomial f(X)− f(α)− (X − α)f ′(α) ∈ L[X] is divisible in L[X] by (X − α)2.
(2) α is a simple root of f (i.e., (X − α) | f and (X − α)2 - f in L[X]) ⇐⇒ f(α) = 0 6= f ′(α).
(3) All roots of a non-zero polynomial f (in its splitting field) are simple ⇐⇒ (f, f ′) = (1) in K[X].

Proof. (1) By linearity, it is sufficient to consider the case K = L and f = (X−α)n (n ∈ N), when everything
is explicit.
(2) This is an immediate consequence of (1).
(3) The ideal (f, f ′) = (g) ⊂ K[X] is principal. If deg(g) ≥ 1, then g has a root α in some extension
L ⊃ K; thus f(α) = f ′(α) = 0. If deg(g) = 0, then (f, f ′) = (1) and there exist a, b ∈ K[X] such that
a(X)f(X) + b(X)f ′(X) = 1. It follows that b(α)f ′(α) = 1 (=⇒ f ′(α) 6= 0) for each root α of f .

(3.28) Exercise. Let K be a field of characteristic char(K) 6= 2.
(1) If [L : K] = 2, show that L = K(

√
a) for some a ∈ K \K2.

(2) If a ∈ K \K2, then K(
√
a)∗2 ∩K∗ = K∗2 ∪ aK∗2.

(3) If a, b ∈ K \K2, then K(
√
a) = K(

√
b) ⇐⇒ a/b ∈ K2.

(4) If a, b ∈ K, then [K(
√
a,
√
b) : K] = 4 ⇐⇒ a, b, ab 6∈ K2. If this is the case, then 1,

√
a,
√
b,
√
ab is a basis

of K(
√
a,
√
b)/K and the only intermediate fields K ( L ( K(

√
a,
√
b) are L = K(

√
a),K(

√
b),K(

√
ab).

(3.29) Exercise. Let K be a field of characteristic char(K) 6= 2, let a, b, c ∈ K∗, c 6∈ K∗2. Consider the

fields K1 = K(
√
c) and L = K(α) (= K(

√
a+ b

√
c)), where α2 = a+ b

√
c.

(1) Show that L = K1 ⇐⇒ there exists d ∈ K∗ such that a2 − b2c = d2 and 2(a+ d) ∈ K∗2.
(2) Show that there exists β ∈ L such that β2 = a − b

√
c ⇐⇒ a2 − b2c ∈ K∗2 ∪ cK∗2. [Hint: consider

K∗1 ∩ L∗2.]
(3) Determine K∗ ∩ L∗2.
(4) Show that there is c′ ∈ K∗ such that L = K(

√
c,
√
c′) ⇐⇒ a2 − b2c ∈ K∗2. Explicitly, if a2 − b2c = d2

with d ∈ K∗, then (α± β)2 = 2(a± d), hence L = K(
√
c,
√

2(a+ d)) = K(
√
c,
√

2(a− d)).

[Example:
√

2 +
√

3 = (1 +
√

3)/
√

2.]

(3.30) Exercise. Let K ↪→ L1 ↪→M , K ↪→ L2 ↪→M be fields such that the only subfield of M containing
both L1 and L2 is M itself. If di = [Li : K] <∞ for i = 1, 2 and if gcd(d1, d2) = 1, then [M : K] = d1d2.

4. Finite felds

(4.1) Proposition. (1) A field K has finitely many elements ⇐⇒ char(K) = p > 0 and n = [K : Fp] <∞.
If this is the case, then |K| = pn = q and each element of K∗ (resp. of K) is a root of the polynomial
Xq−1 − 1 ∈ Fp[X] (resp. of Xq −X ∈ Fp[X]).
(2) For each n ≥ 1 the polynomial Xpn −X ∈ Fp[X] has simple roots.
(3) If K is a field with |K| = pn = q elements, then K is a splitting field of the polynomial Xpn −X over
Fp. [In particular, it is unique up to isomorphism, by Theorem 3.26.]
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(4) If f ∈ Fp[X] is an irreducible polynomial of degree n ≥ 1, then the ring K = Fp[X]/(f) is a field with
|K| = pn elements and the polynomial f divides Xpn −X in Fp[X].
(5) Every finite field is isomorphic to a field obtained by the construction in (4).

Proof. (1) If char(K) = p and n = [K : Fp] <∞, then K is isomorphic to Fnp as an Fp-vector space, hence
|K| = |Fp|n = pn. If char(F ) = p and [K : Fp] = ∞ (resp. if char(K) = 0), then K contains Fnp for all
n ≥ 1 (resp. K contains Q), hence |K| =∞.

If |K| = q < ∞, then K∗ is a finite group of order q − 1, hence ∀a ∈ K∗ aq−1 = 1 (=⇒ aq = a). If
a ∈ K \K∗, then a = 0 =⇒ aq = a.
(2) The polynomial g(X) = Xpn − X ∈ Fp[X] has derivative g′(X) = pnXpn−1 − 1 = −1 ∈ Fp[X]; thus
(g, g′) = (1). The statement follows from Proposition 3.27(3).
(3) It follows from (1) and (2) that the elements of K are precisely the pn distinct roots of the polynomial
g(X) = Xpn − X ∈ Fp[X] in its splitting field L over Fp. As L is generated over Fp by these roots, it
coincides with K.
(4) The ring K = Fp[X]/(f) is a field and [K : Fp] = n, by Proposition 3.10(6). If we denote by X the

image of X in K, then (1) implies that X
pn −X = 0, which is equivalent to the divisibility f |(Xpn −X).

(5) According to Proposition 3.3, the multiplicative group K∗ is cyclic of order q− 1, where q = |K|. If α is
any generator of K∗, then K = Fp(α)

∼−→ Fp[X]/(f), where f ∈ Fp[X] is the minimal polynomial of α over
Fp, by Proposition 3.10(2),(5).

(4.2) Definition (Frobenius morphism). Let p be a prime number, let R be any Fp-algebra ( ⇐⇒
p · 1 = 0 in R). The formula

ϕ : R −→ R, ϕ(x) = xp

defines a homomorphism of Fp-algebras (ϕ(1) = 1, ϕ(xy) = ϕ(x)ϕ(y), ϕ(x ± y) = ϕ(x) ± ϕ(y) for all
x, y ∈ R, ϕ(a) = a for each a ∈ Fp), called the Frobenius morphism. For n ≥ 1 set q = pn and
ϕq = ϕn = ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸

n−times

: R −→ R; then ϕq(x) = xq.

(4.3) Proposition. Let p be a prime number, let E ⊃ Fp be any field containing a splitting field of the
polynomial g = Xq −X ∈ Fp[X] over Fp.

(1) If K is a field with |K| = pn = q elements, then K
∼−→ Eϕq=1 = {a ∈ E | (ϕq − 1)(a) = 0} (above, “1”

denotes the identity map E −→ E, x 7→ x).
(2) Conversely, Eϕq=1 = {a ∈ E | (ϕq − 1)(a) = 0} is a field with q elements.

Proof. (1) This was already observed in the course of the proof of Proposition 4.1(3).
(2) If x, y ∈ E satisfy ϕq(x) = x and ϕq(y) = y, then ϕq(x± y) = x± y, ϕq(xy) = xy and ϕq(x/y) = x/y (if
y 6= 0), since ϕq : E −→ E is a homomorphism of fields. As a result, Eϕq=1 is a subfield of E. By definition,
its elements are precisely the roots of the polynomial g contained in E; there are q = deg(g) of them, since
E contains a splitting field of g and g has no multiple roots, by Proposition 4.1(2).

(4.4) Theorem. Let p be a prime number. (1) For each n ≥ 1 there exists a field with pn elements; it is
unique up to isomorphism. It is usually denoted by Fpn (or GF (pn)).
(2) Let m,n, r ≥ 1 be integers, let q = pr. There exists a field homomorphism σ : Fqm ↪→ Fqn ⇐⇒ m|n. If
this is the case, then σ(Fqm) = {x ∈ Fqn | xq

m

= x}.

Proof. (1) The uniqueness (resp. the existence) of Fpn was proved in Proposition 4.1(3) (resp. in Proposition
4.3(2)).
(2) If m | n, then (qm − 1) | (qn − 1), hence the polynomial Xqm − X divides Xqn − X. In particular,
the splitting field of Xqn − X contains that of Xqm − X. Conversely, if there exists a field embedding
σ : Fqm ↪→ Fqn , then K = σ(Fqm) is a subfield of Fqn and qn = |Fqn | = |K|d = qmd, where d = [Fqn : K];
thus n = md. The equality σ(Fqm) = {x ∈ Fqn | xq

m

= x} follows from Proposition 4.3(1) applied to
K = σ(Fqm) and E = Fqn .

(4.5) Corollary. (1) If f ∈ Fq[X] is an irreducible polynomial of degree m ≥ 1, then f divides Xqn −X
in Fq[X] if and only if m | n.
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(2) For m ≥ 1, denote by Am the set of monic irreducible polynomials f ∈ Fq[X] of degree deg(f) = m.
The set Am is non-empty and

∀n ≥ 1 Xqn −X =
∏
m|n

∏
f∈Am

f, qn =
∑
m|n

m|Am|.

Proof. (1) Let f ∈ Am (m ≥ 1). If m | n, then f | (Xqm−X) | (Xqn−X), by Proposition 4.1(4). Conversely,
if f | (Xqn −X), then K = Fq[X]/(f) = Fqm is contained in the splitting field of the polynomial Xqn −X
over Fq (i.e., in Fqn), hence m | n, thanks to Theorem 4.4(2).
(2) The factorisation of Xqn −X follows from (1) and the fact that the polynomial Xqn −X has no multiple
roots; one concludes by counting the degrees.

(4.6) Example. If p = q = n = 2, then X4−X = X(X−1)(X2+X+1) ∈ F2[X], F2[X]/(X2+X+1) = F4.

(4.7) Factorisation in Fq[X]. A combination of the Frobenius morphism with the Chinese remainder
theorem leads to an efficient factorisation algorithm for polynomials with coefficients in finite fields. The
main idea is very simple:

(4.8) Proposition. Let f ∈ Fq[X] (where q = pn) be a non-constant monic polynomial without multiple
roots, f = f1 · · · fk, where fi ∈ Fq[X] are distinct irreducible non-constant monic polynomials. The map

ϕq − 1 : Fq[X]/(f) −→ Fq[X]/(f), h (mod f) 7→ hq − h (mod f)

is Fq-linear and

Fq ⊆ Ker(ϕq − 1) = (Fq[X]/(f))ϕq=1, dimFq Ker(ϕq − 1) = k,

f is irreducible ⇐⇒ Ker(ϕq − 1) = Fq.

Proof. For each a ∈ Fq we have ϕq(a) = aq = a, which implies that the map ϕq−1 : Fq[X]/(f) −→ Fq[X]/(f)
satisfies (ϕq − 1)(ah) = (ah)q − ah = a(hq − h) = a(ϕq − 1)(h), for each a ∈ Fq and h ∈ Fq[X]/(f). The
Chinese remainder theorem I.5.11(ii) then yields

Fq[X]/(f)
∼−→ Fq[X]/(f1)× · · · × Fq[X]/(fk) = Fqd1 × · · · × Fqdk (di = deg(fi)),

(Fq[X]/(f))ϕq=1 ∼−→ (Fqd1 )ϕq=1 × · · · × (Fqdk )ϕq=1 =

k∏
i=1

Fq,

hence dimFq Ker(ϕq − id) = k.

(4.9) Corollary (Berlekamp’s algorithm). Let f ∈ Fq[X] be a monic polynomial without multiple
roots of degree n > 1.
(1) Compute the matrix A ∈ Mn(Fq) of the Fq-linear map ϕq − 1 : Fq[X]/(f) −→ Fq[X]/(f) in the basis

1, X, . . . ,X
n−1

, where X = X (mod f).
(2) Solve the system of linear equations Au = 0 (u ∈ Fnq ).

(3) If the space of solutions is equal to Fq ·


1

0
...

0

, then f is irreducible in Fq[X].

(4) If, on the other hand, there exists another solution u ∈ Fnq , it corresponds to a non-constant polynomial
h ∈ Fq[X] of degree deg(h) < n such that hq − h (mod f) = 0. In other words, f | hq − h =

∏
a∈Fq (h− a).

(5) The polynomials h−a (a ∈ Fq) in the above product are pairwise relatively prime and satisfy deg(h−a) <
deg(f), which implies that the factorisation

f =
∏
a∈Fq

ha, ha = pgcd(f, h− a), deg(ha) < deg(f)
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is non-trivial.

(4.10) Example. Let us factor the polynomial f = X5 +X + 1 ∈ F2[X] by working in the ring

F2[X]/(f) = F2 · 1 + F2 ·X + F2 ·X
2

+ F2 ·X
3

+ F2 ·X
4

(X = X (mod (X5 +X + 1))).

The formulas

X
5

= X + 1, X
6

= X
2

+X, X
7

= X
3

+X
2
, X

8
= X

4
+X

3

imply that

ϕ2 − 1 : 1 7→ 12 − 1 = 0, X 7→ X
2 −X, X

2 7→ X
4 −X2

,

X
3 7→ X

6 −X3
= X

3
+X

2
+X, X

4 7→ X
8 −X4

= X
3
.

We find a non-constant solution

(ϕ2 − 1)(X
4

+X
3

+X) = 0 =⇒ f | h2 − h = h(h− 1), h = X4 +X3 +X ∈ F2[X].

Euclid’s algorithm in F2[X] yields

h0 = pgcd(f, h) = X3 +X2 + 1, h1 = pgcd(f, h− 1) = X2 +X + 1,

X5 +X + 1 = (X3 +X2 + 1)(X2 +X + 1) ∈ F2[X].

(4.11) Exercise. What if the polynomial f ∈ Fq[T ] does have a multiple root?

(4.12) Exercise. Let p 6= 2, 3 be a prime number, let L ⊃ Fp be a field.
(1) The polynomial Φ3(X) = X2 +X + 1 ∈ Fp[X] has a root α ∈ Fp ⇐⇒ p ≡ 1 (mod 3).
(2) α ∈ L satisfies Φ3(α) = 0 ⇐⇒ β = 2α+ 1 ∈ L satisfies β2 = −3 ∈ L.
(3) There exists x ∈ Z such that x2 ≡ −3 (mod p) ⇐⇒ p ≡ 1 (mod 3).

(4.13) Exercise. Let p 6= 5 be a prime number. Denote by L a splitting field of the polynomial Φ5(X) =
X4 +X3 +X2 +X + 1 ∈ Fp[X] over Fp.
(1) Φ5(X) has no multiple root in L.
(2) α ∈ L is a root of Φ5(X) ⇐⇒ α5 = 1 and α 6= 1.
(3) The degree of L/Fp is equal to

[L : Fp] =


1, p ≡ +1 (mod 5)

2, p ≡ −1 (mod 5)

4, p ≡ ±2 (mod 5)

(4) Fix a root ζ ∈ L of Φ5(X). Write down a polynomial g ∈ Fp[X] of degree deg(g) = 2 such that
g(ζ + ζ−1) = 0. Deduce that (2β + 1)2 = 5 ∈ L.
(5) Show that β = ζ + ζ−1 ∈ Fp ⇐⇒ [L : Fp] ≤ 2 ⇐⇒ p ≡ ±1 (mod 5).
(6) If p 6= 2, then there exists x ∈ Z such that x2 ≡ 5 (mod p) ⇐⇒ p ≡ ±1 (mod 5).

(4.14) Exercise. Let F be a field of characteristic p > 0, let k ≥ 1 be an integer.

(1) If α ∈ F satisfies (ϕk − 1)(α) = αp
k −α ∈ Fp, then α ∈ Fpkp . [Hint: α ∈ Fpm ⇐⇒ (ϕm− 1)(α) = 0.]

(2) Let c ∈ Fp. If the polynomial Xpk −X − c is irreducible in Fp[X], then pk | kp.
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(3) Determine all values of p, k and c ∈ Fp for which the polynomial Xpk −X − c is irreducible in Fp[X].

(4) If k > 1 and a ∈ Fpk , show that the polynomial Xpk −X − a is reducible in Fpk [X].

5. Algebraic closure

It is often useful to collect “all” finite extensions of a given field K in a common field extension of K, called
an algebraic closure of K. Strictly speaking, the whole theory of field extensions can be developed without
introducing this concept, replacing everywhere “an algebraic closure of K” by “a sufficiently large algebraic
extension of K”.

(5.1) Proposition. Let K(α)/K be a simple algebraic extension, let f ∈ K[X] be the minimal polynomial
of α over K. For every field extension K ↪→M the map

HomK−Alg(K(α),M) −→ {β ∈M | f(β) = 0}, λ 7→ λ(α)

is a bijection; its inverse is given by

β 7→ (λ : g(α) 7→ g(β)), g ∈ K[X].

Proof. This is a combination of the isomorphism of K-algebras evα : K[X]/(f)
∼−→ K(α) with Proposition

I.4.4(iii). In concrete terms, the map is well-defined, since f(λ(α)) = λ(f(α)) = 0. It is injective, since
K(α) = K[α] and λ(g(α)) = g(λ(α)) for all g ∈ K[X]. Conversely, if β ∈ M satisfies f(β) = 0, then
the composite homomorphism of K-algebras evβ : K[X] −→ M factors through the canonical projection

pr : K[X] −→ K[X]/(f) as K[X] −→ K[X]/(f)
∼−→ K(α) −→M , which proves the surjectivity.

(5.2) Definition. A field L is algebraically closed if each non-constant polynomial f ∈ L[X] has a root
in L ( ⇐⇒ f splits in L[X] as f = c(X − α1) · · · (X − αn), where c ∈ L∗ and α1, . . . , αn ∈ L). In other
words, the only algebraic extension of L is L itself. For example, the field C is algebraically closed.

(5.3) Definition. A field extension K ↪→ L is an algebraic closure of K if it is an algebraic extension
and L is algebraically closed.

(5.4) Proposition. If K ↪→ L is an algebraic extension and if every non-constant polynomial f ∈ K[X]
splits in L[X] as f = c(X − α1) · · · (X − αn), where c ∈ K∗ and α1, . . . , αn ∈ L, then L is an algebraic
closure of K.

Proof. Assume that α is alebraic over L; let f ∈ K[X] (resp. g ∈ L[X]) be its minimal polynomial over K
(resp. over L). The polynomial g divides f in L[X], which means that it splits in L[X] (since f does), and
so its root α must lie in L.

(5.5) Corollary. If K ↪→ L is a field extension and L is algebraically closed, then the subfield {α ∈ L |
α is algebraic over K} is an algebraic closure of K. In particular, Q ⊂ C is an algebraic closure of Q.

(5.6) Theorem. Let K be a field. (1) An algebraic closure of K exists.
(2) If Ω is an algebraically closed extension field of K, then for every algebraic extension K ↪→ L there exists
a morphism of K-algebras L ↪→ Ω.
(3) Two algebraic closures of K are isomorphic as K-algebras (notation: a fixed algebraic closure of K is
usually denoted by K).

Proof. (1) If the field K is (at most) countable, so is the set P of irreducible non-constant monic polynomials
in K[X]. We define inductively K1 = K and Kn+1 ⊃ Kn to be a splitting field of the n-th element of P
over Kn. The union L =

⋃
n≥1Kn is an algebraic extension of K satisfying the assumptions of Proposition

5.4. Therefore, L is an algebraic closure of K.
For a general field K, we begin by showing that there exists an algebraic field extension K ↪→ E(K)

with the property that each f ∈ P has a root in E(K). This field is defined as a quotient of two monstrously
big objects; the key point is to show that the quotient is non-zero.

Let A = K[xf ]f∈P be a polynomial ring in variables xf , one variable for each element f ∈ P . Let I ⊂ A
be the ideal generated by f(xf ), for all f ∈ P .
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(5.7) Lemma. The ideal I ⊂ A is not equal to A.

Proof of Lemma. If I = A, then there exists a relation

n∑
i=1

ai fi(xfi) = 1 (ai ∈ A), (5.7.1)

where f1, . . . , fn ∈ P are distinct elements of P . Let L be a splitting field of f1 · · · fn over K; for each
i = 1, . . . , n fix a root βi ∈ L of fi. Define a morphism of K-algebras λ : A −→ L sending each xfi
(i = 1, . . . , n) to βi and each xf (f 6= f1, . . . , fn) to 0. Applying λ to (5.7.1) we obtain 0 = 1. This
contradiction proves the lemma.

We can now continue the proof of Theorem 5.6(1). There exists a maximal ideal m ∈ Max(A) containing
I, by Corollary I.6.7(ii). The quotient ring A/m = E(K) is a field extension of K, via the composite
homomorphism

K ↪→ A −→ A/I −→ A/m = E(K).

For each f ∈ P , the image αf = xf (modm) ∈ E(K) of xf satisfies f(αf ) = 0. It follows that E(K) =
K[αf ]f∈P is an algebraic extension of K and that each non-constant polynomial in K[X] has a root in E(K).
Iterating this construction, we obtain a sequence of algebraic field extensions

K ↪→ E(K) ↪→ E2(K) = E(E(K)) ↪→ · · · ↪→ E∞(K) =
⋃
n≥1

En(E) = Ω.

Any non-constant polynomial g ∈ Ω[X] lies in some En(K)[X]; therefore it has a root in En+1(K) ⊂ Ω. It
follows that Ω is algebraically closed.

(2) (a) If L = K(α) is a simple algebraic extension of K, then the minimal polynomial f ∈ K[X] of α over
K has a root in Ω, which implies that HomK−Alg(L,Ω) 6= ∅, by Proposition 5.1.

(b) If L ⊃ K is an arbitrary algebraic extension of K, then the set of pairs (M,σ), where M is an intermediate
field K ⊂ M ⊂ L and σ ∈ HomK−Alg(M,Ω), has a natural partial order ((M,σ) ≤ (M ′, σ′) if M ⊂ M ′

and σ′|M = σ). This partially ordered set is non-empty (it contains M = K and the inclusion K ↪→ Ω) and
inductive (given a totally ordered subset, its union gives an upper bound). Zorn’s Lemma implies that it
contains a maximal element (M,σ). If M 6= L, then σ can be extended to a bigger subfield M(α), for any
α ∈ L \M , as in (a), which contradicts maximality. It follows that M = L, as required.

(3) If K ↪→ Ω and K ↪→ Ω′ are algebraic closures of K, the statement (2) implies that there exists a morphism
of K-algebras σ : Ω′ ↪→ Ω. The field Ω is an algebraic extension of K, hence also of σ(Ω′). However, the
field σ(Ω′) is isomorphic to Ω′, which means that it is algebraically closed; thus σ(Ω′) = Ω and σ is an
isomorphism of K-algebras.

6. Separable extensions

(6.1) Question: when is a finite extension L/K simple (L = K(α))? Here are a few examples.

(i) For K = Q and L = Q(
√

2,
√

3) the element α =
√

2+
√

3 ∈ L satisfies α−1 =
√

3−
√

2,
√

2 = (α−α−1)/2
and
√

3 = (α+ α−1)/2, which implies that L = K(α).

(ii) If K = Fq and L = Fqn are finite fields, then L = K(α) for any generator α of the finite cyclic group L∗.

(iii) If L = Fp(a, b) and K = Fp(a
p, bp) (where a, b are independent variables), then the elements aibj

(0 ≤ i, j < p) form a basis of L/K, [L : K] = p2 and αp ∈ K for each α =
∑
cija

ibp ∈ L (since
αp =

∑
cpija

pibpj). In particular, [K(α) : K] ≤ p, hence K(α) 6= L.

What is the difference between (i) and (ii) on one hand, and (iii) on the other hand? The key point in (iii)
is that the minimal polynomial of a ∈ L over K is equal to Xp − ap = (X − a)p ∈ L[X]; in particular, it
has a multiple root (and similarly for the minimal polynomial of b ∈ L over K)! This can never happen in
characteristic zero, by Proposition 6.4(2) below. Let us investigate this phenomenon in more detail.
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(6.2) Definition. Let K be a field. A non-constant polynomial f ∈ K[X] is separable if it has no multiple
root (in its splitting field). According to Proposition 3.27(3), this condition is equivalent to (f, f ′) = (1).
If K ↪→ L is a field extension and α ∈ L is algebraic over K, we say that α is separable over K if its
minimal polynomial over K is separable. An algebraic extension K ↪→ L is separable if each element α ∈ L
is separable over K. The field K is perfect if each algebraic extension of K is separable over K ( ⇐⇒
every irreducible polynomial f ∈ K[X] is separable).

(6.3) Proposition. If K is a field of characteristic p > 0 and if a ∈ K \Kp is not a p-th power, then the
polynomial f = Xpn−a ∈ K[X] (n ≥ 1) is irreducible. If α is a root of f , then f(X) = (X−α)p

n ∈ K(α)[X].
The extension K(α)/K is not separable and [K(α) : K] = pn.

Proof. Consider first the case n = 1. If g ∈ K[X] is a non-constant polynomial dividing f , then g =
(X − α)m = Xm −mαXm−1 + · · · for some 1 ≤ m ≤ p. In particular, mα ∈ K. If m < p, then m ∈ K∗,
hence α ∈ K and a = αp ∈ Kp, which is false. Therefore m = p and f is irreducible.

For general n ≥ 1 define ai = αp
n−i

(0 ≤ i ≤ n) and Ki = K(ai); then K = K0 and Ki = Ki−1(ai) with
api = ai−1 ∈ Ki−1, hence Kp

i ⊂ Ki−1 (as in 6.1(iii)). By assumption, a = a0 6∈ Kp = Kp
0 . If ai ∈ Kp

i , then
ai−1 = api ∈ (Kp

i )p ⊂ Kp
i−1; thus ai 6∈ Kp

i for all i = 0, . . . , n, by induction. In particular, [Ki : Ki−1] = p
by the case n = 1 proved earlier, hence [K(α) : K] = [Kn : K0] = pn = deg(f), which shows that f is
irreducible.

(6.4) Proposition. Let K be a field.
(1) A non-constant irreducible polynomial f ∈ K[X] is separable ⇐⇒ f ′ 6= 0. This is always true if
char(K) = 0. If char(K) = p > 0, then f is separable ⇐⇒ f(X) 6= g(Xp) for all g ∈ K[X].
(2) If char(K) = 0, then K is perfect.
(3) If char(K) = p, then the field K is perfect ⇐⇒ K = Kp.
(4) Every finite field is perfect.

Proof. (1) The ideal (f, f ′) ⊂ K[X] is principal, equal to (h) for a monic polynomial h ∈ K[X] dividing
both f and f ′. If f ′ = 0, then h = f and f is not separable, by Proposition 3.27(3). If f ′ 6= 0, then
deg(h) ≤ deg(f ′) < deg(f), which implies that h = 1, by irreducibility of f ; thus f is separable, again by
Proposition 3.27(3). If char(K) = 0, then f ′ 6= 0 for every non-constant polynomial f . If char(K) = p > 0,
then f ′ = 0 ⇐⇒ f(X) = g(Xp) for some g ∈ K[X].
(2) This is an immediate consequence of (1).
(3) If K 6= Kp, then K admits non-separable extensions constructed in Proposition 6.3. Conversely, if K =
Kp and if g(X) =

∑n
i=0 aiX

i ∈ K[X], then there exist bi ∈ K such that ai = bpi for all i = 0, . . . , n, hence
g(Xp) =

∑n
i=0 b

p
iX

pi = h(X)p for h(X) =
∑n
i=0 biX

n ∈ K[X]. In particular, an irreducible polynomial
f ∈ K[X] cannot be of the form g(Xp), hence f is separable, by (1), and K is perfect.
(4) If K = Fpn = Fq, then each element a ∈ K satisfies a = aq, hence is a p-th power: a = bp for

b = ap
n−1 ∈ K.

(6.5) Theorem on the primitive element. Let K be a field, let L = K(α, β1, . . . , βn) be a finite extension
of K. If all elements β1, . . . , βn are separable over K, then there exists γ ∈ L (a “primitive element”) such
that L = K(γ).

Proof. If |K| < ∞, then L = K(γ) for any generator γ of the finite cyclic group L∗. We can assume,
therefore, that |K| =∞. By induction on n, it is enough to treat the case L = K(α, β), where β is separable
over K. Denote by f ∈ K[X] (resp. g ∈ K[X]) the minimal polynomial of α (resp. of β) over K. We have

f(X) =

m∏
i=1

(X − αi), g(X) =

n∏
j=1

(X − βj),

with αi and βj contained in a fixed splitting field of fg. Moreover, α = α1, β = β1 and the roots βj of g(X)
are distinct.

We want to choose t ∈ K for which γ = α+ tβ ∈ L will satisfy L = K(γ). The idea is to try to express
β in terms of γ using the two relations f(γ − tβ) = 0 = g(β). The polynomial h(X) = f(γ − tX) ∈ K(γ)[X]
has roots (γ − αi)/t = β + (α − αi)/t. If t ∈ K is chosen in such a way that t(β − βj) 6= αi − α for all
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i = 1, . . . ,m and all j = 2, . . . , n (which is possible, since the field K is infinite and β − βj 6= 0 for j > 1),
then the only common root of g and h will be β, with multiplicity one. Both polynomials g and h have
coefficients in K(γ), which implies that their gcd(g, h) = X−β also has coefficients in K(γ); thus β ∈ K(γ).
It follows that α = γ − tβ ∈ K(γ), too, hence L = K(α, β) = K(γ).

(6.6) Theorem. Let K ⊂ L be a finite extension. There exists γ ∈ L such that L = K(γ) ⇐⇒ there are
only finitely many intermediate fields K ⊂M ⊂ L.

Proof. The statement is clear if |K| <∞, by Theorem 4.4(2) and Proposition 4.1(5). Assume that |K| =∞.
Proof of “=⇒”: let f ∈ K[X] be the minimal polynomial of γ over K. For a field M such that

K ⊂ M ⊂ L let fM ∈ M [X] be the minimal polynomial of γ over M and let M ′ ⊂ M be the subfield
generated over K by the coefficients of fM . The polynomial fM is irreducible in M [X], hence also in M ′[X],
which implies that [L : M ] = [M(γ) : M ] = deg(fM ) = [M ′(γ) : M ′] = [L : M ′]; thus M = M ′. There
are only finitely many possibilities for fM (they all divide f in K[X]) and each fM determines M , by the
previous discussion.

Proof of “⇐=”: the extension L/K is of finite type, L = K(α1, . . . , αn). By induction, it is enough
to show that for any α, β ∈ L there exists γ ∈ L such that K(α, β) = K(γ). The field K is infinite, but
there are only finitely many possibilities for the fields K ⊂ K(α + tβ) ⊂ L (t ∈ K). Therefore there exist
t 6= t′ ∈ K such that K(α + tβ) = K(α + t′β) = M . In particular, α + tβ, α + t′β ∈ M =⇒ (t − t′)β ∈ M
=⇒ β ∈M =⇒ α = (α+ tβ)− tβ ∈M , hence K(α, β) = M = K(α+ tβ).

(6.7) We would like to formulate a numerical criterion of separability. The idea is to use Proposition 5.1,
which implies thst, for every field extension K ↪→ K ′ and every element α algebraic over K (with minimal
polynomial f ∈ K[X] over K), we have

|HomK−Alg(K(α),K ′)| = |{β ∈ K ′ | f(β) = 0}| ≤ deg(f) = [K(α) : K]. (6.7.1)

Moreover, we have an equality for a suitable (finite) extension K ′ of K ⇐⇒ all roots of f are distinct ⇐⇒
α is separable over K.

We need to investigate analogues of (6.7.1) for more general finite extensions L/K, which are not
necessarily of the form K(α)/K.

(6.8) Proposition-Definition. Let K ↪→ L be a finite extension, let K be a fixed algebraic closure of K.
The separable degree of the extension L/K is defined to be

[L : K]s := max
[K′:K]<∞

|HomK−Alg(L,K ′)| =
∣∣HomK−Alg(L,K)

∣∣ .
The discussion in 6.7 can be reformulated as [K(α) : K]s ≤ [K(α) : K], with equality ⇐⇒ α is separable
over K.

Proof. Every finite extension K ′ of K admits an embedding K ′ ↪→ K (a homomorphism of K-algebras),
by Theorem 5.6(2); this proves the inequality “≤”. Conversely, if L = K(α1, . . . , αn) and if K ′ ⊂ K is
the splitting field of the product of the minimal polynomials of α1, . . . , αn over K, then the image of every
homomorphism of K-algebras σ : L −→ K is contained in K ′, which proves the opposite inequality “≥”.

(6.9) Proposition. If K ↪→ L ↪→ M are finite extensions, then [M : K]s = [M : L]s[L : K]s and
[L : K]s ≤ [L : K].

Proof. The restriction map

res : HomK−Alg(M,K) −→ HomK−Alg(L,K), σ 7→ σ|L

is surjective, by Theorem 5.6(2). For fixed τ ∈ HomK−Alg(L,K), the fibre of res above τ is equal to
res−1(τ) = HomL−Alg(M,L), where we consider L = K as an L-algebra via τ . In particular,∣∣HomK−Alg(M,K)

∣∣ =
∑
τ

∣∣res−1(τ)
∣∣ =

∣∣HomL−Alg(M,L)
∣∣ ∣∣HomK−Alg(L,K)

∣∣ .
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Wrriting K ↪→ L as a tower of simple extensions

K = K0 ⊂ K1 = K(α1) ⊂ · · · ⊂ Ki−1 ⊂ Ki = Ki−1(αi) = K(α1, . . . , αi) ⊂ · · · ⊂ Kn = K(α1, . . . , αn) = L,
(6.9.1)

we obtain

[L : K]s =

n∏
i=1

[Ki : Ki−1]s =

n∏
i=1

[Ki−1(αi) : Ki−1]s ≤
n∏
i=1

[Ki−1(αi) : Ki−1] =

n∏
i=1

[Ki : Ki−1] = [L : K].

(6.9.2)

(6.10) Proposition. Let K ↪→ L be a finite extension. The following properties are equivalent:
(i) L = K(α1, . . . , αn), where each αi is separable over K.
(ii) [L : K]s = [L : K].
(iii) The extension L/K is separable.
(iv) L = K(α), where α is separable over K.

Proof. The implication (iii) =⇒ (i) is automatic.
(i) =⇒ (ii): consider the tower (6.9.1). Each αi is separable over K, hence over Ki−1; it follows that
[Ki : Ki−1]s = [Ki : Ki−1] for all i = 1, . . . , n, hence [L : K]s = [L : K] (cf. (6.9.2)).
(ii) =⇒ (iii): if there is α ∈ L which is not separable over K, then the tower of extensions K ⊂ K(α) ⊂ L
satisfies [K(α) : K]s < [K(α) : K] and [L : K(α)]s ≤ [L : K(α)], hence [L : K]s = [L : K(α)]s[K(α) : K]s <
[L : K(α)][K(α) : K] = [L : K].
The implication (iv) =⇒ (i) is automatic.
(i) =⇒ (iv): Theorem 6.5 implies that L = K(α) for some α ∈ L; α is separable over K by (iii).

(6.11) Corollary. Let K ↪→ L ↪→M be algebraic extensions.
(1) If [M : K] <∞, then the extension M/K is separable ⇐⇒ M/L and L/K are separable.
(2) If L/K is a separable extension and α is separable over L, then α is separable over K.
(3) The extension M/K is separable ⇐⇒ M/L and L/K are separable.

Proof. (1) M/K is separable ⇐⇒ [M : K]s = [M : L]s[L : K]s = [M : K] = [M : L][L : K] ⇐⇒
[M : L]s = [M : L] and [L : K]s = [L : K] (since [M : L]s ≤ [M : L] and [L : K]s ≤ [L : K]).
(2) Let L′ = K(a1, . . . , ad) ⊂ L be the subfield generated over K by the coefficients a1, . . . , ad ∈ L of the
minimal polynomial of α over L. By assumption, L′/K and L′(α)/L′ are finite separable extensions, hence
L′(α)/K is also separable, by (1).
(3) The implication “=⇒” is automatic. The converse implication follows from (2).

(6.12) Proposition. If K ↪→ L is a field extension, then {α ∈ L | α is algebraic and separable over K}
is a subfield of L. In particular, Ksep = {α ∈ K | α is algebraic and separable over K} is a subfield of K,
called the separable closure of K. Of course, Ksep = K if K is perfect (in particular, if char(K) = 0).

Proof. If α, β ∈ L are algebraic and separable over K, then the extension K(α, β)/K is separable by
Proposition 6.10, hence its elements α± β, αβ, α/β (if β 6= 0) are separable over K.

(6.13) Proposition. If L/K is a finite extension, then the field Ls = {α ∈ L | α is separable over K}
(K ↪→ Ls ↪→ L) has the following properties.
(1) The extension Ls/K is separable.
(2) If β ∈ L is separable over Ls, then β ∈ Ls.
(3) Assume that char(K) = p > 0. For each α ∈ L there exists n ≥ 0 such that αp

n ∈ Ls (the extension
L/Ls is purely inseparable).
(4) [L : Ls]s = 1 and [Ls : K] = [L : K]s.

Proof. The statements (1) and (2) follow from Proposition 6.10 and Corollary 6.11(2), respectively. In (3),
let f ∈ K[X] be the minimal polynomial of α over K. There exists n ≥ 0 such that f(X) = g(Xpn), where
g ∈ K[X] and g(X) 6= h(Xp) for any h ∈ K[X]. The polynomial g is irreducible in K[X] (since f is), hence
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separable, by Proposition 6.4(1). As a result, β = αp
n ∈ L lies in Ls, since g(β) = f(α) = 0. In (4) there

is nothing to prove if char(K) = 0 (when Ls = L). If char(K) = p > 0, fix an embedding Ls ↪→ Ls = K.
Let σ ∈ HomLs−Alg(L,Ls). For any α ∈ L and β = αp

n ∈ Ls as in (3) we have σ(α)p
n

= β, which uniquely
determines σ(β) ∈ Ls (cf. Proposition 6.3). It follows that σ is unique, hence [L : Ls]s = 1. Finally,
[L : K]s = [L : Ls]s[Ls : K]s = 1 · [Ls : K] = [Ls : K], since Ls/K is separable.

(6.14) Exercise. Consider the tower of extensions K = F2(a, b) ⊂ K(α) ⊂ K(β) = L, where a, b are
variables, α2 + aα+ b = 0 and β2 = α.
(1) [L : K] = 4, [L : K]s = 2 and Ls = K(α).
(2) An element γ ∈ L satisfies γ2 ∈ K ⇐⇒ γ ∈ K.
(3) There is no intermediate field K ( F ⊂ L purely inseparable over K.

(6.15) Exercise. Let K ↪→ L be a finite extension of fields of characteristic p > 0.
(1) α ∈ L is separable over K ⇐⇒ K(αp) = K(α).
(2) Ls =

⋂
n≥0 ϕ

n(L).

7. Separability, norm, trace and discriminants

In this section we investigate in more detail characteristic polynomials for separable extensions.

(7.1) Example 3.21, in which we discussed the regular representation of L = K(
√
d) over K in the basis

{1,
√
d}, can be reformulated as follows. For each β = a+ b

√
d ∈ L (a, b ∈ K) the matrix M(β) =

(
a db

b a

)
has eigenvalues β = a+ b

√
d and β′ = a− b

√
d.

(i) If char(K) = 2, then the extension L/K is not separable and β = β′. In particular, for each β ∈ L \K
the matrix M(β) is not diagonalisable.
(ii) If char(K) 6= 2, then the extension L/K is separable and for every field extension L ↪→ K ′ there exist
two homomorphisms of K-algebras σ, σ′ : L −→ K ′; namely, σ(β) = β and σ′(β) = β′.

The eigenvectors

(√
d

1

)
,

(
−
√
d

1

)
of M(β) are the same for all β ∈ L. As a result, we obtain a

simultaneous diagonalisation of all M(β) over any field K ′ ⊃ L:

∀β ∈ L S−1M(β)S =

(
β 0

0 β′

)
, S =

(√
d −

√
d

1 1

)
∈ GL2(K ′). (7.1.1)

(7.2) Proposition. Let K ↪→ L be a finite separable extension, let K ↪→ K ′ be a field extension such that
|HomK−Alg(L,K ′)| = [L : K] = n (for example, K ′ = Ksep). Then we have, for each β ∈ L,

PL/K,β(X) =

n∏
i=1

(X − σi(β)), TrL/K(β) =

n∑
i=1

σi(β), NL/K(β) =

n∏
i=1

σi(β),

where {σ1, . . . , σn} = HomK−Alg(L,K ′).

Proof. Let f ∈ K[X] be the minimal polynomial of β over K. According to Theorem 3.22,

PL/K,β(X) = PK(β)/K,β(X)e = f(X)e,

where e = [L : K(β)] = n/d, d = deg(f) = [K(β) : K]. The polynomial f has d distinct roots β1, . . . , βd ∈ K ′:

f(X) = (X − β1) · · · (X − βd),

where βj = τj(β), HomK−Alg(K(β),K ′) = {τ1, . . . , τd}. As in the proof of Proposition 6.9, the restriction
map res : HomK−Alg(L,K ′) −→ HomK−Alg(K(β),K ′) is surjective and each fibre res−1(τj) has cardinality e.
It follows that each root βj (1 ≤ j ≤ d) appears with multiplicity e among the n = de values σ1(β), . . . , σn(β),
hence
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PL/K,β(X) = (X − β1)e · · · (X − βd)e =

n∏
i=1

(X − σi(β)) =

= Xn − TrL/K(β)Xn−1 + · · ·+ (−1)nNL/K(β).

(7.3) The field embeddings σi : L ↪→ K ′ in Proposition 7.2 can be described explicitly as follows. According
to Proposition 6.10 we have L = K(α) for some α ∈ L, separable over K. Let f ∈ K[X] (deg(f) = n) be the
minimal polynomial of α over K. If K ′ is any extension of K containing a splitting field of f over K, then

HomK−Alg(L,K ′) = {σ1, . . . , σn}, ∀g(X) ∈ K[X] σi : g(α) 7→ g(αi),

where f(X) =
∏n
i=1(X − αi), αi ∈ K ′. In particular,

∀g(X) ∈ K[X] TrL/K(g(α)) =

n∑
i=1

g(αi), NL/K(g(α)) =

n∏
i=1

g(αi). (7.3.1)

(7.4) Proposition. Let K be a field, let f ∈ K[X] be an irreducible separable monic polynomial of degree
deg(f) = n ≥ 1, let α be a root of f . Then

NK(α)/K(f ′(α)) = (−1)n(n−1)/2 disc(f).

Proof. Let K ′ and HomK−Alg(L,K ′) = {σ1, . . . , σn} be as in 7.3. The formula (7.3.1) for g = f ′ yields

NK(α)/K (f ′(α)) =

n∏
i=1

f ′(αi) =

n∏
i=1

∏
j 6=i

(αi − αj) = (−1)n(n−1)/2
∏
i<j

(αi − αj)2 = (−1)n(n−1)/2 disc(f).

(7.5) Example. Let a, b be variables, K = Q(a, b), f(X) = X3 + aX + b ∈ K[X], K(α) = K[X]/(f),
α = X (= the image of X). In the basis 1, α, α2 of K(α)/K, the matrix M(f ′(α)) = M(3α2 + a) is equal to

a −3b 0

0 −2a −3b

3 0 −2a

 ,

since

(3α2 + a) · 1 = a · 1 + 0 · α+ 3 · α2

(3α2 + a) · α = 3α3 + aα = 3(−aα− b) + aα = −3b · 1− 2a · α+ 0 · α2

(3α2 + a) · α2 = 0 · 1− 3b · α− 2a · α2;

thus

disc(X3 + aX + b) = (−1)3·2/2

∣∣∣∣∣∣∣∣
a −3b 0

0 −2a −3b

3 0 −2a

∣∣∣∣∣∣∣∣ = −4a3 − 27b2.

(7.6) The trace form. Let K ↪→ L be a finite extension. The trace form attached to L/K is the symmetric
K-bilinear form

L× L −→ K, x, y 7→ TrL/K(xy). (7.6.1)

It is non-degenerate ⇐⇒ TrL/K : L −→ K is a non-zero map (if TrL/K(b) 6= 0, then TrL/K(x · bx−1) 6= 0,
for any x ∈ L∗). In a fixed basis ω1, . . . , ωn of L/K, the matrix of (7.6.1) is equal to
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M = (Mij) ∈Mn(K), Mij = TrL/K(ωiωj). (7.6.2)

The discriminant of ω1, . . . , ωn is defined as the determinant

D(ω1, . . . , ωn) := det(M) ∈ K.

The following result is very important (see Theorem IV.4.2 below).

(7.7) Theorem. Let K ↪→ L be an extension of degree [L : K] = n <∞.
(1) If L/K is not separable, then TrL/K is the zero map and the trace form (7.6.1) is identically zero.
(2) If L/K is separable, fix α ∈ L such that L = K(α) and let f ∈ K[X] be the minimal polynomial of α
over K. Then

D(1, α, . . . , αn−1) = disc(f) 6= 0.

In particular, the trace form (7.6.1) is non-degenerate.

Proof. (1) Fix α ∈ L which is not separable over K. It follows from Proposition 6.13 that [K(α) : K(αp)] = p
and that 1, α, . . . , αp−1 is a basis of K(α)/K(αp). The transitivity rule

TrL/K = TrK(αp)/K ◦ TrK(α)/K(αp) ◦ TrL/K(α)

(cf. Exercise 3.23(iii)) implies that it is enough to show that TrK(α)/K(αp) = 0. Let β = a0 + a1α + · · · +
ap−1α

p−1 ∈ K(α) (ai ∈ K(αp)). The diagonal elements of the matrix M(β) (in the basis 1, α, . . . , αp−1) are
all equal to a0, hence TrK(α)/K(αp)(β) = pa0 = 0.
(2) Let K ′ be as in 7.3; then f(X) =

∏n
k=1(X − αk) ∈ K ′[X]. The entries of the matrix M from (7.6.2)

in the basis 1, α, . . . , αn−1 are equal to TrL/K(αi · αj) =
∑n
k=1 α

i
k · α

j
k, by (7.3.1). As a result, M = A · tA,

where A ∈ Mn(K ′) is the matrix with entries Aik = αi−1
k (1 ≤ i, k ≤ n). The Vandermonde formula states

that

det(A) = ±
∏

1≤k<l≤n

(αk − αl),

hence

det(M) = det(A)2 = disc(f).

(7.8) Tensor products of K-algebras. Let K be a field. Recall from the course Algebra 1 the notion of
a tensor product A⊗K B of two K-vector spaces A and B. A general element of A⊗K B is a finite sum of
decomposable elements a⊗ b, where

A×B −→ A⊗K B, (a, b) 7→ a⊗ b

is a universal K-bilinear map. In particular, (λa)⊗ b = a⊗ (λb) = λ(a⊗ b) for all λ ∈ K, a ∈ A and b ∈ B.
If we write A =

⋃
Aα as a union of its finite-dimensional K-subspaces, then A⊗K B =

⋃
(Aα ⊗K B).

If A and B are (commutative) K-algebras, so is A⊗KB, with product given by (a⊗b)(a′⊗b′) = aa′⊗bb′.
Note that A ⊗K B is simultaneously an A-algebra via A −→ A ⊗K B (a 7→ a ⊗ 1) and a B-algebra via
B −→ A⊗K B (b 7→ 1⊗ b). The two maps coincide on K = K · 1⊗ 1, since λ⊗ 1 = 1⊗ λ for all λ ∈ K.

Our aim is to generalise the following isomorphism.

(7.9) Exercise. The map C⊗R C −→ C×C, a⊗ b 7→ (ab, ab) defines an isomorphism of R-algebras.

(7.10) Tensor products of fields (the separable case). Let K ↪→ L be a finite separable extension.
Fix α ∈ L such that L = K(α) and let f ∈ K[X] be the minimal polynomial of α over K (of course,
f is separable). We identify L = K(α) with K[X]/(f) via the evaluation isomorphism of K-algebras
evα : K[X]/(f)

∼−→ K(α).
For any field extension K ↪→ K ′ we obtain an isomorphism of K ′-algebras
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L⊗K K ′ = (K[X]⊗K K ′)/(f ⊗ 1) = K ′[X]/(f)
∼−→
∏
i

K ′[X]/(fi), (7.10.1)

where we have decomposed f =
∏
i fi ∈ K ′[X] into a product of at most [L : K] = deg(f) = n distinct

monic irreducible polynomials fi ∈ K ′[X]. Each quotient K ′[X]/(fi) is a field, finite over K ′. In particular,
the ring L⊗K K ′ is reduced.

If K ′ contains a splitting field over K of f , then fi = X − αi, where α1, . . . , αn ∈ K ′ are the (distinct)
roots of f . Composing (7.10.1) with the evaluation isomorphisms evαi : K ′[X]/(X − αi)

∼−→ K ′ we obtain
an isomorphism of K ′-algebras

L⊗K K ′
∼−→

n∏
i=1

K ′, ∀g(X) ∈ K[X]∀b ∈ K ′ g(α)⊗ b 7→ (g(αi)⊗ b)1≤i≤n. (7.10.2)

The latter isomorphism can be reformulated in terms of the embeddings {σ1, . . . , σn} = HomK−Alg(L,K ′)
from 7.3 (σi(α) = αi) as

L⊗K K ′
∼−→ (K ′)HomK−Alg(L,K′), a⊗ b 7→ (σ 7→ σ(a)b) (7.10.3)

(in the special case K = R and L = K ′ = C we obtain the map from Exercise 7.9). The isomorphism (7.10.3)
gives a simultaneous diagonalisation of all matrices M(β) ∈ Mn(K) (β ∈ L) with respect to a fixed basis
ω1, . . . , ωn of L/K. Indeed, if S ∈ GLn(K ′) is the matrix which interchanges the K ′-basis ω1⊗ 1, . . . , ωn⊗ 1
of L⊗K K ′ with the basis consisting of the idempotents eσ1

, . . . , eσn corresponding to the decomposition of
the R.H.S. of (7.10.3), then

∀β ∈ L S−1M(β)S =


σ1(β) · · · 0

...
. . .

...

0 · · · σn(β)

 .

(7.11) Tensor products of fields (the non-separable case). Let K ↪→ L be a non-separable finite
extension, p = char(K). As in the proof of Theorem 7.7(1), there exists α ∈ L such that K ⊂ K1 =
K(αp) ( K(α) ⊂ L. In concrete terms, αp = a ∈ K1 \ Kp

1 and we identify K(α) with K1[X]/(Xp − a),
α = X = X (mod (Xp − a)).

The tensor product K(α) ⊗K K(α) is a subring of L ⊗K L and the canonical ring homomorphism
K(α)⊗K K(α) −→ K(α)⊗K1 K(α) (a⊗ b 7→ a⊗ b) is surjective. We have

K(α)⊗K1
K(α) = K1[X,Y ]/(Xp − a, Y p − a) =

p−1⊕
i,j=0

K1 ·X
i
Y
j
,

where X = α⊗ 1 (resp. Y = 1⊗ α) is the image of X (resp. Y ). In particular, X − Y = α⊗ 1− 1⊗ α is a
non-zero element of K(α)⊗K1

K(α) satisfying

(X − Y )p = (α⊗ 1− 1⊗ α)p = αp ⊗ 1− 1⊗ αp = a⊗ 1− 1⊗ a = 0;

thus X − Y is a nilpotent element and the ring K(α)⊗K1 K(α) is not reduced (which implies that L⊗K L
is not reduced, either).

(7.12) Proposition. Let K ↪→ L be an algebraic extension.
(1) If L/K is separable, then the ring L⊗KK ′ is reduced for any field K ′ containing K; it is a finite product
of fields of finite degree over K ′ if [L : K] <∞.
(2) If L/K is not separable, then the ring L⊗KK ′ is not reduced for any field K ′ containing L (in particular,
for K ′ = K).

Proof. If [L : K] < ∞, the statement (1) (resp. (2)) follows from 7.10 (resp. from 7.11). In general write
L =

⋃
Lα as a union of its subfields which have finite degree over K and use the fact that L ⊗K K ′ =⋃

(Lα ⊗K K ′).
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8. Normal extensions

(8.1) We need an abstract characterisation of field extensions of the form K ↪→ K(α1, . . . , αn) = L, where
f(X) = (X − α1) · · · (X − αn) ∈ K[X] \K. The example we should keep in mind is that of 3.12(iv), when
K = Q, f = X3 − 2, α1 = 3

√
2 ∈ R, α2 = ρα1, α3 = ρ2α1, ρ = e2πi/3 and L = Q(α1, ρ). The three subfields

Q(αj) ⊂ L are distinct, but isomorphic to each other.

(8.2) Definition. Let K ↪→ L be a field extension, let α ∈ L be algebraic over K. The conjugates of α
over K are the roots (in some splitting field of f) of the minimal polynomial f ∈ K[X] of α over K.

(8.3) Examples. (i) If K = Q, L = C and α = 4
√

2, then f = X4 − 2 and the conjugates of 4
√

2 over Q
are ± 4

√
2,±i 4

√
2.

(ii) If K = Q(
√

2), L = C and α = 4
√

2, then f = X2 −
√

2 and the conjugates of 4
√

2 over Q(
√

2) are ± 4
√

2.

(8.4) Proposition-Definition. A finite extension K ↪→ L is normal if the following equivalent conditions
hold.
(i) Any irreducible monic polynomial f ∈ K[X] with a root α ∈ L splits in L[X]: f = (X−α1) · · · (X−αn),
αi ∈ L, α = α1 [“L contains with each element all of its conjugates over K.”]
(ii) L is a splitting field over K of some polynomial g ∈ K[X] \K.
(iii) For any field extension K ↪→ K ′ and any pair of homomorphisms σ, τ ∈ HomK−Alg(L,K ′) we have
σ(L) = τ(L).
(iv) The same property for K ′ = K (a fixed algebraic closure of K).

Proof. (i) =⇒ (ii): let α1, . . . , αd be a basis of L/K, let fi ∈ K[X] be the minimal polynomial of αi over
K, let g = f1 · · · fd. The condition (i) implies that all roots of g are contained in L = K(α1, . . . , αd), which
means that L is a splitting field of g over K.
(ii) =⇒ (iii): Assume that L = K(α1, . . . , αn), where (X−α1) · · · (X−αn) = g(X) ∈ K[X] and n ≥ 1 (note
that the roots αi are not necessarily distinct). If we apply σ and τ to g, we obtain

n∏
j=1

(X − σ(αj)) = σg(X) = g(X) = τg(X) =

n∏
j=1

(X − τ(αj)) ∈ K ′[X],

which means that the sets of roots (possibly with multiplicities) {σ(αj)} ⊂ K ′ and {τ(αj)} ⊂ K ′ coincide.
As a result, σ(L) = K(σ(α1), . . . , σ(αn)) = K(τ(α1), . . . , τ(αn)) = τ(L).
The implication (iii) =⇒ (iv) is automatic, so it remains to prove that (iv) =⇒ (i). Let α ∈ L; its minimal
polynomial f ∈ K[X] over K splits in K[X] as f =

∏n
j=1(X − σ(αi)). For each of its roots αi ∈ K there

exists a (unique) morphism of K-algebras σi : K(α) −→ K such that σi(α) = αi, by Proposition 5.1.
Furthermore, there exists a morphism of K-algebras τi : L −→ K such that τi|K(α) = σi, by Theorem 5.6(2).
The condition (iv) implies that τi(L) = τ1(L), hence αi = τi(α) ∈ τ1(L) for all i.

(8.5) Proposition. If L is a splitting field over K of a polynomial f ∈ K[X] of degree n ≥ 1, then the
degree [L : K] divides n!.

Proof. We argue by induction on n, the case n = 1 being trivial. Assume that n > 1. If f is irreducible
in K[X], let α ∈ L be a root of f . We have [K(α) : K] = n and L is a splitting field of the polynomial
f(X)/(X − α) over K(α). By induction, [L : K(α)] divides (n− 1)!, hence [L : K] divides n · (n− 1)! = n!.
If f = gh is reducible in K[X] (g, h ∈ K[X], 1 ≤ deg(g) = d < n), let F ⊂ L be a splitting field of g over K;
then L is a splitting field of h over F . By induction, [F : K] divides d! and [L : F ] divides (n − d)!, hence
[L : K] divides d!(n− d)!, which in turn divides n!.

(8.6) Proposition. Let K ↪→ L ↪→ Ω be field extensions, with L/K finite and Ω algebraically closed. There
exists a finite extension of L contained in Ω which is normal over K. The intersection of all such extensions
is the smallest finite extension of L in Ω which is normal over K; it is called the normal closure of L/K
in Ω.

Proof. If α1, . . . , αd is a basis of L/K and fi ∈ K[X] is the minimal polynomial of αi over K, then the
subfield of Ω generated over K by the roots of g = f1 · · · fd in Ω is a finite extension of L which is normal
over K. By construction, it is contained in any other finite extension of L inside Ω which is normal over K.
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9. Galois extensions

(9.1) Proposition-Definition. Let K ↪→ L be a field extension.
(1) The set of field automorphisms of L over K, Aut(L/K) = {σ ∈ HomK−Alg(L,L) | σ(L) = L}, is a
group with respect to composition στ = σ ◦ τ .
(2) For any subgroup G ⊂ Aut(L/K) the set of fixed points LG = {α ∈ L | ∀g ∈ G g(α) = α} is a subfield
of L containing K; we say that LG is the fixed field of G.
(3) If K ↪→ L is an algebraic extension, then Aut(L/K) = HomK−Alg(L,L).
(4) If K ↪→ L is a finite extension, then |Aut(L/K)| ≤ [L : K].

Proof. (2) By definition, K ⊂ LG. If α, β ∈ LG and g ∈ G, then g(α ± β) = g(α) ± g(β) = α ± β,
g(αβ) = g(α)g(β) = αβ and g(α/β) = g(α)/g(β) (if β 6= 0), hence α± β, αβ (and α/β if β 6= 0) all belong
to LG.
(3) We must show that any σ ∈ HomK−Alg(L,L) (which is always injective) is surjective. Let α ∈ L, let
f ∈ K[X] be the minimal polynomial of α over K. The set of roots S = {β ∈ L | f(β) = 0} ⊂ L is finite
and σ(S) ⊂ S. Injectivity of σ implies that σ(S) = S. Therefore α ∈ σ(L).
(4) Fix an embedding of K-algebras L ↪→ K; then

|Aut(L/K)| ≤ |HomK−Alg(L,K)| = [L : K]s ≤ [L : K].

(9.2) Exercise. Let K be a field.
(1) The map

HomK−Alg(K(X),K(X)) −→ K(X) \K, λ 7→ λ(X)

is bijective.
(2) For any λ ∈ HomK−Alg(K(X),K(X)) we have

[K(X) : λ(K(X))] = [K(X) : K(λ(X))] = max(deg(f),deg(g)),

where λ(X) = f/g, f, g ∈ K[X], g 6= 0, gcd(f, g) = (1).
(3) λ ∈ Aut(K(X)/K) ⇐⇒ λ(X) = (aX + b)/(cX + d), a, b, c, d ∈ K, ad− bc 6= 0.
(4) Aut(K(X)/K)

∼−→ PGL2(K) and K(X)Aut(K(X)/K) = K.

(9.3) Proposition-Definition. A finite extension K ↪→ L is a Galois extension (with Galois group
Gal(L/K) := Aut(L/K)) if the following equivalent conditions hold.
(i) |Aut(L/K)| = [L : K].
(ii) The extension L/K is normal and separable.
(iii) L is a splitting field of a separable polynomial f ∈ K[X].
(iv) There is an isomorphism of K-algebras L⊗K L

∼−→ L[L:K].
(v) LAut(L/K) = K.

Proof. (i) ⇐⇒ (ii): as in the proof of Proposition 9.1(4), fix an embedding of K-algebras L ↪→ K. We have
an equality Aut(L/K) = HomK−Alg(L,L) (by Proposition 9.1(3)) and two inequalities

|HomK−Alg(L,L)| ≤ |HomK−Alg(L,K)| = [L : K]s (a)

[L : K]s ≤ [L : K], (b)

with (a) (resp. (b)) being an equality ⇐⇒ the extension L/K is normal (resp. separable), by Proposition
8.4 (resp. by Proposition 6.10).
(ii) ⇐⇒ (iii): combine Proposition 8.4 with Proposition 6.10.
(ii) ⇐⇒ (iv): the calculations in 7.10–7.11 show that the ring L⊗K L is reduced ⇐⇒ L/K is separable.
If this is the case, then L

∼−→ K[X]/(f) for an irreducible separable polynomial f ∈ K[X] and we have
L⊗K L

∼−→
∏
i L[X]/(fi), where fi ∈ L[X] are distinct monic irreducible polynomials in L[X] dividing f . In

particular, each L[X]/(fi) is isomorphic to L ⇐⇒ all roots of f lie in L ⇐⇒ L/K is a normal extension.
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(i) =⇒ (v): the field K ′ = LAut(L/K) contains K and satisfies Aut(L/K) = Aut(L/K ′). We deduce from

[L : K ′] ≥ |Aut(L/K ′)| = |Aut(L/K)| (i)
= [L : K] ≥ [L : K ′]

that [L : K] = [L : K ′], hence K = K ′.
(v) =⇒ (i): Artin’s theorem 10.1 below (which does not use the implication (v) =⇒ (i)) states that
L/LAut(L/K) is a Galois extension.

(9.4) Galois groups as permutation groups. If we write a (finite) Galois extension as a splitting field
of a separable polynomial f , then the corresponding Galois group will have an old-fashioned description as a
group of permutations of the set of roots of f . However, such a description is not canonical (see 9.6 below).
The formal definition is as follows.

(9.5) Proposition-Definition. Let K be a field, let f ∈ K[X] be a separable polynomial of degree
deg(f) = n ≥ 1. Fix a splitting field L = K(A) of f over K, where A denotes the set of roots of f in L:
f =

∏
α∈A(X − α) ∈ L[X].

(1) L/K is a Galois extension; denote by G = Gal(L/K) its Galois group.
(2) Each element g ∈ G maps A to itself. The assignement

G −→ SA, g 7→ g|A

given by the restriction to A defines an injective group homomorphism; denote its image by Gal(f) ⊂ SA.
(3) A choice of a numbering of the set of roots of f (i.e., a choice of a bijection A

∼−→ {1, 2, . . . , n}) identifies
SA with Sn and G with a subgroup Gal(f) ⊂ Sn. If we choose another numbering of the set of roots,
Gal(f) ⊂ Sn will be replaced by a conjugate subgroup σGal(f)σ−1 ⊂ Sn, where σ ∈ Sn interchanges the
two numberings.
(4) The group Gal(f) ⊂ SA acts transitively on A ⇐⇒ the polynomial f is irreducible in K[X].

Proof. (1) See Proposition 9.3. (2) If α ∈ A and g ∈ G, then 0 = g(f(α)) = gf(g(α)) = f(g(α)), hence
g(α) ∈ A. The map g : L −→ L is injective, and so is its restriction g|A : A −→ A; thus g|A is bijective (since
|A| <∞). Finally, (g ◦ h)|A = g|A ◦ h|A, which means that the restriction map is a group homomorphism.
(3) Any bijection τ : A

∼−→ {1, 2, . . . , n} induces a group isomorphism SA
∼−→ Sn, g 7→ τ ◦g◦τ−1. If we choose

another bijection τ ′ : A
∼−→ {1, 2, . . . , n}, then τ ′ ◦ g ◦ τ ′−1 = σ ◦ τ ◦ g ◦ τ−1 ◦ σ−1, where σ = τ ′ ◦ τ−1 ∈ Sn.

(4) If f = gh, where g, h ∈ K[X] \K, then A = B ∪C and B ∩C = ∅, where B (resp. C) is the (non-empty)
set of roots of g (resp. of h) in L. According to (2) the action of each g ∈ G satisfies g(B) = B and g(C) = C;
thus Gal(f) ⊂ SB × SC ⊂ SA does not act transitively on A.

If f is irreducible in K[X], we must show that for each α, β ∈ A there exists g ∈ G such that g(α) = β.
The evaluation isomorphisms evα : K[X]/(f)

∼−→ K(α) ⊂ L and evβ : K[X]/(f)
∼−→ K(β) ⊂ L define an

isomorphism of K-algebras σ = evβ ◦ (evα)−1 : K(α)
∼−→ K(β). Fix an embedding L ↪→ K to an algebraic

closure of K. According to Theorem 5.6(2), the embedding K(α)
σ−→K(β) ⊂ L ↪→ K can be extended to

an embedding τ : L −→ K. The extension L/K is normal, which means that τ(L) = L ⊂ K. As a result,
τ ∈ HomK−Alg(L,L) = G. By construction, τ |K(α) = σ, which implies that τ(α) = σ(α) = β.

(9.6) Examples. (i) K = Q, f = X3 − 2, n = 3. Fix a complex root α1 = 3
√

2 ∈ C of f and set
α2 = ρα1 = ρ 3

√
2, α3 = ρ2α1 = ρ2 3

√
2 (ρ = e2πi/3). The splitting field of f over Q inside C is equal to

L = Q(α1, α2, α3) = Q(α1, ρ) = Q( 3
√

2, ρ) ⊂ C.
The Galois group Gal(L/Q)

∼−→ Gal(f) ⊂ S3 has order dividing |S3| = 3! = 6. On the other hand,
[L : Q] = 6, by Example 3.12(iv). The equality |Gal(L/Q)| = [L : Q] then implies that Gal(f) = S3.

Denote by

σ1 = (1)(23), σ2 = (2)(13), σ3 = (3)(12)

the three elements of S3 of order 2 and by Hj = {1, σj} ⊂ S3 the corresponding cyclic subgroups of S3 of order
two. For each j = 1, 2, 3 we have Hj ⊂ Aut(L/Q(αj)) and 2 = |Hj | ≤ |Aut(L/Q(αj))| ≤ [L : Q(αj)] = 2;
thus L/Q(αj) is a Galois extension with Galois group Gal(L/Q(αj)) = Hj . On the other hand, Q(αj)/Q is
not a Galois extension, since αk 6∈ Q(αj)/Q for k 6= j. The formulas
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σ1(ρ) = σ1(α2)/σ1(α1) = α3/α1 = ρ2, σ2(ρ) = σ2(α2)/σ2(α1) = α2/α3 = ρ2 =⇒ σ1σ2(ρ) = ρ

imply that the subgroup H = {1, τ, τ2} = A3 ⊂ S3, where

τ = σ1σ2 = (123), τ2 = σ2σ1 = (132),

is contained in Aut(L/Q(ρ)). As 3 = |H| ≤ |Aut(L/Q(ρ))| ≤ [L : Q(ρ)] = 3, the extension L/Q(ρ) is also
a Galois extension, with Galois group equal to H = Gal(L/Q(ρ)). Moreover, Q(ρ)/Q = Q(

√
−3)/Q is also

a Galois extension, being the splitting field of the polynomial X2 +X + 1 over Q.
(ii) Under the assumptions of (i), let β1 = 3

√
2 + ρ. The images

{g(β1) ∈ L | g ∈ Gal(L/Q) = S3} = { 3
√

2+ρ,
3
√

2+ρ2, ρ
3
√

2+ρ, ρ
3
√

2+ρ2, ρ2 3
√

2+ρ, ρ2 3
√

2+ρ2} = {β1, . . . , β6}

are distinct, which means that β1 has at least 6 = [L : Q] conjugates, hence [Q(β1) : Q] ≥ 6. It follows that
L = Q(β1), that h(X) = (X − β1) · · · (X − β6) is the minimal polynomial of βj (j = 1, . . . , 6) over Q and
that L is its splitting field over Q. The action of G = Gal(L/Q) on the roots of h(X) gives a realisation of
G = Gal(L/Q) as a subgroup Gal(h) ⊂ S6; of course, Gal(h) is isomorphic to S3, by (i).
(iii) K = Q, f = (X2 − 2)(X2 − 3), n = 4. The complex roots of f are α1 =

√
2, α2 = −

√
2, α3 =

√
3, α4 =

−
√

3. The splitting field of f over Q is equal to L = Q(α1, α2, α3, α4) = Q(
√

2,
√

3). Exercise 3.28(2) implies
that [L : Q] = 4, hence |Gal(L/Q)| = 4. The action of any element g ∈ Gal(L/Q) is determined by the
values g(

√
2) = ±

√
2 and g(

√
3) = ±

√
3; thus

Gal(L/Q) = {gab, | a, b ∈ Z/2Z}, gab(
√

2) = (−1)a
√

2, gab(
√

3) = (−1)b
√

3.

The formulas g2
ab = 1 and gabgcd = ga+c,b+d imply that the map

Gal(L/Q)
∼−→ Z/2Z× Z/2Z, gab 7→ (a, b)

is a group isomorphism. Using the above numbering of roots we have Gal(L/Q)
∼−→ S{1,2} × S{3,4}

∼−→
S2 × S2 ⊂ S4 and

g00 = (1)(2)(3)(4), g10 = (12)(3)(4), g01 = (1)(2)(34), g11 = (12)(34).

(iv) We saw in 6.1(i) that the same field L = Q(
√

2,
√

3) can be written as L = Q(
√

2 +
√

3). In other
words, L is the splitting field (over Q) of the minimal polynomial h(X) = X4 − 10X2 + 1 (over Q) of β1 =√

2 +
√

3 ∈ L; we have h(X) = (X−β1) · · · (X−β4), where β2 = −
√

2 +
√

3 = 1/β1, β3 = −
√

2−
√

3 = −β1,
β4 =

√
2−
√

3 = −β2 = −1/β1. The formulas

g10 : β1 ←→ β2, g10 : β3 ←→ β4, g10 = (12)(34)

g01 : β1 ←→ β4, g01 : β2 ←→ β3, g01 = (14)(23)

g11 : β1 ←→ β3, g11 : β2 ←→ β4, g11 = (13)(24)

give another realisation of the Galois group Gal(L/Q) as a subgroup Gal(h)
∼−→ S4. The two subgroups

Gal(f),Gal(h) ⊂ S4 are both isomorphic to Z/2Z × Z/2Z, but they are not conjugate inside S4, since the
subgroup Gal(h) ⊂ S4 acts transitively on {1, 2, 3, 4}, but the subgroup Gal(f) ⊂ S4 from (iii) does not, as
predicted by Proposition 9.5(4).

(9.7) Proposition. Let F ↪→ K be an algebraic extension, let F be an algebraic closure of F . For any
σ, τ ∈ HomF−Alg(K,F ) there exists g ∈ Aut(F/F ) such that τ = g ◦ σ. In other words, Aut(F/F ) acts
transitively on HomF−Alg(K,F ).

Proof. Theorem 5.6(2) for σ : K ↪→ L = F and τ : K ↪→ Ω = F tells us that there exists a field
homomorphism g : F −→ F such that g ◦ σ = τ (which implies that g ∈ HomF−Alg(F , F ) = Aut(F/F ),
using Proposition 9.1(3)).
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10. The Galois correspondence

(10.1) Theorem (E. Artin). Let K ↪→ L be a field extension, let G ⊂ Aut(L/K) be a finite group of
field automorphisms of L over K. Then [L : LG] = |G|, the extension L/LG is a Galois extension and
G = Gal(L/LG).

Proof. For any α ∈ L consider its orbit O(α) = {g(α) | g ∈ G}. The polynomial fα(X) =
∏
β∈O(α)(X−β) ∈

L[X] is separable and lies in LG[X], since the action of any g ∈ G permutes the elements of O(α). In
addition, fα(α) = 0 and deg(fα) = |O(α)| ≤ |G|. In particular, L/LG is a separable algebraic extension
and [LG(α) : LG] ≤ |G| for every α ∈ L. Lemma 10.2 below implies that L/LG is a finite extension, of
degree [L : LG] ≤ |G|. On the other hand, K ⊂ LG, hence G ⊂ Aut(L/LG) ⊂ Aut(L/K) and [L : LG] ≤
|G| ≤ |Aut(L/LG)|. Proposition 9.1(4) yields |Aut(L/LG)| ≤ [L : LG], which means that we have equalities
|G| = |Aut(L/LG)| = [L : LG] and G = Aut(L/LG).

(10.2) Lemma. Let L/F be a separable algebraic extension. If n := max{[F (α) : F ] |α ∈ L} ∈ N ∪ {∞}
is finite, then [L : F ] = n.

Proof. Fix α ∈ L such that [F (α) : F ] = n. For each β ∈ L there exists γ ∈ F (α, β) such that F (α, β) = F (γ)
(thanks to Theorem 6.5). It follows that [F (α, β) : F ] = [F (γ) : F ] ≤ n = [F (α) : F ], hence β ∈ F (α).
Therefore L = F (α) and [L : F ] = n.

(10.3) Example (The general polynomial equation of degree n). Let K be a field, L = K(x1, . . . , xn)
the field of rational functions in n variables over K and G = Sn ⊂ Aut(L/K) acting on L as in 2.2. According
to Corollary 2.9 we have LG = K(σ1, . . . , σn). Theorem 10.1 implies that K(x1, . . . , xn)/K(σ1, . . . , σn) is a
Galois extension of degree |Sn| = n! and its Galois group is equal to Sn.

(10.4) Proposition (Every finite group is a Galois group). Let K be a field. For every finite group
G there exists a Galois extension F ↪→ L with F ⊃ K and Gal(L/F )

∼−→ G.

Proof. As observed by Cayley, the action of G on itself by left multiplication defines an injective group
homomorphism G ↪→ SG

∼−→ Sn (where |G| = n). As in 10.3, we let L = K(x1, . . . , xn) and F = LG.

(10.5) Main Theorem of Galois theory. Let L/K be a (finite) Galois extension, with Galois group
G = Gal(L/K).
(1) The formulas F 7→ H = Gal(L/F ), H 7→ F = LH define mutually inverse bijections

{F field |K ⊂ F ⊂ L} ←→ {subgroups H ⊂ G}

(the “Galois correspondence”). In particular, L/F is a Galois extension.
(2) If F corresponds to H, then [L : F ] = |H|, [F : K] = |G|/|H| = (G : H).
(3) If F1 (resp. F2) corresponds to H1 (resp. to H2), then

F1 ⊂ F2 ⇐⇒ H1 ⊃ H2.

(4) If F corresponds to H, then ∀g ∈ G g(F ) corresponds to gHg−1.
(5) If F corresponds to H, then

F/K is a Galois extension ⇐⇒ H is a normal subgroup of G.

If this is the case, the map “restriction to F” defines a surjective group homomorphism

G = Gal(L/K) −→ Gal(F/K), g 7→ g|F

with kernel H = Gal(L/F ), hence a group isomorphism

G/H = Gal(L/K)/Gal(L/F )
∼−→ Gal(F/K).
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This can be summed up by the following diagramme:

L

H

vvvvvvvvvvvvv

GF = LH

G/H

HHHHHHHHHHHHHH

K

Proof. (1),(2) If H ⊂ G is a subgroup and F = LH , then K = LG ⊂ LH = F ⊂ L. According to Theorem
10.1, L/F is a Galois extension, H = Gal(L/F ) and [L : F ] = |H|. Conversely, if F a field such that
K ⊂ F ⊂ L, then the extension L/F is separable and normal (since L/K is), so it is a Galois extension.
Its Galois group H = Gal(L/F ) = Aut(L/F ) ⊂ Aut(L/K) = G satisfies LH = F and [L : F ] = |H|. The
degree [F : K] is equal to [L : K]/[L : F ] = |G|/|H| = (G : H).

(3) This is clear.

(4) Let g, h ∈ G. An element x ∈ L is fixed by h ⇐⇒ g(x) is fixed by ghg−1, since ghg−1g(x) = gh(x); it
follows that

LgHg
−1

= g(LH).

(5) If F/K = LH/K is a Galois extension, then it is normal, which implies that ∀g ∈ G g(F ) = id(F ) = F ;
it follows from (4) that ∀g ∈ G gHg−1 = H. Conversely, if H is a normal subgroup of G and F = LH , then

for each g ∈ G the restriction g|F : F −→ g(F )
(4)
= F is an element of Aut(F/K). The map g 7→ g|F is a

group homomorphism r : G −→ Aut(F/K) with kernel Ker(r) = Aut(L/F ) = H. It follows that

[F : K] ≥ |Aut(F/K)| ≥ |Im(r)| = |G|/|Ker(r)| = |G|/|H| = [F : K],

hence [F : K] = |Aut(F/K)| = |Im(r)|, which proves (5).

(10.6) Corollary. If F = LH , fix an embedding L ↪→ L = K and g1, . . . , gm ∈ G (m = (G : H) =
|G|/|H| = [F : K]) such that G = g1H ∪ · · · ∪ gmH; then

HomF−Alg(L,L) = HomF−Alg(L,L) = H, HomK−Alg(F,L) = HomK−Alg(F,L) = {g1|F , . . . , gm|F }

and

∀β ∈ L TrL/F (β) =
∑
h∈H

h(β), NL/F (β) =
∏
h∈H

h(β)

∀α ∈ F TrF/K(α) =

m∑
i=1

gi(α), NF/K(α) =

m∏
i=1

gi(α).

Proof. Combine Theorem 10.5 with Proposition 7.2.

(10.7) Examples. (i) According to Example 9.6(i), the subgroups of S3
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{1}

������������������������

OOOOOOOOOOOOOOOOO

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

H1 = {1, σ1} H2 = {1, σ2}

�������������������������
H3 = {1, σ3}

ooooooooooooooooooooooooooooooooooooooooo

H = A3

MMMMMMMMMMMMMMMMM

S3

correspond to subfields Q ⊂ F ⊂ Q( 3
√

2, ρ):

Q( 3
√

2, ρ)

H

�����������������������

H1

H2

KKKKKKKKKKKKKK

H3

UUUUUUUUUUUUUUUUUUUUUUUUUU

Q( 3
√

2) Q(ρ 3
√

2)

�����������������������
Q(ρ2 3

√
2)

sssssssssssssssssssssssssssssssssss

Q(ρ)

{±1}
JJJJJJJJJJJJJJ

Q

We have H = A3 C S3, but Hj 6C S3 (j = 1, 2, 3); the map sgn : S3 −→ {±1} induces a group isomorphism

Gal(Q(ρ)/Q) = S3/H = S3/A3
∼−→ {±1}.

(ii) Let L/K = Q(
√

2,
√

3)/Q. The subgroups of G = Gal(Q(
√

2,
√

3)/Q) = {g00, g01, g10, g11}
∼−→ Z/2Z×

Z/2Z (cf. Example 9.6(iii)) correspond to subfields Q ⊂ F ⊂ Q(
√

2,
√

3):

{1}

tttttttttttttt

JJJJJJJJJJJJJJ

{1, g01}

KKKKKKKKKKKKKK
{1, g10} {1, g11}

ttttttttttttttt

G

Q(
√

2,
√

3)

ssssssssssssss

KKKKKKKKKKKKKK

Q(
√

2)

KKKKKKKKKKKKKKKK
Q(
√

3) Q(
√

6)

ssssssssssssssss

Q

(10.8) Galois groups and fundamental groups. There is a close analogy between Galois theory and
theory of coverings in topology:
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Algebra Topology

field K “nice” connected topological space X

separable field extension K ↪→ L covering π : Y −→ X

G = Aut(L/K) G = Aut(Y/X)

Galois extension: K = LG Galois covering: G\Y = X

Galois correspondence: K ↪→ F = LH ↪→ L Y −→ H\Y −→ X, H ⊂ G subgroup

separable closure K ↪→ Ksep universal covering X̃ −→ X

absolute Galois group GK = Aut(Ksep/K) fundamental group π1(X)
∼−→ Aut(X̃/X)

Recall that a covering is a continuous map between topological spaces π : Y −→ X such that Y is locally a
product of the base with a discrete topological space: there exist open subsets Uα ⊂ X such that X =

⋃
Uα

and (π−1(Uα) −→ Uα)
∼−→ (pr : Uα × (discrete space) −→ Uα). The automorphism group of a covering

π : Y −→ X is the group Aut(Y/X) of all continuous maps f : Y −→ Y satisfying π ◦ f = π.
A typical example of a covering is the “infinite staircase” exp : C −→ C∗, which is a universal covering

of C∗. Its automorphism group is equal to {z 7→ z + a | a ∈ 2πiZ} ∼−→ 2πiZ.

(10.9) Exercise. Let n ≥ 2 be an integer.
(i) There are no intermediate subgroups Sn ) H ) Sn−1 = {σ ∈ Sn | σ(n) = n}.
(ii) If K is a field and f ∈ K[X] is a separable polynomial of degree deg(f) = n such that Gal(f) = Sn, then
there are no intermediate subfields K ( F ( K(α), for any root α of f .
(iii) Does the same result hold if Gal(f) = An?

(10.10) Proposition (R = R(i) = C). (1) Any polynomial f ∈ R[X] with 2 - deg(f) has a root α ∈ R.
(2) If L/R is a finite extension with 2 - [L : R], then L = R.
(3) Any polynomial g ∈ C[X] with deg(g) = 2 has a root β ∈ C.
(4) If L/C is a finite extension, then [L : C] 6= 2.
(5) The field C = R(i) is an algebraic closure of R.

Proof. (1) We can assume that f is monic. In that case f(t) < 0 (resp. f(t) > 0) if t << 0 (resp. t >> 0);
the existence of α follows from the fact that f : R −→ R is a continuous function.
(2) There exists γ ∈ L such that L = R(γ), by Theorem 6.5. The minimal polynomial f ∈ R[X] of γ over
R has odd degree deg(f) = [L : R], hence has a root in R, by (1). Irreducibility of f in R[X] implies that
deg(f) = 1; thus L = R.
(3) (⇐⇒ (4)) This follows from the fact that any z = a+ bi ∈ C has a square root in C, namely√

(c+ a)/2 + i sgn(b)
√

(c− a)/2, c =
√
a2 + b2.

(5) The following argument is due to E. Artin. Let α (lying in some field containing R) be algebraic over
R, let f be its minimal polynomial over R, let L ⊃ C = R(i) be a splitting field of (X2 + 1)f(X) over R.
The extension L/R is a Galois extension; let G = Gal(L/R) be its Galois group. Let H ⊂ G be a 2-Sylow
subgroup of G. The fixed field LH ⊂ L satisfies 2 - [LH : R] = (G : H), hence LH = R = LG, by (2).
Therefore G = H is a 2-group, and so is G1 = Gal(L/C) ⊂ G. If |G1| 6= 1, then there exists a subgroup
G2 ⊂ G1 such that (G1 : G2) = 2 (see Corollary 14.4 below), which gives an extension C = LG1 ⊂ LG2 of
degree [LG2 : C] = (G1 : G2) = 2. This contradiction with (4) implies that |G1| = 1 and α ∈ L = C.

(10.11) Proposition. Let K ↪→ L be finite extension.
(1) The restriction map res : Aut(L/K) −→ Aut(Ls/K) is injective.
(2) |Aut(L/K)| divides [L : K]s.

Proof. (1) If g ∈ Ker(res) and α ∈ L, then αp
r ∈ Ls for some r ≥ 0, hence (g(α) − α)p

r

= g(α)p
r − αpr =

g(αp
r

)− αpr = 0; thus g acts trivially on L.
(2) The fixed field K ⊂ F = LGs ⊂ Ls of G = Aut(Ls/K) satisfies [Ls : F ] = |G|, by Theorem 10.1. It
follows that [L : K]s = [Ls : K] is divisible by |G|, hence by |Aut(L/K)|.
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(10.12) Proposition. Let K ↪→ L be a finite normal extension.
(1) For every field K ↪→ F ↪→ L and every σ ∈ Aut(F/K) there exists τ ∈ Aut(L/K) such that τ(F ) = F
and τ |F = σ. In particular, if F/K is normal, then the restriction map res : Aut(L/K) −→ Aut(F/K) is
surjective.
(2) Ls is a Galois extension of K.
(3) The restriction map Aut(L/K) −→ Gal(Ls/K) is an isomorphism.
(4) |Aut(L/K)| = [L : K]s.
(5) |Aut(L/K)| = 1 ⇐⇒ the extension K ↪→ L is purely inseparable.
(6) The extension K ↪→ F = LAut(L/K) is normal and purely inseparable, while F ↪→ L is a Galois extension.
[Cf. Exercise 6.14.]

Proof. Fix an algebraic closure K and a homomorphism of K-algebras L ↪→ K.
(1) For each σ ∈ Aut(F/K) the composite map F

σ−→F ↪→ L ↪→ K extends to a homomorphism of K-
algebras τ : L ↪→ K, by Theorem 5.6(2). As L/K is normal, τ(L) = L, hence τ ∈ HomK−Alg(L,K) =
HomK−Alg(L,L) = Aut(L/K). By definition, τ |F = σ. Conversely, if F/K is a normal extension, then
τ(F ) = F for each τ ∈ Aut(L/K) = HomK−Alg(L,K); thus res is well-defined (and surjective, by the
previous argument).
(2) It is enough to show that Ls/K is a normal extension. As in (1), each σ ∈ HomK−Alg(Ls,K) extends to
τ ∈ HomK−Alg(L,K) satisfying τ(L) = L. The separable extension K ↪→ σ(Ls) = τ(Ls) is a subextension
of K ↪→ τ(L) = L, hence σ(Ls) ⊂ Ls and σ(Ls) = Ls (by comparing the degrees).
(3) Injectivity (resp. surjectivity) was proved in Proposition 10.11(1) (resp. in (1)).
(4) (resp. (5)) is an immediate consequence of (3) (resp. of (4)).
(6) As above, each σ ∈ HomK−Alg(F,K) extends to τ ∈ HomK−Alg(L,K) satisfying τ(L) = L. As τ ∈
Aut(L/K), it acts trivially on F . In particular, σ = id and σ(F ) = F , implying that K ↪→ F is a normal
extension. By definition, the image of the restriction map res : Aut(L/K) −→ Aut(F/K) is equal to {id}.
The statement (1) (resp. (5) applied to F/K) shows that Aut(F/K) = {id} (resp. that K ↪→ F is purely
inseparable). The remaining statement follows from Theorem 10.1.

(10.13) Exercise. Let K ↪→ L1 ↪→ M , K ↪→ L2 ↪→ M be finite field extensions. Denote by L1L2 the
intersection of all subfields of M containing both L1 and L2; it is again a field.
(1) If L1/K is a Galois extension, so is L1L2/L2 and the restriction map g 7→ g|L1

defines an injective group
homomorphism Gal(L1L2/L2) ↪→ Gal(L1/K) with image equal to Gal(L1/L1 ∩ L2).
(2) If both L1/K and L2/K are Galois extensions, so is L1L2/K and the restriction maps g 7→ g|Li define
an injective group homomorphism Gal(L1L2/K) ↪→ Gal(L1/K)×Gal(L2/K).

11. Examples of Galois groups

(11.1) Theorem (Extensions of finite fields). Let q = pr, where p is a prime number and r ≥ 1.
(1) For every integer n ≥ 1 the extension Fqn/Fq is a Galois extension. Its Galois group is cyclic of order n,
generated by the Frobenius morphism ϕq(x) = xq: Gal(Fqn/Fq) = {ϕq, ϕ2

q, . . . , ϕ
n
q = 1}.

(2) Every subgroup of Gal(Fqn/Fq) is cyclic, of order n/m (where m is a divisor of n), generated by

ϕmq = ϕqm : x 7→ xq
m

. Its fixed field is equal to Fqm and Gal(Fqn/Fqm) = {ϕmq , ϕ2m
q , . . . , ϕ

n
m ·m
q = 1}.

Proof. (1) For each m = 1, . . . , n− 1 we have

|{x ∈ Fqn | ϕmq (x) = x}| = |{roots of Xqm −X in Fqn}| ≤ deg(Xqm −X) = qm < qn,

which implies that ϕq, ϕ
2
q, . . . , ϕ

n−1
q 6= 1 ∈ Aut(Fqn/Fq). It follows that

n = |{ϕq, ϕ2
q, . . . , ϕ

n
q = 1}| ≤ |Aut(Fqn/Fq)| ≤ [Fqn : Fq)] = n,

which yields equalities {ϕq, ϕ2
q, . . . , ϕ

n
q = 1} = Aut(Fqn/Fq) = Gal(Fqn/Fq).

(2) It is well-known that any subgroup H of the cyclic group of order n generated by ϕq is also cyclic,
generated by ϕmq (for some m | n). According to Theorem 4.4(2), the fixed field of H is equal to

70



FHqn = {x ∈ Fqn | xq
m

= x} = Fqm ,

hence Gal(Fqn/Fqm) = H, thanks to Theorem 10.1.

(11.2) Corollary. Let q = pr be as in Theorem 11.1. For each n ≥ 1, the norm map NFqn/Fq : F∗qn −→ F∗q
is given by the formula NFqn/Fq (x) = x1+q+···+qn−1

= x(qn−1)/(q−1). If x is a generator of the cyclic group
F∗qn , then its norm NFqn/Fq (x) is a generator of F∗q . In particular, the norm map NFqn/Fq : F∗qn −→ F∗q is
surjective.

Proof. The formula for the norm follows from a combination of Corollary 10.6 with Theorem 11.1. If the
order of x ∈ F∗qn is equal to qn − 1, then the order of x(qn−1)/(q−1) is equal to q − 1.

(11.3) Question: when is Gal(f) ⊂ H ? Given a subgroup H ⊂ Sn, it is natural to ask under what
conditions the Galois group of a separable polynomial f ∈ K[X] of degree deg(f) = n is contained in a
conjugate subgroup σHσ−1, for some σ ∈ Sn (the conjugation is necessary, since Gal(f) ⊂ Sn itself is
defined only up to conjugation). We first give the answer for H = An and then apply the machinery of
resolvents (see 2.14) to treat the general case.

(11.4) Proposition. Let K be a field, let f ∈ K[X] be a separable monic polynomial of degree n ≥ 2.
(1) If Gal(f) ⊂ An, then disc(f) ∈ K∗2.
(2) If char(K) 6= 2 and disc(f) ∈ K∗2, then Gal(f) ⊂ An.
(3) If char(K) = 2, then disc(f) ∈ K∗2.

Proof. Let L = K(α1, . . . , αn) be a splitting field of f over K, where α1, . . . , αn are the (distinct) roots of f
in L. We have

disc(f) = d2, d =
∏
i<j

(αi − αj) ∈ L∗, ∀g ∈ Gal(f) g(d) = sgn(g)d. (11.4.1)

(1) If Gal(f) ⊂ An, then (11.4.1) implies that d ∈ (L∗)Gal(f) = K∗, hence disc(f) = d2 ∈ K∗2.
(2) Conversely, if disc(f) ∈ K∗2, then d ∈ K∗. However, if char(K) 6= 2 and g ∈ Gal(f) \ An, then
g(d) = −d 6= d, which contradicts the fact that d ∈ K∗. Therefore Gal(f) ⊂ An in this case.
(3) If char(K) = 2, then d =

∏
i<j(αi + αj) ∈ (L∗)Gal(f) = K∗, hence disc(f) = d2 ∈ K∗2.

(11.5) Let us consider the general case. Let K be a field, let

f(X) = Xn + a1X
n−1 + · · ·+ an ∈ K[X]

be a monic separable polynomial of degree n ≥ 1. Denote by L = K(α1, . . . , αn) a splitting field of f over
K, where α1, . . . , αn are the (distinct) roots of f in L.

Fix an auxiliary polynomial u = u(x1, . . . , xn) ∈ K[x1, . . . , xn]. Its stabiliser

H = {τ ∈ Sn | τ ∗ u = u} ⊂ Sn (11.5.1)

is a subgroup of Sn. Conversely, a polynomial u satisfying (11.5.1) exists for any given subgroup H ⊂ Sn,
thanks to Theorem 6.5 applied to the extension K(x1, . . . , xn)H/K(x1, . . . , xn)Sn .

As in 2.14 we have a polynomial U(y;σ1, . . . , σn) ∈ K[σ1, . . . , σn][y] which splits in K[x1, . . . , xn][y] as
follows:

U(y;σ1, . . . , σn) =
∏

τH∈Sn/H

(
y − u(xτ(1), . . . , xτ(n))

)
. (11.5.2)

After applying to (11.5.2) the morphism of K-algebras

λ : K[x1, . . . , xn] −→ L, λ(P (x1, . . . , xn)) = P (α1, . . . , αn)

which sends each xi to αi (hence each σi to λ(σi) = (−1)iai ∈ K, i = 1, . . . , n), we obtain the “resolvent
polynomial of f”
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Rf (y) = U(y;−a1, a2, . . . , (−1)nan) =
∏

τH∈Sn/H

(
y − ρ(u(xτ(1), . . . , xτ(n)))

)
=

∏
τH∈Sn/H

(
y − u(ατ(1), . . . , ατ(n))

)
∈ K[y].

(11.5.3)

This polynomial does not depend on the numbering of the set of roots of f . Its coefficients lie in K, its degree
is equal to deg(Rf ) = |O(u)| = (Sn : H) and its roots are equal to (τ ∗ u)(α1, . . . , αn) = u(ατ(1), . . . , ατ(n))
(τH ∈ Sn/H). Note that the roots of Rf are not necessarily distinct.

(11.6) Proposition. Let K be a field, let u ∈ K[x1, . . . , xn] (n ≥ 1) be a fixed auxiliary polynomial as in
11.5; let H ⊂ Sn be its stabiliser as in (11.5.1). Let f ∈ K[X] be a monic separable polynomial of degree n.
(1) If Gal(f) ⊂ σHσ−1 for some σ ∈ Sn, then the resolvent polynomial Rf (y) has a root β ∈ K.
(2) If Rf (y) has a simple root β ∈ K, then Gal(f) ⊂ σHσ−1 for some σ ∈ Sn (which is equivalent to the
existence of a numbering of the set of roots of f for which Gal(f) ⊂ H).

Proof. (cf. the proof of Proposition 11.4). (1) After renumbering the roots of f we can assume that
Gal(f) ⊂ H. In this case β = u(α1, . . . , αn) is a root of Rf (y) and

∀g ∈ Gal(f) ⊂ H ⊂ Sn g(β) = u(αg(1), . . . , αg(n)) = (g ∗ u)(α1, . . . , αn) = u(α1, . . . , αn) = β,

hence β ∈ LGal(f) = K.
(2) Again, after renumbering we can assume that the simple root of Rf in question is β = u(α1, . . . , αn) ∈ K.
As before, we have

∀g ∈ Gal(f) ⊂ Sn β = g(β) = u(αg(1), . . . , αg(n)) = (g ∗ u)(α1, . . . , αn).

On the other hand, if g ∈ Sn but g 6∈ H, then u(αg(1), . . . , αg(n)) = (g ∗ u)(α1, . . . , αn) is a root of the
polynomial Rf (y)/(y − β), hence is different from β, since β is a simple root of Rf , by assumption. As a
result,

∀g ∈ Sn \H u(αg(1), . . . , αg(n)) 6= β,

which means that Sn \H ⊂ Sn \Gal(f), hence Gal(f) ⊂ H.

(11.7) Examples. (i) If n ≥ 2, char(K) 6= 2 and u = ∆ =
∏
i<j(xi−xj), thenH = An, Rf (y) = y2−disc(f)

and we recover Proposition 11.4.

(ii) If n = 4 and u = x1x2 + x3x4, then H = D8 ⊂ S4 and disc(Rf ) = disc(f). Proposition 11.6 then states
that, for any separable polynomial f(X) = (X − α1) · · · (X − α4) ∈ K[X], the Galois group Gal(f) ⊂ S4 is
conjugate to a subgroup of D8 ⊂ S4 ⇐⇒ the cubic resolvent

(y − (α1α2 + α3α4))(y − (α1α3 + α2α4))(y − (α1α4 + α2α3)) ∈ K[y]

has a root β ∈ K.

(11.8) Exercise (Lagrange). If u1, u2 ∈ K[x1, . . . , xn] are two auxiliary polynomials with respective
stabilisers Hi = {τ ∈ Sn | τ ∗ ui = ui}, then we have

H1 ⊃ H2 ⇐⇒ u1 ∈ K(σ1, . . . , σn)(u2).

(11.9) In practical calculations of Galois groups one applies Proposition 11.6 to irreducible polynomials, in
which case Gal(f) acts transitively on {1, . . . , n}, by Proposition 9.5(4) (we say that Gal(f) is a transitive
subgroup of Sn). What is required is a list of transitive subgroups H ⊂ Sn (up to conjugation), for each
H an auxilary polynomial u with stabiliser H and an explicit formula for the corresponding resolvent Rf in
terms of f . See [Co, ch. 13] for examples.
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(11.10) Exercise. (1) Every transitive subgroup of S4 is conjugate to S4, A4, D8, C4 or to C2 × C2 from
Example 9.6(iv).
(2) A subgroup G ⊂ Sp, where p is a prime number, is transitive ⇐⇒ the order of G is divisible by p ⇐⇒
G contains a p-cycle.
(3) If p is a prime number and G ⊂ Sp is a subgroup containing a p-cycle and a transposition (= 2-cycle),
then G = Sp. (cf. [De 1], Ex. I.2.7).

(11.11) Proposition. Let p be a prime number, K a subfield of R and f ∈ K[X] an irreducible polynomial
of degree p. Let L = K(α1, . . . , αp) ⊂ C, where α1, . . . , αp ∈ C are the complex roots of f . If α1, α2 6∈ R and
α3, . . . , αp ∈ R, then Gal(f) = Gal(L/K) = Sp. [This applies, for example, to K = Q and f = X5−6X+2.]

Proof. The action of Gal(f) on {1, . . . , p} is transitive, since f is irreducible; the group Gal(f) ⊂ Sp contains
a p-cycle, by 11.10(2). As K ⊂ R, the complex conjugation c(a + bi) = a − bi (a, b ∈ R) is an element
of c ∈ HomK−Alg(L, c(L)) = HomK−Alg(L,L) = Gal(L/K) = Gal(f) (c(L) = L, since L/K is a normal
extension). The assumptions on the roots of f imply that c = (12) ⊂ Sp acts on {1, . . . , p} as a 2-cycle; we
conclude by 11.10(3).

(11.12) Theorem (Dedekind). Let f ∈ Z[X] ⊂ Q[X] be a monic polynomial of degree n ≥ 1. Let
p be a prime number; denote by f = f (mod p) ∈ Fp[X] the reduction of f modulo p. Assume that f
is separable ( ⇐⇒ p - disc(f)) and write f = f1 · · · fr, where f1, . . . , fr ∈ Fp[X] are distinct monic
irreducible polynomials of respective degrees ni (n1 + · · ·+nr = n). The polynomial f is then separable and
Gal(f) ⊂ Sn contains an element c1 · · · cr, where c1, . . . , cr are disjoint cycles of lengths n1, . . . , nr.

Proof. Later.

(11.13) Example. Let K = Q, f(X) = X5 − X + 1 ∈ Q[X]. The factorisation established in 4.10
f (mod 2) = (X2 +X + 1)(X3 +X2 + 1) ∈ F2[X] shows that G = Gal(f) ⊂ S5 contains an element of the
form g = (ab)(cde), hence a 2-cycle g3 = (ab). One can check that the polynomial f (mod 3) ∈ F3[X] is
irreducible (for example, by computing gcd(f (mod 3), X9−X) = 1, which implies that f has no irreducible
factor of degree 1 or 2, by Corollary 4.5). It follows from 11.12 that G contains a 5-cycle, hence G = S5, by
11.10(3). One can also check that f (mod 5) ∈ F5[X] is irreducible:

(11.14) Exercise. If p is a prime number and a ∈ F∗p, then the polynomial f(X) = Xp−X−a is irreducible
in Fp[X]. [Hint: if f(α) = (ϕ− 1)(α)− a = 0, then (ϕm − 1)(α) 6= 0, for all 0 < m < p.]

(11.15) Exercise. Interpret Exercise 3.29 in terms of Galois theory: determine the normal closure M over

K of the field L = K(
√
a+ b

√
c), the Galois group G = Gal(M/K) and all intermediate fields K ( F (M .

(11.16) Exercise. Let K be a field of characteristic char(K) 6= 2, let L/K be an extension of degree
[L : K] = 2. Show that: there exists a Galois extension M/K such that M ⊃ L and Gal(M/K)

∼−→ Z/4Z
⇐⇒ −1 ∈ NL/K(L∗).

(11.17) Exercise. Let p be a prime number.
(1) Let G ⊂ Sp be a subgroup; for each i = 1, . . . , p denote by Gi = {g ∈ G | g(i) = i} ⊂ G its stabiliser. If
G is a transitive subgroup of Sp for which G1 ⊂ G2, then G = Cp is a cyclic group generated by a p-cycle
and |Gi| = 1 for each i.
(2) Let K be a field, let f ∈ K[X] be an irreducible separable polynomial of degree deg(f) = p, let
L = K(α1, . . . , αp) be its splitting field, where α1, . . . , αp are the roots of f in L. Show that: α2 ∈ K(α1)
⇐⇒ L = K(α1) ⇐⇒ Gal(L/K) is cyclic of order p.

12. Roots of unity

Historically, the equation Xn−1 = 0 (“division of the circle in n parts of equal length”) played an extremely
important rôle in the development of both Galois theory and arithmetic. The first systematic treatment of
this equation (for n = p a prime number) was given by Gauss.

(12.1) For each n ≥ 1, the set of complex n-th roots of unity
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µn(C) = {ζ ∈ C | ζn = 1}

is a cyclic subgroup of C∗, generated by ζn = e2πi/n. The polynomials

Xn − 1 =
∏
ζ∈µn

(X − ζ)

are highly reducible in Q[X]. For example,

X12 − 1 = (X − 1)(X + 1)(X2 +X + 1)(X2 −X + 1)(X4 −X2 + 1) = Φ1Φ2Φ3Φ6Φ12.

The general pattern is as follows. The set of generators of µn(C) (= the set of primitive complex n-th roots
of unity) is equal to

µ0
n(C) = {ζan | a ∈ (Z/nZ)∗} (12.1.1)

and we have

µn(C) =
⋃
d|n

µ0
d(C). (12.1.2)

(12.2) Proposition-Definition. For n ≥ 1 define the n-th cyclotomic polynomial to be

Φn(X) =
∏
ζ∈µ0

n

(X − ζ) ∈ C[X].

These monic polynomials have the following properties.
(1) deg(Φn) = ϕ(n).
(2)

∏
d|n Φd(X) = Xn − 1.

(3) Φn(X) ∈ Z[X].
(4) If p is a prime number and k ≥ 1, then

Φp(X) = (Xp − 1)/(X − 1) = Xp−1 +Xp−2 + · · ·+ 1, Φpk(X) = Φp(X
pk−1

) = (Xpk − 1)/(Xpk−1

− 1).

Proof. (1) and (2) follow from (12.1.1-2). The Möbius inversion formula 12.3(3) applied to (2) shows that
the complex polynomial

Φn(X) =
∏
d|n

(Xn/d − 1)µ(d)

is a quotient of two monic polynomials with coefficients in Z, proving (3) and (4).

(12.3) Exercise (The Möbius inversion formula). Let f, g : N \ {0} −→ C be functions related by

∀n ≥ 1 g(n) =
∑
d|n

f(d).

(1) The generating functions Zf (s) =
∑∞
n=1 f(n)/ns and Zg(s) =

∑∞
n=1 g(n)/ns are related by Zg(s) =

Zf (s)ζ(s), where ζ(s) =
∑∞
n=1 1/ns.

(2) 1/ζ(s) =
∏
p(1− 1/ps) =

∑∞
n=1 µ(n)/ns, where µ is the Möbius function: µ(p1 · · · pr) = (−1)r, if r ≥ 0

and pi are distinct primes; µ(n) = 0 if n is divisible by the square of a prime.
(3) The function f is given by

∀n ≥ 1 f(n) =
∑
d|n

µ(d)f(n/d).
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(12.4) Let K be an arbitrary field. For every integer n ≥ 1 denote by

µn(K) = {a ∈ K | an = 1}

the set of all n-th roots of unity lying in K. If char(K) = p > 0 and n = pk ·m, p - m, then the formula

Xn − 1 = (Xm − 1)p
k ∈ K[X] shows that µn(K) = µm(K).

We are going to consider the cyclotomic polynomials Φn(X) ∈ Z[X] as elements of K[X]; the formula
12.2(2) still holds in K[X]:

∀n ≥ 1
∏
d|n

Φd(X) = Xn − 1 ∈ K[X]. (12.4.1)

Fix a splitting field K(µn) of the polynomial Xn − 1 over K and set µn = µn(K(µn)).

(12.5) Proposition. Let K be a field and n ≥ 1 an integer such that char(K) - n.
(1) The polynomial f(X) = Xn − 1 ∈ K[X] is separable.
(2) For every field F ⊃ K(µn) the group µn(F ) is cyclic of order n; denote by µ0

n(F ) the set of its generators.
For any ζn ∈ µ0

n(F ) we have

µ0
n(F ) = {ζan | a ∈ (Z/nZ)∗} = {roots of Φn(X) in F}.

(3) The field K(µn) is equal to K(ζn), for any generator ζn of µn. Moreover, it is a splitting field of the
polynomial Φn(X) over K.
(4) K(µn)/K is a Galois extension. There is a canonical injective group homomorphism

χ = χn,K : Gal(K(µn)/K) −→ (Z/nZ)∗ = GL1(Z/nZ)

(the cyclotomic character) such that

∀ζ ∈ µn ∀g ∈ Gal(K(µn)/K) g(ζ) = ζχ(g).

(5) The Galois group Gal(K(µn)/K) is abelian.

Proof. (1) The assumption char(K) - n implies that n ∈ K∗, hence 1 = Xn−(Xn−1) = n−1Xf ′(X)−f(X) ∈
(f, f ′).
(2) The group µn(F ) is cyclic, by Proposition 3.3. It follows from (1) that the roots of f are distinct, hence
|µn(F )| = deg(f) = n. If ζn ∈ µ0

n(F ), then we deduce from (12.4.1) that

∀m = 1, . . . , n− 1 ζmn − 1 6= 0 =⇒ ∀m = 1, . . . , n− 1 Φm(ζn) 6= 0;

thus Φn(ζn) = 0. We have just shown that µ0
n(F ) = {ζan | a ∈ (Z/nZ)∗} is contained in the set of all roots

of Φn(X) in F ; these two sets have the same cardinality |µ0
n(F )| = ϕ(n) = deg(Φn), hence they are equal.

(3) The equality µn = {ζn, ζ2
n, . . . , ζ

n
n = 1} implies that K(µn) = K(ζn) = K(µ0

n); the latter field is a
splitting field of Φn(X) by K, by (2).
(4) The field K(µn) is a splitting field over K of a separable polynomial Xn−1, which means that K(µn)/K
is a Galois extension. Fix ζn ∈ µ0

n (= a root of Φn(X) in K(µn)). For each g ∈ Gal(K(µn)/K) we have

Φn(g(ζn)) = g(Φn(ζn)) = g(0) = 0,

hence there is a unique a ∈ (Z/nZ)∗ such that g(ζn) = ζan. Each element ζ ∈ µn is of the form ζ = ζbn
(1 ≤ b ≤ n); it follows that

g(ζ) = g(ζbn) = g(ζn)b = ζabn = ζa.

In particulier, the exponent

χ(g) := a ∈ (Z/nZ)∗
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does not depend on the choice of ζn ∈ µ0
n. The map

χ : Gal(K(µn)/K) −→ (Z/nZ)∗

is a group homomorphism, since

(gg′)(ζ) = g(g′(ζ)) = g(ζχ(g′)) = g(ζ)χ(g′) = (ζχ(g))χ(g′) = ζχ(g)χ(g′) =⇒ χ(gg′) = χ(g)χ(g′)

holds for all g, g′ ∈ Gal(K(µn)/K) and ζ ∈ µn.
If g ∈ Ker(χ), then g(ζn) = ζn, which implies that g(α) = α for all α ∈ K(ζn) = K(µn). As a result, χ

is injective.
One can reformulate the above argument in more scientific terms by saying that the restriction map

Aut(K(µn)/K) −→ HomZ(K∗,K∗) −→ HomZ(µn, µn) = HomZ/nZ(µn, µn) = (Z/nZ)∗

is a group homomorphism for trivial reasons. It is injective, since µn generates K(µn) over K.
(5) Gal(K(µn)/K) is isomorphic to a subgroup χ(Gal(K(µn)/K)) of an abelian group (Z/nZ)∗.

(12.6) The key point in Proposition 12.5 is the group homomorphism χ : Gal(K(µn)/K) −→ GL1(Z/nZ).
Historically, this was the first example of a Galois representation.

(12.7) Proposition. If K = Q and n ≥ 1, then:
(1) The polynomial Φn(X) is irreducible in Q[X].
(2) The homomorphism χn,Q : Gal(Q(µn)/Q) −→ (Z/nZ)∗ is an isomorphism.
(3) For any m|n the map χn,Q induces a group isomorphism

Gal(Q(µn)/Q(µm))
∼−→ {a ∈ (Z/nZ)∗ | a ≡ 1 (modm)}.

Proof. (1) If n = pk (p prime), then Φpk(1+X) = ((1+X)p
k−1)/((1+X)p

k−1−1) is an Eisenstein polynomial
with respect to p. In general, assume that f(X) ∈ Z[X] is an irreducible monic factor of Φn(X) = f(X)g(X)
(deg(f) ≥ 1); fix a root ζ ∈ Q(µn) of f(X). Let p - n be a prime number; we are going to show that f(ζp) = 0.
Indeed, if f(ζp) 6= 0, then g(ζp) = 0 (since Φn(ζp) = 0). Consider h(X) = g(Xp) ∈ Z[X]; then f divides h
in Q(X), since h(ζ) = 0 and f is the minimal polynomial of ζ over Q. The polynomial f ∈ Z[X] is monic,
which implies that f divides h in Z[X]. As a result, the reduction modulo p f = f (mod p) ∈ Fp[X] divides
h(X) = g(Xp) = g(X)p in Fp[X]; in particular, if r ∈ Fp[X] is an irreducible non-constant factor of de f ,
then r2 | fg = Φn ∈ Fp[X], which contradicts the separability of Φn ∈ Fp[X].

If a ≥ 1 is an integer prime to n, then a = p1 · · · pk is a product of prime numbers pj - n, hence f(ζa) = 0,
by induction on k. This shows that each element of µ0

n is a root of f , hence f = Φn.
(2) According to (1), Φn(X) is the minimal polynomial of ζn over Q. The homomorphism χn,Q is an injective
map between two sets of the same cardinality

|(Z/nZ)∗| = ϕ(n) = deg(Φn) = [Q(ζn) : Q] = [Q(µn) : Q] = |Gal(Q(µn)/Q)|,

which means that it is bijective. The statement (3) follows from (2).

(12.8) Example (Gauss sums). For any prime number p > 2 the Galois group G = Gal(Q(µp)/Q) is
cyclic of order p − 1, which implies that there is a unique subgroup H ⊂ G of index (G : H) = 2, hence a
unique field Q ⊂ F ⊂ Q(µp) such that [F : Q] = 2, namely F = Q(µp)

H . Fix a generator g ∈ G; then H is
generated by g2. Write ζp = e2πi/p and consider the following quadratic Gauss sum

τp =

p−1∑
j=1

(−1)j gj(ζp) =

p−1∑
j=1

(−1)j ζ(aj)
p ∈ Q(µp) (a = χp(g) ∈ (Z/pZ)∗)

(it is easy to see that τp does not depend on the choice of g). The formula
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g(τp) =

p−1∑
j=1

(−1)j gj+1(ζp) = −
p∑
k=2

(−1)k gk(ζp) = −τp

implies that

g2(τp) = τp =⇒ τp ∈ Q(µp)
H = F

g(τ2
p ) = τ2

p =⇒ τ2
p ∈ Q(µp)

G = Q.

For example, one can compute by brute force the values

τ3 = ζ3 − ζ2
3 = i

√
3, τ5 = ζ5 − ζ2

5 − ζ3
5 + ζ4

5 =
√

5, τ7 = ζ7 + ζ2
7 − ζ3

7 + ζ4
7 − ζ5

7 − ζ6
7 = i

√
7.

In fact, it is relatively easy to show that τ2
p = (−1)(p−1)/2p, but much more difficult to determine the exact

square root. This was done by Gauss, who proved that

τp =

{
+
√
p p ≡ 1 (mod 4)

+i
√
p p ≡ 3 (mod 4).

Quadratic Gauss sums can be used to give an elegant proof of the quadratic reciprocity law.
More generally, if r | (p− 1) and α ∈ µ0

r, one can consider the sum

τp(α, g) =

p−1∑
j=1

αj gj(ζp) ∈ Q(µp, µr) = Q(µpr).

The same computation as before shows that

τp(α, g)r ∈ Q(µr).

(12.9) Exercise (quadratic subfields of cyclotomic fields). (1) Let p > 2 be a prime number. Compute
the discriminant disc(Φp) and use the fact that Q(

√
disc(Φp)) ⊂ Q(µp) to show that the unique subfield

F ⊂ Q(µp) with [F : Q] = 2 is equal to F = Q(
√
p∗). where p∗ = (−1)(p−1)/2p.

(2) Show that Q(µ8) = Q(i,
√

2).
(3) If [K : Q] = 2, then there is a unique square-free integer d ∈ Z (d 6= 0, 1) such that K = Q(

√
d). Write

|d| as a product of distinct primes and use (1)-(2) to show that K ⊂ Q(µ|D|), where D = d if d ≡ 1 (mod 4)
(resp. D = 4d if d 6≡ 1 (mod 4)).
(4) Show that K 6⊂ Q(µn) if n < |D|.

13. Euclidean constructibility

We identify the Euclidean plane R2 with C in the usual way (the point

(
x

y

)
corresponds to x+ iy).

(13.1) Definition. A complex number z ∈ C (= the corresponding point) is constructible (by ruler and
compass) if it can be obtained from the points 0 by 1 by applying successively the following constructions:
drawing a line through two already constructed points; drawing a circle whose centre and one point have
already been constructed; intersecting two lines (resp. a line and a circle, resp. two circles) which have
already been constructed.

(13.2) Proposition. (1) The set E ⊂ C of constructible complex numbers is a field.
(2) z ∈ E ⇐⇒ Re(z), Im(z) ∈ E.
(3) z ∈ E =⇒ ±

√
z ∈ E.

Proof. Exercise in elementary geometry.
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(13.3) Theorem. Let α ∈ C. The following properties of α are equivalent.
(1) α ∈ E.
(2) There exists a tower of field extensions Q = K0 ⊂ K1 ⊂ · · · ⊂ Kn such that ∀j [Kj+1 : Kj ] = 2 and
α ∈ Kn.
(3) There exists a tower of field extensions Q = K0 ⊂ K1 ⊂ · · · ⊂ Kn = Q(α) such that ∀j [Kj+1 : Kj ] = 2.
(4) α is an algebraic number and [Q(α1, . . . , αk) : Q] = 2m for some m ≥ 0, where α1, . . . , αk are the
conjugates of α = α1 over Q.

Proof. (1) ⇐⇒ (2): Exercise in elementary geometry.
(2) =⇒ (4): For each αj there exists a field embedding τj : Q(α) ↪→ C such that τj(α) = αj . If we put
the towers Q = τj(K0) ⊂ τj(K1) ⊂ · · · ⊂ τj(Kn) 3 αj (for j = 1, . . . , k) on top of each other, we obtain a
bigger tower Q = L0 ⊂ L1 ⊂ · · · ⊂ Lb in which [La+1 : La] ≤ 2 for each a and α1, . . . , αk ∈ Lb. As a result,
[Q(α1, . . . , αk) : Q] divides [Lb : Q] = 2r.
(4) =⇒ (3): L/Q = Q(α1, . . . , αk)/Q is a Galois extension and the order of G = Gal(L/Q) is a power of 2.
According to Proposition 14.7 below, for each subfield Q 6= K ⊂ L there exists a subfield K ′ ⊂ K such that
[K : K ′] = 2 (if K = LH , then K ′ = LH

′
). We take K = Q(α) = Kn (where [K : Q] = 2n) and obtain, by

induction, a chain of subfields Kn ⊃ Kn−1 ⊃ · · · ⊃ K0 = Q such that [Kj+1 : Kj ] = 2 for all j.
(3) =⇒ (2): This is automatic.

(13.4) Corollary (Gauss). All vertices of a regular polygon with n ≥ 3 sides inscribed to the unit circle are
constructible ⇐⇒ ζn = e2πi/n is constructible ⇐⇒ there exists m ≥ 0 such that [Q(ζn) : Q] = ϕ(n) = 2m

⇐⇒ n = 2ap1 · · · pk, where p1, . . . , pk are distinct prime numbers such that pj = 2mj + 1 (mj ≥ 1).

(13.5) Exercise. If p = 2m + 1 is a prime number, then m = 2b, hence p = 22b + 1 = Fb (“Fermat’s prime
number”). At present (April 2014) the only known Fermat’s prime numbers are F0 = 3, F1 = 5, F2 = 17,
F3 = 257 and F4 = 65537 (for example, F5 is divisible by 641, as discovered by Euler).

(13.6) Example: constructibility of a regular 17-gon (Gauss).
The Galois group G = Gal(Q(µ17)/Q)

∼−→ (Z/17Z)∗ is cyclic of order 16 = 24, generated by g : ζ 7→ ζ3

(ζ ∈ µ17). The lattice of all subgroups of G

G = H0 ⊃ H1 ⊃ H2 ⊃ H3 ⊃ H4 = {1},

where Hj = {gj , g2
j , . . . , g

24−j

j = 1} is generated by gj = g2j , corresponds to a tower of fields as in Theorem
13.3:

Q = K0 ⊂ K1 ⊂ K2 ⊂ K3 ⊂ K4 = Q(µ17) = Q(ζ),

where Kj = Q(µ17)Hj and ζ = ζ17 = e2πi/17. If we write

aj = TrK4/Kj (ζ) =
∑
σ∈Hj

σ(ζ) =

24−j∑
k=1

ζ

(
3(k·2j)

)
,

then Kj = Q(aj) and [Kj : Kj−1] = 2. The conjugates of aj over Kj−1 are aj and a′j = gj−1(aj), since
Hj−1 = Hj ∪ gj−1Hj . Explicitly,

a0 = −1

a1 = ζ + ζ9 + ζ−4 + ζ−2 + ζ−1 + ζ−9 + ζ4 + ζ2

a2 = ζ + ζ4 + ζ−4 + ζ−1

a3 = ζ + ζ−1 = 2 cos 2π
17

a4 = ζ

a′0 = −1

a′1 = ζ3 + ζ−7 + ζ5 + ζ−6 + ζ−3 + ζ7 + ζ−5 + ζ6

a′2 = ζ9 + ζ2 + ζ−2 + ζ−9

a′3 = ζ−4 + ζ4

a′4 = ζ−1

In particular, aj + a′j = aj−1; one can compute explicitly the products bj−1 = aja
′
j ∈ Kj−1, hence obtain

the minimal polynomial (X − aj)(X − a′j) = X2− aj−1X + bj−1 of aj over Kj−1 (see [Es], p. 149–150). The
final result states that
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16 cos 2π
17 = −1 +

√
17 +

√
34− 2

√
17 +

√
68 + 12

√
17− 4

√
34− 2

√
17− 8

√
34 + 2

√
17.

14. Basic properties of p-groups

Let p be a prime number. In this section we recall basic properties of p-groups (i.e., of finite groups of
p-power order).

(14.1) Proposition. If a finite group G of order |G| = pr (r ≥ 0) acts on a finite set X, then

|X| ≡ |XG| (mod p).

Proof. The stabiliser of any x ∈ X \XG is a proper subgroup Gx ( G, which implies that the cardinality
of the orbit of x is a non-trivial power of p: |O(x)| = (G : Gx) = pa (a ≥ 1). The set X \XG is a disjoint
union of such orbits; as a result, its cardinality is divisible by p.

(14.2) Corollary (Cauchy). If the order of a finite group H is divisible by p, then H contains an element
of order p.

Proof. Consider the action of G = Z/pZ by cyclic permutations on X = {(h1, . . . , hp) ∈ Hp | h1 · · ·hp = e}.
The fixed point set XG = {(h, . . . , h) | h ∈ H, hp = e} contains (e, . . . , e) and

|{h ∈ G | hp = e 6= h}| = |XG| − 1 ≡ |X| − 1 = |H|p−1 − 1 ≡ −1 6≡ 0 (mod p).

(14.3) Corollary. The centre Z(G) = {h ∈ G | ∀g ∈ H gh = hg} of a finite group G of order |G| = pr

(r ≥ 1) is non-trivial.

Proof. The centre Z(G) = XG is the fixed point set of the action of G on X = G by conjugation: g ∗ h =
ghg−1. Therefore |Z(G)| ≡ |G| ≡ 0 (mod p).

(14.4) Corollary. For every finite group G of order |G| = pn (n ≥ 1) there exists a chain of subgroups
G = G0 ) G1 ) · · · ) Gn = {e} such that each Gi C G is a normal subgroup of G and each quotient group
Gi/Gi+1 is cyclic of order p. [In particular, G is a nilpotent group.]

Proof. We define, inductively, Gn−1 to be any subgroup of order p of Z(G), then Gn−2 to be the inverse
image in G of any subgroup of order p of Z(G/Gn−1) ⊂ G/Gn−1, etc.

(14.5) Definition. Let H be a subgroup of a group G. The normaliser of H in G

NG(H) = {g ∈ G | gHg−1 = H}

is the biggest subgroup of G in which H is a normal subgroup.

(14.6) Proposition. Let H,H ′ be subgroups of a group G. Consider the usual action of G on X = G/H.
(1) The fixed point set of H ′ is equal to

(G/H)H
′

= {gH | g ∈ G, H ′ ⊂ gHg−1}.

(2) If |H| = |H ′| <∞, then

(G/H)H
′

= {gH | g ∈ G, H ′ = gHg−1}.

(3) If H = H ′ and |H| <∞, then

(G/H)H = N/H, N = NG(H).

Proof. (1) The group H ′ fixes gH ∈ X ⇐⇒ H ′gH = gH ⇐⇒ g−1H ′gH = H ⇐⇒ g−1H ′g ⊂ H.
(2) The equality |H ′| = |H| = |gHg−1| implies that the inclusion H ′ ⊂ gHg−1 is equivalent to H ′ = gHg−1.
(3) This is a special case H ′ = H of (2).
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(14.7) Proposition. If G is finite group and H ⊂ G is a subgroup such that |H| = pr (r ≥ 0) and
p | (G : H), then there exists a subgroup H C H ′ ⊂ G such that (H ′ : H) = p (⇐⇒ H ′/H

∼−→ Z/pZ).

Proof. Let N = NG(H). According to Proposition 14.6(3) and 14.1 we have

|N/H| = |(G/H)H | ≡ |(G/H)| = (G : H) ≡ 0 (mod p).

Furthermore, Corollary 14.2 implies that there exists n ∈ N whose image nH ∈ N/H in N/H has order p.
The subgroup H ′ of N generated by H and n has the required property.

(14.8) Definition. Let G be a finite group whose order is divisible by p. A subgroup H ⊂ G is a p-Sylow
subgroup of G if |H| = pr (r ≥ 1) and p - (G : H) (in other words, if |G| = prm, p - m and |H| = pr).
[Example : D8 is a 2-Sylow subgroup of S4.]

(14.9) Theorem (Sylow). Let G be a finite group whose order is divisible by p.
(1) A p-Sylow subgroup H of G exists.
(2) Two p-Sylow subgroups H,H ′ of G are conjugate: there exists g ∈ G such that H ′ = gHg−1.
(3) The number d of p-Sylow subgroups of G divides |G| and satisfies d ≡ 1 (mod p).

Proof. (1) According to Corollary 14.2 there exists a subgroup H1 ⊂ G of order p. Proposition 14.7 implies,
inductively, that there exist subgroups H1 ⊂ H2 ⊂ · · · ⊂ Hr ⊂ G such that |Hi| = pi and p - (G : Hr). The
last group Hr is a p-Sylow subgroup of G.
(2) According to Proposition 14.6(3) and 14.1, the set {gH | g ∈ G, H ′ = gHg−1} = (G/H)H

′
is non-empty,

since

|(G/H)H
′
| ≡ |(G/H)| 6≡ 0 (mod p).

(3) If we let G act by conjugation on the set Y of all p-Sylow subgroups of G, we deduce from (2) that Y is
in bijection with G/N , where N = NG(H). In particular, d = |Y | = (G : N) divides |G|. The congruence
used in the proof of (2) states (for H ′ = H) that

(N : H) = |(G/H)H | ≡ |(G/H)| = d(N : H) (mod p).

The index (N : H) | (G : H) is prime to p, which implies that 1 ≡ d (mod p).

15. Kummer theory

Kummer theory describes explicitly Galois groups of all extensions K( n
√
a1, . . . , n

√
ar)/K, where ai ∈ K∗,

µn ⊂ K and char(K) - n.

(15.1) Example. The isomorphism

G = Gal(Q(
√

2,
√

3)/Q)
∼−→ {±1} × {±1}, σ 7→

(
σ(
√

2)√
2

,
σ(
√

3)√
3

)
(15.1.1)

from Example 9.6(iii) can be succinctly reformulated by saying that G is dual to the group ∆ ⊂ Q∗/Q∗2

generated by the images of 2 and 3. Main theorem of Kummer theory (Theorem 15.7 below) is a generalisation
of this fact.

(15.2) The general setup. Fix an integer n ≥ 2 and a field K such that |µn(K)| = n (this condition
implies that char(K) - n). We abbreviate µn = µn(K).

Given a1, . . . , ar ∈ K∗, let L be a splitting field over K of the polynomial

(Tn − a1) · · · (Tn − ar) ∈ K[T ].

For any fixed root αi = n
√
ai ∈ L of the polynomial Tn − ai we have

Tn − ai =
∏
ζ∈µn

(T − ζαi).
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In particular, this polynomial is separable, which implies that L/K is a Galois extension. Denote by G =
Gal(L/K) its Galois group. Note that

L = K(α1, . . . , αn) = K( n
√
a1, . . . , n

√
ar) for any fixed root αi = n

√
ai ∈ L.

(15.3) Two finite abelian groups. For a ∈ K∗ denote by a its image in K∗/K∗n.

Let ∆ ⊂ K∗/K∗n be the subgroup generated by a1, . . . ar.

In Example 15.1 we have n = 2, K = Q, a1 = 2 and a2 = 3; therefore ∆ = {1, 2, 3, 6} ⊂ Q∗/Q∗2.

In general, ∆ is a subgroup of

∆′ = Ker (K∗/K∗n −→ L∗/L∗n) = (K∗ ∩ L∗n)/K∗n.

The key point of the whole theory is the following generalisation of the map (15.1.1).

(15.4) Proposition-Definition (Construction of a pairing). (1) The formula

σ × a 7→ (σ, a) =
σ(α)

α

(
=
σ( n
√
a)

n
√
a

)
∈ µn,

where σ ∈ G, a ∈ K∗, a ∈ ∆′, α ∈ L∗, αn = a (α is any n-th root n
√
a ∈ L∗) defines a map

( , ) : G×∆′ −→ µn.

(2) Linearity in the second argument: (σ, ab) = (σ, a)(σ, b).
(3) Linearity in the first argument: (στ, a) = (σ, a)(τ, a).
(4) Non-degeneracy on the left: let σ ∈ G. If (σ, a) = 1 for all a ∈ ∆, then σ = id.
(5) Non-degeneracy on the right: let a ∈ ∆′. If (σ, a) = 1 for all σ ∈ G, then a = 1.

Proof. (1) The value of (σ, a) lies in µn, since (σ(α)/α)n = σ(αn)/αn = σ(a)/a = 1. We must show that
σ(α)/α depends only on σ and a. If a, b ∈ K∗ and a = b ∈ ∆′, then there are α, β ∈ L∗ and c ∈ K∗ such
that a = αn, b = βn and a = bcn. It follows that α/βc ∈ µn and α/β ∈ K. In particular,

σ(α)

α
=
σ(β)

β

σ(α/β)

α/β
=
σ(β)

β
.

(2) If a = αn and b = βn, then
σ(αβ)

αβ
=
σ(α)

α

σ(β)

β
.

(3) We have σ(ζ) = ζ for all ζ ∈ µn, hence

σ(τ(α))

α
=
σ(α)

α
σ

(
τ(α)

α

)
=
σ(α)

α

τ(α)

α
.

(4) If σ(αi)/αi = 1 for all i = 1, . . . , r, then σ = id on K(α1, . . . , αr) = L.
(5) If a = αn and σ(α)/α = 1 for all σ ∈ G, then α ∈ (L∗)G = K∗, hence a ∈ K∗n and a = 1.

(15.5) Corollary. (1) For fixed σ ∈ G the map a 7→ (σ, a) is a homomorphism of abelian groups ∆′ −→ µn.
(2) The map σ 7→ (a 7→ (σ, a)) is group homomorphism G −→ HomZ(∆′, µn).
(3) The group homomorphism G

(2)−→HomZ(∆′, µn)
res−→HomZ(∆, µn) is injective.

(4) G is a finite abelian group satisfying G = G[n].
(5) For fixed a ∈ ∆′ the map σ 7→ (σ, a) is a homomorphism of abelian groups G −→ µn.
(6) The map a 7→ (σ 7→ (σ, a)) is a homomorphism of abelian groups ∆′ −→ HomZ(G,µn).
(7) The homomorphism (6) is injective.

Proof. (1) and (6) (resp. (5) and (2)) are consequences of Proposition 15.4(2) (resp. of Proposition 15.4(3)).
(3) (resp. (7)) is a consequence of Proposiiton 15.4(4) (resp. of Proposition 15.4(5)). Finally, (4) follows
from (3).
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15.6. Duality (see Exercise II.1.15). Let A be a finite abelian group satisfying A = A[n]. Its dual
group D(A) = HomZ(A,µn) is a finite abelian group having the same property. If A is cyclic of order d | n,
so is D(A). Combined with the additivity property D(A ⊕ B) = D(A) ⊕ D(B), this implies that D(A) is
isomorphic to A, for any A (since A is isomorphic to a direct sum of cyclic groups). The evaluation map
D(A)×A −→ µn is non-degenerate on both sides (since the statement holds for A cyclic).

(15.7) Main Theorem of Kummer theory. We have ∆′ = ∆ and the pairing defined in Proposition
15.4 gives rise to isomorphisms of finite abelian groups

G
∼−→ HomZ(∆, µn), ∆

∼−→ HomZ(G,µn).

In particular, G = Gal(L/K) is (non-canonically) isomorphic to ∆ and |∆| = |G| = [L : K].

Proof. Putting together Proposition 15.5(3) and 15.5(7), we obtain

|G| ≤ |D(∆)| = |∆|, |∆′| ≤ |D(G)| = |G|.

However, ∆ ⊂ ∆′, which implies that there are equalities everywhere: ∆ = ∆′ and |G| = |∆|. As a result,
the injective homomorphisms in Proposition 15.5(3) and 15.5(6) are both isomorphisms.

(15.8) Exercise. Show that any (finite) linear relation∑
0<a∈Q

u(a)
√
a = 0 (u(a) ∈ Q)

is a sum of tautological relations

u
√
b2c− ub

√
c = 0 (u, b, c ∈ Q; b, c > 0).

(15.9) Theorem. Assume that K is a field such that |µn(K)| = n. Let L′/K be a Galois extension with
Galois group G′ = Gal(L′/K).
(1) For each group homomorphism χ : G′ −→ µn = µn(K) there exists α ∈ L′∗ such that αn = a ∈ K∗ and
χ(σ) = σ(α)/σ for all σ ∈ G′.
(2) If G′ is abelian and satisfies G′ = G′[n], then there exist a1, . . . , ar ∈ K∗ (where r is the minimal number
of generators of G′) such that L′ = K( n

√
a1, . . . , n

√
ar).

Proof. (1) For each β ∈ L′ the “Lagrange resolvent”

α =
∑
τ∈G′

χ(τ)−1 τ(β) ∈ L′

satisfies

∀σ ∈ G′ σ(α) =
∑
τ∈G′

χ(τ)−1 (στ)(β) =
∑
τ ′∈G′

χ(σ−1τ ′)−1 τ ′(β) = χ(σ)
∑
τ ′∈G′

χ(τ ′)−1 τ ′(β) = χ(σ)α,

hence a = αn ∈ (L′)G
′

= K. It follows from Corollary 15.11 below that there exists β ∈ L′ for which α 6= 0,
which concludes the proof.

Note that the homomorphism χ factors through G′/Ker(χ) ↪→ µn, which means that we could have
replaced right at the beginning of the argument L′ by (L′)Ker(χ) and Gal(L′/K) = G′ by Gal((L′)Ker(χ)/K) =
G′/Ker(χ), hence assume that G′ is abelian and satisfies G′ = G′[n]. However, this was not necessary.
(2) Fix an isomorphism G′

∼−→ G1⊕· · ·⊕Gr, where each Gi is a cyclic group, of order di | n. For i = 1, . . . , r
denote by pri : G′ −→ Gi the projection and fix an injective group homomorphism χi : Gi ↪→ µn. According
to (1) there exists αi ∈ L′∗ such that αni = ai ∈ K∗ and χi(pri(σ)) = σ(αi)/αi, for each σ ∈ G′.

We claim that the field L = K(α1, . . . , αr) ⊂ L′ coincides with L′. Indeed, if σ ∈ Gal(L′/L) ⊂ G′, then
χi(pri(σ)) = 1, which means that pri(σ) = 0 for each i; thus σ = id, Gal(L′/L) = {id} and L′ = L.
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(15.10) Proposition (Linear independence of characters). For any abelian group A and any field M ,
any finite set of (distinct) homomorphisms of abelian groups χ1, . . . , χn : A −→M∗ is linearly independent
over M . In other words, if λ1, . . . , λn ∈M and

∀a ∈ A
n∑
i=1

λi χi(a) = 0,

then λ1 = · · · = λn = 0.

Proof. Induction on n. The case n = 1 is trivial. If n ≥ 2, then we have, for all a, b ∈ A,

n∑
i=1

λi χi(ab) = 0, χn(a)

n∑
i=1

λi χi(b) = 0,

hence

n−1∑
i=1

λi(χi(a)− χn(a))χi(b) = 0.

The induction hypothesis implies that

∀a ∈ A ∀i = 1, . . . , n− 1 λi(χi(a)− χn(a)) = 0.

The homomorphisms χj are distinct, which means that for each i < n there exists a ∈ A such that χi(a)−
χn(a) 6= 0, hence λi = 0.

(15.11) Corollary (Linear independence of field embeddings). Let L ⊃ K ⊂M be fields. Any finite
set of (distinct) homomorphisms of K-algebras σ1, . . . , σn ∈ HomK−Alg(L,M) is linearly independent over
M . In other words, if λ1, . . . , λn ∈M and

∀y ∈ L
n∑
i=1

λi σi(y) = 0,

then λ1 = · · · = λn = 0.

Proof. Apply Proposition 15.10 to A = L∗ and χi = σi|L∗ .
(15.12) Representations of finite groups. Let K be a field, let G be a finite group. Recall that a
representation of G over K is a group homomorphism ρ : G −→ AutK(V ), where V is a finite-dimensional
K-vector space. After choosing a basis of V , this becomes a group homomorphism ρ : G −→ GLm(K), where
m = dimK(V ).

The group ring of G over K is the unital K-algebra K[G] = {
∑
g∈G ag g | ag ∈ K} with operations∑

g∈G
ag g +

∑
g∈G

bg g =
∑
g∈G

(ag + bg) g,
(∑
g∈G

ag g
)(∑
h∈G

bh h
)

=
∑
g,h∈G

(agbh) gh.

It is commutative ⇐⇒ G is an abelian group.
A representation ρ : G −→ AutK(V ) defines on V a structure of a (left) K[G]-module(∑

g∈G
ag g

)
v =

∑
g∈G

ag ρ(g)v

and vice versa: ρ(g) ∈ AutK(V ) ⊂ EndK(V ) is given by the action of the invertible element 1 · g ∈ K[G].
In particular, V = K[G] with action given by left multiplication is a representation of G over K, called

the regular representation of G.
If char(K) - |G|, then everything works very much as in the classical case K = C:
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(15.12.1) each representation of G over K is isomorphic to a direct sum of irreducible representations (“complete
irreducibility”);

(15.12.2) each irreducible representation of G over K is isomorphic to a subrepresentation of the regular repre-
sentation K[G];

(15.12.3) if K = K is algebraically closed, then each irreducible representation of G over K occurs in K[G] with
multiplicity equal to its dimension dimK(ρ).

(15.13) Kummer theory and Galois module structure. Let K, L = L′ = K( n
√
a1, . . . , n

√
ar) and

G = G′ = Gal(L/K) = G[n] be as in Theorem 15.9(2). In this case char(K) - |G|, since char(K) - n.
The group G is abelian, which means that its irreducible representations over K are one-dimensional,

given by group homomorphisms χ : G −→ K
∗
. As G = G[n], the image of χ is contained in µn(K) = µn ⊂

K∗; in particular, χ is defined over K. As a result, all representations of G over K are defined over K and
irreducible representations are precisely the elements of D(G) = HomZ(G,µn). The statement (15.12.3)
implies that there is an isomorphism of K[G]-modules

K[G]
∼−→

⊕
χ∈D(G)

χ.

On the other hand, the K[G]-module L is isomorphic to

L
∼−→

⊕
χ∈D(G)

χ⊕m(χ),

for suitable multiplicities m(χ) ≥ 0, by (15.12.1). Theorem 15.9(1) states that m(χ) ≥ 1 for all χ ∈ D(G).
As dimK(L) = |G| = |D(G)| = dimK(K[G]), it follows that m(χ) = 1 for each χ. Therefore we obtain an
isomorphism of K[G]-modules

K[G]
∼−→ L (15.13.1)

(which is, essentially, equivalent to Theorem 15.9(1), by the previous discussion). As we shall see in Theorem
18.4 below, the isomorphism (15.13.1) holds for arbitrary Galois extensions, even if char(K) | |G|.

(15.14) Exercise. Let n ≥ 2, let K be a field such that |µn(K)| = n, let a ∈ K∗ be an element for which
the field L = K( n

√
a) satisfies [L : K] = n. Show that: there exists a Galois extension M/K such that

M ⊃ L and Gal(M/K)
∼−→ Z/n2Z ⇐⇒ µn ⊂ NL/K(L∗).

16. Generalised Kummer theory

In this section we investigate splitting fields of polynomials Xn − a over fields of characteristic not dividing
n, without assuming that the base field contains all n-th roots of unity.

(16.1) Fix an integer n ≥ 2. Let K be a field such that char(K) - n. Fix a ∈ K∗ and let L be a splitting
field over K of the polynomial f = Xn − a. The assumption n ∈ K∗ implies that f is separable, since
(f, f ′) = (Xn − a, nXn−1) = (Xn − a,Xn−1) = (a) = (1). For any root α ∈ L of f , the polynomial f splits
in L[X] as

f(X) = Xn − a =
∏
ζ∈µn

(X − ζα),

where µn = µn(L) (with |µn| = n, by Proposition 12.5(2)). It follows that there is a tower of extensions

K ↪→ K(µn) = K(ζn) ↪→ L = K(µn, α) = K(ζn, α),

for any generator ζn of the cyclic group µn.

(16.2) Denote by G = Gal(L/K) = Gal(f) the Galois group of f . The intermediate Galois groups

H = Gal(L/K(µn)), G/H = Gal(K(µn)/K)
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were studied, respectively, in §15 and §12. The cyclotomic character χ = χn,K from Proposition 12.5(4)
defines a canonical injective group homomorphism

χ : G/H ↪→ (Z/nZ)∗, ∀ζ ∈ µn g(ζ) = ζχ(g)

into the multiplicative group of the ring Z/nZ, while the pairing 15.4 gives rise (after fixing a group
isomorphism µn

∼−→ Z/nZ, i.e., after fixing a generator ζn ∈ µn corresponding to 1 ∈ Z/nZ) to an injective
group homomorphism

H ↪→ µn (
∼−→ Z/nZ), h 7→ h(α)/α

into the additive group of the ring Z/nZ.
How do these two homomorphisms fit together? The action of any g ∈ G on L is determined by its

action on the generating elements ζn and α:

∀g ∈ G

{
g : ζn 7→ ζ

χ(g)
n , χ(g) ∈ (Z/nZ)∗

g : α 7→ α ζ
c(g)
n , c(g) ∈ Z/nZ.

The transitivity rule g(g′(x)) = (gg′)(x) amounts to checking, for all g, g′ ∈ G, that the action of g ◦ g′ g ◦ g′ : ζn 7→ ζ
χ(g′)
n 7→ (ζ

χ(g)
n )χ(g′) = ζ

χ(g)χ(g′)
n

g ◦ g′ : α 7→ α ζ
c(g′)
n 7→ (α ζ

c(g)
n )(ζ

χ(g)
n )c(g

′) = α ζ
χ(g)c(g′)+c(g)
n

coincides with the action of gg′ {
gg′ : ζn 7→ ζ

χ(gg′)
n

gg′ : α 7→ α ζ
c(gg′)
n ,

which is equivalent to

∀g, g′ ∈ G χ(gg′) = χ(g)χ(g′), c(gg′) = χ(g)c(g′) + c(g). (16.2.1)

These formulas can be written in a matrix form in terms of the following injective map

ρ : G ↪→ GL2(Z/nZ), g 7→

(
χ(g) c(g)

0 1

)
as

ρ(gg′) =

(
χ(gg′) c(gg′)

0 1

)
=

(
χ(g) c(g)

0 1

)(
χ(g′) c(g′)

0 1

)
= ρ(g)ρ(g′).

In other words, ρ is an injective group homomorphism! As in 12.5, the Galois group G admits a natural
Galois representation (depending on our choice of ζn), this time into the Z/nZ-valued points of the subgroup

GA1 =

(
∗ ∗

0 1

)
⊂ GL2,

ρ : G = Gal(K(µn,
n
√
a)/K) ↪→ GA1(Z/nZ), g 7→

(
χ(g) c(g)

0 1

)
. (16.2.2)

What kind of a subgroup is GA1? It is the affine group in dimension one.
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(16.3) Definition. Let R be a (commutative) ring, let m ≥ 1 be an integer. The affine group of Rm is
the group

GAm(R) =

{(A a

0 1

) ∣∣A ∈ GLm(R), a ∈ Rm
}
⊂ GLm+1(R).

It acts faithfully on Rm by affine automorphisms x 7→ Ax+a (x ∈ Rm). The group of translations x 7→ x+a

is a normal subgroup

(
1 R

0 1

)
C GAm(R), with the quotient group naturally isomorphic to GLm(R) via

the map GAm(R) −→ GLm(R) given by (x 7→ Ax+ a) 7→ A.

(16.4) In particular, the affine group

GA1(Z/nZ) =

(
(Z/nZ)∗ Z/nZ

0 1

)
occurring in (16.2.2) acts faithfully on Z/nZ by(

u a

0 1

)
: x 7→ ux+ a;

this gives a natural injection GA1(Z/nZ) ↪→ Sn. Note that |GA1(Z/nZ)| = nϕ(n).
If n ≥ 3, then {±1} ⊂ (Z/nZ)∗ and the (normal) subgroups

GA1(Z/nZ) ⊃

(
±1 Z/nZ

0 1

)
⊃

(
1 Z/nZ

0 1

)
(16.4.1)

are isomorphic to GA1(Z/nZ) ⊃ D2n ⊃ Cn, with

GA1(Z/nZ)/Cn
∼−→ (Z/nZ)∗, GA1(Z/nZ)/D2n

∼−→ (Z/nZ)∗/{±1}. (16.4.2)

For n = 3, 4 and 6 we have (Z/nZ)∗ = {±1}, hence GA1(Z/nZ) = D2n.

(16.5) Example. If p is a prime number and a ∈ Q∗, a 6∈ Q∗p, then the polynomial f(X) = Xp − a
is irreducible in Q[X] (exercise!), hence [Q( p

√
a) : Q] = p, for any fixed p-th root p

√
a ∈ C. The splitting

field of f inside C is equal to L = Q(ζp, p
√
a), where ζp = e2πi/p. As the degrees [Q(ζp) : Q] = p − 1 and

[Q( p
√
a) : Q] = p are relatively prime, the full degree [L : Q] is equal to [L : Q] = p(p− 1) = |GA1(Fp)| (cf.

3.30). It follows that the injective group homomorphism (16.2.2) is an isomorphism in this case:

ρ : Gal(f) = Gal(Q(ζp,
p
√
a)/Q)

∼−→ GA1(Fp).

(16.6) Exercise. Let a ∈ Q∗, a 6∈ Q∗2, −4a 6∈ Q∗4.
(1) Show that the polynomial X4 − a is irreducible in Q[X].
(2) Assume, in addition, that −a 6∈ Q∗2. Show that X4 − a is irreducible in Q(i)[X]. Deduce that (16.2.2)
induces an isomorphism

ρ : Gal(Q(i, 4
√
a)/Q)

∼−→ GA1(Z/4Z) = D8.

Give a list of all subgroups of D8 and of all subfields of Q(i, 4
√
a).

(16.7) Exercise. (1) Determine all integers n ≥ 1 for which the field Q(µn) ⊂ C (resp. Q(µn) ∩R ⊂ R)
is of the form Q(

√
a1, . . . ,

√
ar), for some aj ∈ Q.

(2) Given n ≥ 1, determine the number of subfields F ⊂ Q(µn) satisfying [F : Q] = 2.

(16.8) Proposition. Let K be a field, n ≥ 1 an integer such that char(K) - n and L/K a Galois extension.
The Galois group Gal(L(µn)/K(µn)) is then canonically isomorphic to a subgroup of Gal(L/K).

Proof. This is a special case of Exercise 10.13(1), but we give a full argument here. According to Propo-
sition 9.3, L is a splitting field over K of a separable polynomial f ∈ K[X]. The field L(µn) is then
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a splitting field of f over K(µn). In particular, L(µn)/K(µn) is a Galois extension. The restriction
of any g ∈ Gal(L(µn)/K(µn)) to L is an element of Gal(L/K); this defines a group homomorphism
res : Gal(L(µn)/K(µn)) −→ Gal(L/K). Let α1, . . . , αr ∈ L(µn) be the roots of f in L(µn); then L =
K(α1, . . . , αr) and L(µn) = K(µn)(α1, . . . , αr). If g ∈ Ker(res), then g|K(µn) = id and g(αj) = αj for all
j = 1, . . . , r; thus g = id. As a result, the restriction homomorphism res is injective, as claimed.

17. Solvability by radicals

In this section we prove a celebrated result of Galois characterising those polynomial equations which can
be solved by taking iterated roots n

√
a.

(17.1) Definition. A group G is solvable if there exists a finite chain of subgroups G = G0 ⊃ G1 ⊃ · · · ⊃
Gk = {e} (k < ∞) such that Gi+1 C Gi and Gi/Gi+1 is an abelian group for all i = 0, . . . , k − 1. If G is
finite, this is equivalent to an apparently stronger condition requiring each quotient Gi/Gi+1

∼−→ Z/piZ to
be a cyclic group of prime order.

(17.2) Examples. (1) An abelian group is solvable: G ⊃ {e}.
(2) For any commutative ring R, the affine group G = GA1(R) is solvable: G ⊃ G1 = (R,+) ⊃ {0},
G/G1

∼−→ R∗.
(3) G = S3 is solvable: S3 ⊃ A3 ⊃ {e}.
(4) G = S4 is solvable: the action of S4 on the polynomials y1, y2, y3 from 1.4.6 defines a surjective group
homomorphism π : S4 −→ S3, whose kernel is isomorphic to C2 × C2. This yields a chain of subgroups
S4 ⊃ A4 ⊃ C2 × C2 ⊃ {e} (see [Es], 10.8).
(5) A simple non abelian group is not solvable (recall that a group G is simple if G has no normal subgroup
H 6= G, {e}).
(6) Any subgroup H ⊂ G of a solvable group G is solvable (take Hi = H ∩Gi).
(7) The image of a solvable group G by any group homomorphism f : G −→ K is solvable (take f(G)i =
f(Gi)).
(8) For n ≥ 5 the group An is simple ([De 1], Thm. I.5.1). It follows from (5) (resp. from (6)) that An (resp.
Sn) is not solvable for n ≥ 5.
(9) Any group of order pn (where p is a prime number and n ≥ 0) is solvable (see Corollary 14.4).

(17.3) Definition. Let K be a field.
(1) A finite extension L/K is a radical extension if there exists a tower of extensions

K = K0 ⊂ · · · ⊂ Kj = K(α1, . . . , αj) = Kj−1(αj) ⊂ · · · ⊂ Km = L

such that, for each j = 1, . . . ,m, Kj = Kj−1(αj) with α
nj
j = aj ∈ K∗j−1 for some integer nj ≥ 1 satisfying

car(K) - nj . [Note that L/K is a separable extension, since each layer Kj/Kj−1 is separable.]
(2) Let f ∈ K[X] be a non-constant separable polynomial. The polynomial equation f(X) = 0 is solvable
by radicals over K if there exists a radical extension L of K containing a splitting field of f ( ⇐⇒
containing all roots of f).

(17.4) Example. K0 = Q ⊂ K1 = Q( 4
√

5) ⊂ K2 = Q(
3
√

2 + 4
√

5) (for a fixed choice of cubic and quartic
roots).

(17.5) Proposition. Each radical extension of K is contained in a radical extension L/K with the following
properties.
(i) L/K is a Galois extension.
(ii) K1 = K(µn), where char(K) - n.
(iii) For each j = 1, . . . ,m, Kj = Kj−1(αj) with αnj = aj ∈ K∗j−1.

Proof. For example, the extension from Example 17.4 is contained in the following radical extension: L =

Q(µ12, ρ
j 3
√

2 + ik 4
√

5; j = 0, 1, 2, k = 0, 1, 2, 3). In general, one proceeds recursively in the same manner; the
details are left to the reader.
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(17.6) Theorem (Galois). Let K be a field, let f ∈ K[X] be a non-constant separable polynomial.
(1) If the equation f = 0 is solvable by radicals over K, then the Galois group Gal(f) (over K) is solvable.
(2) Conversely, if the group Gal(f) is solvable and its order is not divisible by char(K), then the equation
f = 0 is solvable by radicals over K.

Proof. (1) Let F be a splitting field of f over K. According to Proposition 17.5, there exists a radical
extension K = K0 ⊂ · · · ⊂ Km = L satisfying (i)–(iii) for which L ⊃ F . Denote the corresponding Galois
groups by G = Gal(L/K) and Gj = Gal(L/Kj) (j = 0, . . . ,m). For j = 0 (resp. for j = 1, . . . ,m − 1)
the extension Kj ↪→ Kj+1 = Kj( n

√
aj+1) is a Galois extension (hence Gj+1 C Gj) and its Galois group

Gal(Kj+1/Kj) = Gj/Gj+1 is abelian, by Proposition 12.5(5) (resp. by Corollary 15.5(4)). In particular, G
is a solvable group, hence its quotient Gal(f) = Gal(F/K) = G/Gal(L/F ) is also solvable, thanks to 17.2(7).

(ii) Let n = |Gal(f)|, let F be a splitting field of f over K; then F (µn) is a splitting field of f over K(µn)
and Gal(f(µn)/K(µn)) is a solvable group, being a subgroup of Gal(f) = Gal(F/K) (by Proposition 16.8).
The extension K(µn)/K is radical, which means that we can replace K by K(µn) and assume that µn ⊂ K.
There exists a chain of subgroups Gal(f) = G = H0 ⊃ · · · ⊃ Hl = {e} such that ∀j = 0, . . . , l − 1
Hj+1 C Hj and Hj/Hj+1 is an abelian group of order dividing n. The fixed fields Kj = FHj form a tower
of extensions K0 = K ⊂ K1 ⊂ · · · ⊂ Kl = F with Gal(Kj+1/Kj) = Hj/Hj+1. Theorem 15.9(2) implies
that each layer Kj+1/Kj is of the form Kj+1 = Kj(

n
√
b1, . . .

n
√
bk) for some bi ∈ Kj , hence F/K is a radical

extension.

(17.7) Example. The equation f(X) = X5−X+ 1 = 0 is not solvable by radicals over Q, since the group
Gal(f) = S5 (see 11.13) is not solvable.

(17.8) General polynomial equation of degree n. Let F be a field, L = F (x1, . . . , xn) the field
of rational functions in n variables x1, . . . , xn and K = LSn = F (σ1, . . . , σn) the subfield of symmetric
rational functions. We know (see 10.3) that L/K is a Galois extension and Gal(L/K) = Sn. More precisely,
L = K(x1, . . . , xn) is a splitting field over K of the separable polynomial

f(X) = (X − x1) · · · (X − xn) = Xn − σ1X
n−1 + σ2X

n−2 − · · ·+ (−1)nσn ∈ K[X].

As Sn is not solvable for n ≥ 5, it follows from Theorem 17.6(1) that the “general polynomial equation of
degree n”

Xn − σ1X
n−1 + σ2X

n−2 − · · ·+ (−1)nσn = 0

over K = F (σ1, . . . , σn) is not solvable by radicals for any n ≥ 5.

(17.9) Proposition. (1) A subgroup of S5 is transitive ⇐⇒ it is conjugate to S5, A5, GA1(F5), GA1(F5)∩
A5 = D10 or C5.
(2) A transitive subgroup of S5 is solvable ⇐⇒ it is conjugate to a subgroup of GA1(F5) (namely, to
GA1(F5), D10 or C5).

Proof. The statment (2) follows from (1) and the fact that S5, A5 are not solvable, but GA1(F5) is.

(1) It is sufficient to prove “=⇒”. If G ⊂ S5 is a transitive subgroup, then it contains a 5-cycle. After
conjugation we can assume that G contains C5 (a 5-Sylow subgroup of G) in the form (16.4.1). Let N =
NG(C5) be the normaliser of C5 in G.

If N = G, then G ⊂ NS5(C5) = GA1(F5), which implies that G = GA1(F5), D10 or C5.

If N ( G, then the number of subgroups of G conjugate to C5 is an integer d > 1. As d | |G| and
d ≡ 1 (mod 5) (by Theorem 14.9), d = 6. If C 6= C ′ ⊂ G are distinct subgroups conjugate to C5, then
C ∩ C ′ = {e} and all elements of C \ {e} are 5-cycles. It follows that G contains at least 4d = 24 5-cycles,
hence all 5-cycles in S5. As (ijklm)(ijmlk) = (ikj), G contains all 3-cycles; but the 3-cycles generate A5,
so G ⊃ A5, which implies that G = S5 or A5.

(17.10) A suitable resolvent u(x1, . . . , x5) for which H = GA1(F5) can be used to decide whether a given
irreducible separable polynomial of degree deg(f) = 5 has a solvable Galois group, at least if char(K) 6= 2.
See [Co, §13.2] for details.

88



(17.11) Theorem (Galois). Let p be a prime number, let K be a field such that char(K) - p!, let f ∈ K[X]
be an irreducible polynomial of degree deg(f) = p (it is automatically separable). Let L be a splitting field
of f over K. The following conditions are equivalent:
(1) The equation f = 0 is solvable by radicals over K.
(2) The Galois group Gal(f) is solvable.
(3) The Galois group Gal(f) ⊂ Sp is conjugate to a subgroup of GA1(Fp).
(4) For any pair of distinct roots α 6= β of f we have L = K(α, β).
(5) There exist distinct roots α 6= β of f such that L = K(α, β).

Proof. The equivalence (1) ⇐⇒ (2) follows from Theorem 17.6. The implications (3) =⇒ (2) and (4) =⇒
(5) are automatic.
(2) =⇒ (3): see [De 1], Ex. I.5.18. This implication was proved by Galois.
(3) =⇒ (4): we can assume that Gal(f) ⊂ GA1(Fp). If

σ =

(
u a

0 1

)
⊂ Gal(L/K(α, β)) ⊂ Gal(f) ⊂ GA1(Fp),

then the affine transformation x 7→ ux+ a fixes both α, β ∈ Fp:

uα+ a = α, uβ + a = β =⇒ (u− 1)(α− β) = 0 =⇒ u = 1 =⇒ a = 0 =⇒ σ = id.

As a result, Gal(L/K(α, β)) = {id}, hence L = K(α, β).
(5) =⇒ (3): in the tower of fields K ⊂ K(α) ⊂ K(α, β) = L we have [K(α) : K] = p and [L : K(β)] = m < p.
In particular, G = Gal(f) ⊂ Sp is a group of order |G| = pm with m < p. According to Corollary 14.2 there
exists a subgroup H ⊂ G of order |H| = p. The number of subgroups of G conjugate to H is an integer
d ≡ 1 (mod p) dividing |G| = pm (by Theorem 14.9), which implies that d = 1 and H = Cp C G ⊂ Sp. It
follows that G ⊂ NSp(Cp) = GA1(Fp).

18. Complements

(18.1) Theorem (Algebraic independence of field embeddings). Let L ⊃ K ⊂ M be fields. If
|K| = ∞, then any finite set of (distinct) homomorphisms of K-algebras σ1, . . . , σr ∈ HomK−Alg(L,M) is
algebraically independent over M . In other words, if I ⊂ Nr is a finite subset and if an ∈M (n ∈ I) satisfy

∀y ∈ L
∑
n∈I

an y(n) = 0 (y(n) = σ1(y)n1 · · ·σr(y)nr , n = (n1, . . . , nr)), (?)

then an = 0 for all n ∈ I.

Proof. Assume that (?) holds, with some an 6= 0. After throwing away zero terms, we can assume that
an 6= 0 for all n ∈ I 6= ∅. Furthermore, we can assume that I is chosen in such a way that its cardinality
|I| > 1 is minimal, among all non-zero relations (?).

Fix z ∈ L and m ∈ I and consider, for each y ∈ L, the following linear combination of (?) for yz and y:

∀y ∈ L 0 =
∑
n∈I

an (yz)(n)−
(∑
n∈I

an y(n)
)
z(m) =

∑
n∈I\{m}

an (z(n)− z(m)) y(n), (18.1.1)

which is a relation of the type (?) with fewer terms than the cardinality of I. It follows that each coefficient
in (18.1.1) must be zero:

∀n ∈ I ∀z ∈ L z(n) = z(m). (18.1.2)
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Fix n ∈ I, n 6= m and set I± = {i | sgn(mi − ni) = ±1} ⊂ {1, . . . , r}. The relation (18.1.2) can be rewritten
as

∀z ∈ L
∏
i∈I+

σi(z)
ci =

∏
j∈I−

σj(z)
−cj , (18.1.3)

where ci = mi − ni. For z = x ∈ K we obtain

∀x ∈ K xc+ = x−c− (c± =
∑
I±

ci),

hence c+ = −c− > 0 (since |K| = ∞). The relation (18.1.3) for z = x + y with x ∈ K and y ∈ L reads as
follows:

∀x ∈ K ∀y ∈ L
∏
i∈I+

(x+ σi(y))ci =
∏
j∈I−

(x+ σj(y))−cj .

After expanding both sides as polynomials in x, we obtain, for each y ∈ L,

∀x ∈ K xc+ + xc+−1
∑
i∈I+

ci σi(y) + · · · = x−c− + x−c−−1
∑
j∈I−

−cj σj(y) + · · · .

Again, the assumption |K| =∞ implies that the coefficients must match, hence

∀y ∈ L
∑
i∈I

ci σi(y) = 0.

Corollary 15.11 tells us that ci = 0 for all i ∈ I, which is a contradiction. Theorem is proved.

(18.2) Corollary. For any Galois extension K ↪→ L of infinite fields the elements of Gal(L/K) are alge-
braically independent over any field M ⊃ L. [See [La, Thm. 12.1-2] for Artin’s original proof.]

(18.3) Dedekind’s determinant. Let G be a finite group. Let Xg be variables indexed by elements
g ∈ G. Consider the matrix M = (Xg−1h) (its rows and columns again indexed by elements of G). A study
of the determinant of M was at the origin of the theory of representations of finite groups.

For example, for G = Z/2Z and G = Z/3Z we have, respectively,∣∣∣∣∣X0 X1

X1 X0

∣∣∣∣∣ = (X0 +X1)(X0 −X1),

and ∣∣∣∣∣∣∣∣
X0 X1 X2

X2 X0 X1

X1 X2 X0

∣∣∣∣∣∣∣∣ = (X0 +X1 +X2)(X0 + ζ3X1 + ζ2
3X2)(X0 + ζ2

3X1 + ζ3X2) (ζ3 = e2πi/3).

In general, det(M) = X
|G|
e + · · · ∈ Z[Xg] is a non-zero polynomial with integral coefficients which factors in

C[Xg] as a product ∏
ρ

det(M [ρ])dim(ρ), (18.3.1)

where ρ runs through all irreducible complex representations of G and

M [ρ] =
∑
g∈G

Xgρ(g).

This follows from the decomposition (15.12.3) C[G]
∼−→ ⊕ρρ⊕ dim(ρ) and the fact that M is the matrix of

left multiplication C[G] −→ C[G] by
∑
g∈GXg g ∈ C[G].
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(18.4) Theorem (Normal basis theorem). Let K ↪→ L be a Galois extension with Galois group G =
Gal(L/K). There exists α ∈ L with the following equivalent properties.
(1) The elements g(α) ∈ L (g ∈ G) are linearly independent over K.
(2) The elements g(α) ∈ L (g ∈ G) form a basis of L/K.
(3) The map K[G] −→ L sending

∑
agg to

∑
ag g(α) is a surjective homomorphism of (left) K[G]-modules

(i.e., L is a cyclic K[G]-module).
(4) The map from (3) is an isomorphism of K[G]-modules (i.e., L is a free K[G]-module of rank one).

Proof. The equivalences (1) ⇐⇒ (3) and (2) ⇐⇒ (4) hold by definition and (1) ⇐⇒ (2) holds since
[L : K] <∞.

Assume first that |K| = ∞. For α ∈ L denote by Mα = ((g−1h(α))g,h∈G) ∈ M|G|(L) the image of the
matrix M from 18.3 under the ring homomorphism Z[Xg]g∈G −→ L sending each Xg to g(α).

The polynomial det(M) ∈ Z[Xg]g∈G from 18.3 is non-zero in K[Xg]g∈G. Theorem 18.1 implies that
there exists α ∈ L such that det(Mα) 6= 0. We claim that such an α has property (1). Indeed, if∑

h∈G

ah h(α) = 0

with ah ∈ K, then we have a system of linear equations for ah

∀g ∈ G 0 =
∑
h∈G

g−1(ah h(α)) =
∑
h∈G

ah (g−1h)(α).

As the determinant of this system det(Mα) 6= 0, all values ah = 0 must vanish. Therefore α satisfies (1).
Assume now that K = Fq is a finite field; then L = Fqn , where n = [L : K]. The group G is

cyclic of order n, generated by the Frobenius map ϕq : a 7→ aq. The group algebra K[G] is isomorphic to
K[X]/(Xn − 1), with ϕq corresponding to the image X of X in K[X]/(Xn − 1).

Consider L as a K[X]-module, with X acting as ϕq. We have Xn − 1 = ϕnq − 1 = 0 on L. On the other
hand, if P (X) = Xm + a1X

m−1 + · · ·+ am ∈ K[X] is a monic polynomial of degree m < n, then

|{a ∈ L | P (ϕq)a = 0}| = |{a ∈ L | aq
m

+ · · ·+ am = 0}| ≤ qm < qn,

which means that Xn − 1 is the minimal polynomial of ϕq ∈ EndK(L). If we write

L
∼−→ K[X]/(P1)⊕ · · ·K[X]/(Pr)

as in II.4.7, with non-constant monic polynomials Pi ∈ K[X] satisfying P1 | P2 | · · · | Pr, then deg(P1) +
· · · + deg(Pr) = [L : K] = n. On the other hand, Pr is the minimal polynomial of ϕq; thus Pr = Xn − 1.
This implies that r = 1 and L is a cyclic K[X]-module, hence a cyclic K[X]/(Xn − 1)-module, proving (3).

(18.5) Theorem (Hilbert’s theorem 90). Let K ↪→ L be a Galois extension with cyclic Galois group
G = Gal(L/K) of order n; let σ ∈ G be a generator. Then: β ∈ L∗ satisfies NL/K(β) = 1 ⇐⇒ there exists
α ∈ L∗ such that β = α/σ(α).

Proof. We have NL/K(α/σ(α)) = 1, since NL/K(β) = β σ(β) · · ·σn−1(β). Conversely, if NL/K(β) = 1, fix
γ ∈ L and consider the following expression:

α =

n−1∑
j=0

(β σ(β) · · ·σj(β))σj(γ) = βγ + β σ(β)σ(γ) + · · ·+NL/K(β)σn−1(γ) ∈ L.

We have

σ(α) = γ + σ(β)σ(γ) + · · ·+ σ(β) · · ·σn−1(β)σn−1(γ),

hence α = β σ(α). Linear independence of field embeddings σj ∈ HomK−Alg(L,L) proved in Corollary 15.11
implies that there exists γ ∈ L for which α 6= 0. Therefore β = α/σ(α).
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(18.6) Rational points on the unit circle. Hilbert’s Theorem 90 for the quadratic extension Q(i)/Q
states that x + iy ∈ Q(i) satisfies (x + iy)(x − iy) = 1 ⇐⇒ there exists u + iv ∈ Q(i) such that
x+ iy = (u+ iv)/(u− iv) = (u+ iv)2/(u2 + v2). We can assume that u+ iv ∈ Z[i]; this leads to an explicit
description of all Pythagorean triples, i.e., of positive solutions a, b, c ∈ Z of a2 + b2 = c2:

(2 + i)2 = 3 + 4i, (3 + 2i)2 = 5 + 12i, (4 + i)2 = 15 + 8, . . .

32 + 42 = 52, 52 + 122 = 132, 152 + 82 = 172, . . .

(18.7) Theorem (additive version of Hilbert’s theorem 90). Under the assumptions of Theorem
18.5, β ∈ L satisfies TrL/K(β) = 0 ⇐⇒ there exists α ∈ L such that β = α− σ(α).

Proof. Again, Tr(α − σ(α)) = 0, since TrL/K(β) = β + σ(β) + · · ·+ σn−1(β). Conversely, if TrL/K(β) = 0,
fix γ ∈ L and consider

δ =

n−1∑
j=0

(β + σ(β) + · · ·+ σj(β))σj(γ) = βγ + (β + σ(β))σ(γ) + · · ·+ TrL/K(β)σn−1(γ) ∈ L.

We have

σ(δ) = σ(β)σ(γ) + · · ·+ (σ(β) + · · ·+ σn−1(β))σn−1(γ),

hence

δ − σ(δ) = β(γ + σ(γ) + · · ·+ · · ·σn−1(γ)) = β TrL/K(γ).

According to Theorem 7.7(2) there exists γ ∈ L such that a := TrL/K(γ) 6= 0. The element α = a−1δ then
satisfies α− σ(α) = β.

In the special case when char(K) | n (which is sufficient for 18.8 below) one can construct α directly as

α =

n−1∑
j=1

j σj(β).

Here is another proof of the general case of Theorem 18.7 based on Theorem 18.4(4). The group algebra
K[G] is isomorphic to K[X]/(Xn − 1) and TrL/K corresponds to multiplication by (1 +X + · · ·+Xn−1) =
(Xn − 1)/(X − 1). The statement we wish to prove is equivalent to saying that a polynomial g ∈ K[X]
satisfies

(Xn − 1) | (1 +X + · · ·+Xn−1)g(X)

if and only if g(X) is divisible by (X − 1), which is immediate.

(18.8) Artin-Schreier extensions. Artin-Schreier theory describes explicitly Galois extensions L/K of
fields of characteristic p > 0 whose Galois groups G(L/K) are isomorphic to (Z/pZ)r. Such extensions are
of the form K(α1, . . . , αr)/K, where αi is a root of Xp − X − ai = 0, for suitable ai ∈ K. The algebraic
formalism is analogous to that of Kummer theory, as explained in the following table. Proofs are the same
as in §15.

If we modify Definition 17.3 by allowing certain layersKj/Kj−1 to be Artin-Schreier extensionsK(α)/K,
αp−α ∈ K (if char(K) = p), then Theorem 17.6 still holds for these generalised radical extensions, with no
restriction on char(K).
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Kummer theory Artin-Schreier theory

char(K) - n char(K) = p

K
∗ n−→ K

∗
, z 7→ zn ϕ− 1 : K −→ K, z 7→ zp − z

µn = Ker(K
∗ n−→ K

∗
) ⊂ K∗ Fp = Ker(ϕ− 1 : K −→ K) ⊂ K (automatic)

K∗ −→ K∗/K∗n, a 7→ a K −→ K/(ϕ− 1)K, a 7→ a

a1, . . . , ar ∈ K∗ a1, . . . , ar ∈ K
fi(X) = Xn − ai =

∏
ζ∈µn(X − ζαi) fi(X) = Xp −X − ai =

∏
b∈Fp(X − αi − b)

fi(αi) = 0 fi(αi) = 0

L = K(α1, . . . , αr) L = K(α1, . . . , αr)

G = Gal(L/K) G = Gal(L/K)

∆′ = Ker(K∗/K∗n −→ L∗/L∗n) ∆′ = Ker(K/(ϕ− 1)K −→ L/(ϕ− 1)L)

∆ = 〈a1, . . . , ar〉 ⊂ ∆′ ∆ = 〈a1, . . . , ar〉 ⊂ ∆′

( , ) : G×∆′ −→ µn ( , ] : G×∆′ −→ Fp

(σ, a) = σ(α)/α, a = αn, α ∈ L∗ (σ, a] = σ(α)− α, a = (ϕ− 1)(α), α ∈ L
(στ, a) = (σ, a)(τ, a) (στ, a] = (σ, a] + (τ, a]

(σ, ab) = (σ, a)(σ, b) (σ, ab] = (σ, a] + (σ, b]

G ↪→ HomZ(∆, µn) G ↪→ HomZ(∆,Fp)

G = G[n] finite abelian group G = G[p] finite abelian group

∆′ ↪→ HomZ(G,µn) ∆′ ↪→ HomZ(G,Fp)

∆ = ∆′
∼−→ HomZ(G,µn) ∆ = ∆′

∼−→ HomZ(G,Fp)

χ : G′ = Gal(L′/K) −→ µn χ : G′ = Gal(L′/K) −→ Fp

α =
∑
τ∈G′ χ(τ−1)τ(β), β ∈ L′ α =

∑
τ∈G′ χ(τ−1)τ(β), β ∈ L′

χ : σ 7→ σ(α)/α χ : σ 7→ σ(α)− α
G′ = G′[n] =⇒ L′ = K(α1, . . . , αr), G′ = G′[p] =⇒ L′ = K(α1, . . . , αr),

αni ∈ K∗ (ϕ− 1)(αi) = αpi − αi ∈ K

More generally, Galois extensions of fields of characteristic p with abelian Galois groups of p-power order
can be described in terms of the operator ϕ− 1 acting on Witt vectors (see [La, Ex. VI.50]).

(18.9) Exercise. Let K be a field, char(K) = p > 0, a ∈ K, a 6∈ (ϕ− 1)K. Artin-Schreier theory tells us
that L = K(α) with a = (ϕ − 1)(α) = αp − α is a Galois extension of K of degree [L : K] = p. Show that
αp−1 6∈ (ϕ− 1)L. As a result, M = L(β) with α = (ϕ− 1)(β) is again a Galois extension of L of degree p.

(18.10) Exercise. Let K be a field, a ∈ K, r ≥ 1 an integer and p a prime number.
(1) Assume that p 6= 2 or char(K) = p or pr = 2. Show that the polynomial Xpr − a is irreducible in K[X]
⇐⇒ a 6∈ Kp.
(2) Assume that p = 2, char(K) 6= 2 and r ≥ 2. Show that the polynomial Xpr − a is irreducible in K[X]
⇐⇒ a 6∈ K2 and −4a 6∈ K4. [Note that X4 + 4b4 = (X2 + 2bX2 + 2b2)(X2 − 2bX2 + 2b2).]

(18.11) Exercise. Assume that K ( L is a non-trivial finite extension, with L = L algebraically closed.
(1) L/K is a separable (=⇒ Galois) extension. [Hint: if not, consider K( pr

√
a).]

(2) If [L : K] = p is a prime number, then char(K) 6= p. [Hint: use 18.9.]
(3) If [L : K] = p is a prime number, then L = K( p

√
a) for some a ∈ K \Kp.

(4) If [L : K] = p is a prime number, then p = 2 and L = K(i), where i2 = −1. [Hint: consider K( p2
√
a).]

(5) L = K(i), where i2 = −1.
(6) char(K) = 0. [Hint: if char(K) = `, consider F`(µ2n) ⊂ L and its intersection with K, for large n.]

(18.12) Galois (and non-Galois) descent. Let K ↪→ L be a Galois extension, with Galois group
G = Gal(L/K). Galois descent is a general principle which states that an object defined over K is the same
thing as an object defined over L which is invariant under the action of G.
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For example, if Z is an algebraic variety defined by a system of equations with coefficients in K, then
an L-valued point of Z is defined over K ⇐⇒ it is fixed by G:

Z(K) = Z(LG) = Z(L)G.

The isomorphism K = LG can be reformulated in more abstract terms as follows. The formula (7.10.3)
defines an isomorphism of K-algebras

L⊗K L
∼−→
∏
g∈G

L, a⊗ b 7→ (g(a)b)g∈G. (18.12.1)

Composing (18.12.1) with the maps

d0 : L −→ L⊗K L, d0(a) = a⊗ 1, d1 : L −→ L⊗K L, d1(a) = 1⊗ a

we obtain

a 7→ (g(a))g∈G, a 7→ (a)g∈G,

which means that the sequence

0 −→ LG −→ L
d0−d1−−−−→L⊗K L

is an exact sequence of K-vector spaces.
It turns out that

0 −→ K −→ L
d0−d1−−−−→L⊗K L

is an exact sequence of K-vector spaces, for an arbitrary finite extension L/K. This is a beginning of
non-Galois descent, which works for suitable (“faithfully flat”) extensions of rings.

(18.13) Infinite Galois extensions. An infinite algebraic extension K ↪→ L is a Galois extension if
the following equivalent conditions hold:

K = LAut(L/K) ⇐⇒ L =
⋃
α

Kα, Kα/K finite Galois extension.

Every element g ∈ G of the Galois group G = Gal(L/K) := Aut(L/K) defines, by restriction, a com-
patible system of elements of the finite Galois groups Gα = Gal(Kα/K): there are (surjective) restric-
tion homomorphisms resαβ : Gβ −→ Gα whenever Kα ↪→ Kβ and the automorphisms g|Kα ∈ Gα satisfy
resαβ(g|Kβ ) = g|Kα . As a result, the collection of all restriction homomorphisms

Gal(L/K) −→
∏
α

Gal(Kα/K) =
∏
α

Gα, g 7→ g|Kα (18.13.1)

factors through the subgroup

lim←−α
Gα = {(gα)α | gα ∈ Gα, resαβ(gβ) = gα} ⊂

∏
α

Gα, (18.13.2)

called the projective limit of the finite groups Gα.
It turns out that this recipe defines a group isomorphism

G = Gal(L/K)
∼−→ lim←−α

Gα.

Moreover, the projective limit (18.13.2) has a natural (“pro-finite”) topology, as a closed subgroup of the
product group (18.13.1) equipped with the product topology (each finite group Gα having the discrete
topology). This makes G into a compact Hausdorff group, with basis of neighbourhoods of the neutral
element given by the open normal subgroups Gal(L/Kα) = Ker(G −→ Gα).
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The Galois correspondence in this case (due to Krull) is a bijection

{F field |K ↪→ F ↪→ L} ←→ {closed subgroups H ⊂ G}, F = LH , H = Aut(L/F ).

Note that open subgroups of G are precisely closed subgroups of finite index; they correspond to fields F
which are finite over K.

(18.14) Examples of infinite Galois extensions. (i) Let p1 < p2 < p3 < · · · be an increasing sequence
of prime numbers. Consider the fields

Q = K ⊂ · · · ⊂ Kn = Q(
√
p1, . . .

√
pn) ⊂ L =

∞⋃
n=1

Kn = Q(
√
pn | n ≥ 1).

Theorem 15.7 gives, for each n ≥ 1, an isomorphism Gn = Gal(Kn/Q)
∼−→
∏n
j=1{±1}. When put together,

these isomorphisms induce a group isomorphism

G = Aut(L/Q)
∼−→

∞∏
j=1

{±1}, g 7→ (g(
√
pj)/
√
pj)j≥1.

Which subgroups of G correspond to subfields F ⊂ L of degree [F : Q] = 2? Such a field is necessarily
contained in Kn, for suitable n ≥ 1, which means that H = Aut(L/F ) ⊃ Un = Gal(L/Kn)

∼−→
∏∞
j=n is an

open subgroup and G/H = Gn/Im(H)
∼−→ Z/2Z.

Note that the group G is a vector space over the field F2. The kernel of any non-zero linear map
G −→ F2 is a subgroup H ′ ⊂ G satisfying G/H ′

∼−→ Z/2Z, and vice versa. However, H ′ is a closed
subgroup of G ⇐⇒ it is open, which is equivalent to H ′ containing Un for some n ≥ 1. In this case
LH

′
= F is a field of degree [F : Q] = 2. If H ′ is not closed, then LH

′
= Q.

(ii) Let K = Fq ⊂ L = Fq =
⋃
n≥1 Fqn . In this case Fqm ⊂ Fqn ⇐⇒ m | n and

Gal(Fq/Fq) = lim←−n
(Z/nZ,+) = (Ẑ,+)

∼−→
∏

` prime

Z`.

(iii) Let K = Q ⊂ L =
⋃
n≥1 Q(µn) = Q(µ∞). We have

Gal(Q(µ∞)/Q) = lim←−n
(Z/nZ)∗ = Ẑ∗

∼−→
∏

` prime

Z∗` .

For a fixed prime number `, consider Q(µ`∞) =
⋃
r≥1 Q(µ`r ); then

Gal(Q(µ`∞)/Q) = lim←−r
(Z/`rZ)∗ = Z∗` .
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IV. Commutative algebra: a geometric perspective

This chapter treats more advanced topics in commutative ring theory, especially those related to algebraic
geometry. We continue to follow the conventions of I.1.1 and I.1.4.

1. Finiteness conditions for rings

(1.1) The finiteness conditions for field extensions defined in III.3.2 and III.3.4 have obvious analogues for
rings.

(1.2) Definition. Let i : A −→ B be a ring homomorphism (in other words, B is an A-algebra via i).
We say that B is a finite A-algebra if it is finitely generated as an A-module, i.e., if there exists an integer
n ∈ N and b1, . . . , bn ∈ B such that B = i(A)b1 + · · · + i(A)bn ( ⇐⇒ the A-module B is isomorphic to a
quotient of An by some submodule). Similarly, B is an A-algebra of finite type if there exists an integer
n ∈ N and b1, . . . , bn ∈ B such that B = i(A)[b1, . . . , bn] (⇐⇒ the A-algebra B is isomorphic to a quotient
of the polynomial ring A[X1, . . . , Xn] by some ideal).

(1.3) Examples. (i) For field extensions K ↪→ L these notions coincide with those introduced in III.3.4
and III.3.2, respectively.
(ii) If K is a field, then any intermediate ring K ⊂ B ⊂ K[x] is a K-algebra of finite type (exercise!).
(iii) This is no longer true if we consider subrings of the polynomial ring in several variables. For example,
B = K[y, xy, x2y, x3y, . . .] ⊂ K[x, y] is not a K-algebra of finite type (exercise!).
(iv) On the other hand, K[x1, . . . , xn]Sn = K[σ1, . . . , σn] is a K-algebra of finite type. A more general result
of this kind (due to Hilbert and E. Noether) will be proved in Corollary 2.11 below.
(v) Corollary II.3.9 can be reformulated by saying that any algebra of finite type over a noetherian ring is
noetherian.

(1.4). In the next section we are going to generalise the concept of an algebraic element and an algebraic
field extension defined in III.3.8.

2. Integral and finite ring extensions

(2.1) Historically, integrality was first studied in number theory. It was observed that various finite exten-
sions of Q contain natural subrings generalising Z ⊂ Q. Typical examples included

Z[
√
d] ⊂ Q(

√
d), Z[ζn] ⊂ Q(ζn),

where d ∈ Z \ {0, 1} is square-free and ζn = e2πi/n. However, ζ3 = (−1 + i
√

3)/2, which implies that

Q(
√
−3) = Q(ζ3), Z[

√
−3] = Z · 1 + Z ·

√
−3 ( Z · 1 + Z · ζ3 = Z[ζ3].

Which of the two subrings Z[
√
−3] and Z[ζ3] of Q(

√
−3) = Q(ζ3) is the right analogue of Z?

(2.2) More generally, given a field K ⊃ Q of finite degree [K : Q] < ∞, what can we say about subrings
B ⊂ K of the form B = Zb1 + · · ·Zbm, for some m ≥ 1 and bj ∈ B?

The key observation is the following. If b ∈ B, then all products bbi are integral linear combinations of
b1, . . . , bm, which means that there exists a matrix with integral coefficients U ∈Mm(Z) such that

b


b1
...

bm

 = U


b1
...

bm

 ⊂ Km.

As a result, b is an eigenvalue of U , hence

f(b) = 0, f(X) = det(X · I − U) ∈ Z[X].

Note that f is a monic polynomial with integral coefficients, which justifies the following definition.
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(2.3) Definition. Let i : A −→ B be a ring homomorphism. An element b ∈ B is integral over A if there
exists a monic polynomial f ∈ A[X] such that f(b) = 0 ∈ B (this is a slight abuse of language; purists
would have written (i(f))(b) = 0, where i(f) ∈ i(A)[X] ⊂ B[X] is the image of f in B[X]). We say that B
is an integral A-algebra if each b ∈ B is integral over A.

(2.4) Definition. A ring extension is an injective ring homomorphism A ↪→ B.

(2.5) Remarks. (i) A field extension K ↪→ L is algebraic ⇐⇒ K ↪→ L is an integral ring extension.
(ii) We know (Prop. III.3.15(3)) that a field extension is finite ⇐⇒ it is algebraic and of finite type. An
analogous result for ring extensions is proved in Proposition 2.8(6) below.
(iii) β ∈ C is integral over Z ⇐⇒ β is an algebraic integer. The discussion in 2.2 suggests that one
should consider, for any field K algebraic over Q, the set OK = {β ∈ K | β integral over Z}. According to
Proposition 2.8(4) below, OK is a subring of K, called the ring of integers of K. See Example 3.7 and
Corollary 4.4 for more results on OK .

(2.6) Proposition. Let A ↪→ B be a ring extension, let b ∈ B. The following properties are equivalent:
(1) b is integral over A.
(2) A[b] is a finite A-algebra (⇐⇒ A[b] is a finitely generated A-module).
(3) There exists a faithful A[b]-module M which is finitely generated as an A-module. [Recall that an
R-module M is faithful if for each r ∈ R \ {0} there exists m ∈M such that rm 6= 0.]

Proof. (1) =⇒ (2): if bn + a1b
n−1 + · · · + an = 0 for some ai ∈ A, then an easy induction shows that

∀k ≥ 0 bn+k ∈ Abn−1 + · · ·+ Ab+ A; thus A[b] = Abn−1 + · · ·+ Ab+ A is a finitely generated A-module.
The implication (2) =⇒ (3) is automatic (take M = A[b]), so it remains to prove that (3) =⇒ (1). If
M = Am1 + · · ·+Amr, then the inclusion bM ⊂M implies that

b


m1

...

mr

 = U


m1

...

mr

 ⊂Mr,

for a suitable matrix U ∈Mr(A) with coefficients in A. Its characteristic polynomial f(X) = det(X ·I−U) ∈
A[X] is monic; the goal is to show that f(b) = 0. We have

(b · I − U)


m1

...

mr

 = 0 =⇒ f(b)


m1

...

mr

 = adj(b · I − U)(b · I − U)


m1

...

mr

 = 0 ∈Mr,

hence f(b)mi = 0 ∈M for each i = 1, . . . , r; thus f(b)m = 0 for all m ∈M . As M is a faithful A[b]-module
and f(b) ∈ A[b], it follows that f(b) = 0, hence b is integral over A.

(2.7) Corollary. A finite ring extension A ↪→ B is integral.

Proof. Take M = B in Proposition 2.6(3).

(2.8) Proposition-Definition. Let A ↪→ B ↪→ C be ring extensions.
(1) If the ring extensions A ↪→ B and B ↪→ C are finite, so is A ↪→ C.
(2) If b1, . . . , bn ∈ B are integral over A, then A[b1, . . . , bn] ⊂ B is a finite (=⇒ integral) A-algebra.
(3) The ring extensions A ↪→ B and B ↪→ C are integral ⇐⇒ A ↪→ C is integral.
(4) The set B′ = {b ∈ B | b integral over A} is a subring of B containing A, called the integral closure (or
normalisation) of A in B.
(5) The normalisation C ′ of A in C coincides with the normalisation C ′′ in C of any ring B′′ satisfying
A ↪→ B′′ ↪→ B′.
(6) The ring extension A ↪→ B is finite ⇐⇒ B is an integral A-algebra of finite type.

Proof. (1) If B = Ab1 + · · ·+ Abm and C = Bc1 + · · ·+ Bcn, then C =
∑
i,j Abicj . (2) Thanks to (1), this

follows by induction from the case n = 1, which was proved in Proposition 2.6(2). The implication “⇐=”
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in (3) is automatic. Conversely, if both ring extensions A ↪→ B and B ↪→ C are integral, then each c ∈ C
satisfies cn + b1c

n−1 + · · ·+ bn = 0 for some bi ∈ B. In particular, c is integral over A′ = A[b1, . . . , bn], which
is a finite A-algebra by (2). It follows that M = A′[c] = A′cn−1 + · · ·+A′ is a finitely generated A-module,
hence c is integral over A, by Proposition 2.6(3). In (4), for any b, b′ ∈ B′, the subring A[b, b′] ⊂ B is a finite
A-algebra by (2), which means that b± b′, bb′ ∈ A[b, b′] are integral over A, by Proposition 2.6(3) applied to
M = A[b, b′]. The inclusion C ′ ⊇ C ′′ in (5) is a consequence of (3); the opposite inclusion is automatic. The
implication “=⇒” in (6) is immediate; the converse “⇐=” follows from (2).

(2.9) Theorem (E. Artin-Tate). Let A ↪→ B ↪→ C be ring extension. Assume that A is a noetherian
ring, C is an A-algebra of finite type and C is an integral B-algebra. Then B is an A-algebra of finite type.

Proof. By assumption, there exist integers m,n ≥ 1 and elements ci ∈ C, bi,j ∈ B (1 ≤ i ≤ m, 1 ≤ j ≤ n)
such that C = A[c1, . . . , cm] and cni +bi,1c

n−1
i +· · ·+bi,n = 0. In particular, each ci is integral over the subring

B′ = A[{bi,j}i,j ] ⊂ B. Note that B′ is a noetherian ring, by Corollary II.3.9. Moreover, C = B′[c1, . . . , cm]
is a finitely generated B′-module, by Proposition 2.8(2). The ring B is a submodule of a finitely generated
B′-module C, which implies that B is also a finitely generated B′-module, thanks to Proposition II.3.6:
B = B′b1 + · · · + B′br. However, B′ is a ring, which means that B = B′[b1, . . . , br] = A[{bi,j , bk}i,j,k] is an
A-algebra of finite type.

(2.10) Corollary (E. Noether). If C is an algebra of finite type over a noetherian ring A and G a finite
group acting on C by homomorphisms of A-algebras, then CG is an A-algebra of finite type.

Proof. We need to check that each c ∈ C is integral over B = CG, which follows from the fact that c is a
root of the monic polynomial f(X) =

∏
g∈G(X − g(c)) ∈ CG[X].

(2.11) Corollary (Hilbert, E. Noether). If K is a field and G a finite group acting on the polynomial
ring K[x1, . . . , xn] by homomorphisms of K-algebras, then K[x1, . . . , xn]G is a K-algebra of finite type.

(2.12) The abstract argument in the proof of Theorem 2.9 does not give any concrete information about the
set of generating elements of B (as an A-algebra). In the situation of Corollary 2.11, the ring of invariants
K[x1, . . . , xn]G is generated by invariant polynomials of degree ≤ |G|, provided char(K) = 0 (E. Noether)
or, more generally, if char(K) - |G| (Fleischmann, Fogarty).

(2.13) Exercise. For each n ≥ 1 (resp. n ≥ 3) let the cyclic group Cn (resp. the dihedral group D2n)
act on C[x, y] as follows: a fixed generator r of Cn acts by x 7→ ζnx, y 7→ ζ−1

n y (and a fixed element s of
D2n \ Cn interchanges x and y). Determine the structure of the C-algebra C[x, y]Cn (resp. C[x, y]D2n).
[There are other interesting finite subgroups G ⊂ SU(2) ⊂ GL2(C), namely, two-fold coverings (via the
surjective homomorphism π : SU(2) = Spin(3) −→ SO(3)) of symmetry groups π(G) ⊂ SO(3) of regular
polyhedra. The corresponding algebras of invariants C[x, y]G are discussed in [Kl]. The case of the icosa-
hedron group π(G)

∼−→ A5 is particularly interesting, as it is related to the problem of solving a general
polynomial equation of degree 5.]

(2.14) Hilbert’s 14-th problem asked whether C[x1, . . . , xn]G is a C-algebra of finite type in the case when
G ⊂ GLn(C) is a matrix group (such as SLn(C) or SO(n)). It turns out that the answer is “yes” if G is a
reductive group, but “no” in general (a counterexample was found by Nagata).

3. Integrally closed domains

(3.1) Definition. A domain A is integrally closed (or normal) if it is equal to its integral closure (=
normalisation) in Frac(A). [As we shall see, normal domains are “nicer” than non-normal ones.]

(3.2) Proposition. Any UFD is integrally closed.

Proof. Assume that A is a UFD and ab−1 ∈ Frac(A) is a root of f(X) = Xn + a1X
n−1 + · · ·+ an ∈ A[X].

We can also assume that gcd(a, b) = 1; the equality

an + a1a
n−1b+ · · ·+ anb

n = 0
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implies that every irreducible element x | b divides an, hence x | a, which contradicts the assumption
gcd(a, b) = 1. It follows that b ∈ A∗, hence ab−1 ∈ A.

(3.3) (i) Assume that A is a domain with fraction field K = Frac(A) and K ↪→ L is a field extension. If
α ∈ L is algebraic over K, then there exist ai ∈ A with a0 6= 0 such that a0α

n+a1α
n−1 + · · ·+an = 0. After

multiplying this equation by an−1
0 , we obtain (a0α)n + a1(a0α)n−1 + · · · + ana

n−1
0 = 0. Therefore a0α ∈ L

is integral over K.
Applying this argument to each element of a basis of L/K we see that there exists a basis of L/K

consisting of elements integral over A.
(ii) If A ↪→ B is a ring extension and B is a domain, then (i) implies that any set of generators of B as an
A-module generates Frac(B) as a vector space over Frac(A). In particular, if B is a finite A-algebra, then
[Frac(B) : Frac(A)] <∞.

(3.4) Proposition. Let A be an integrally closed domain and K = Frac(A) ↪→ L be a finite field extension.
For α ∈ L the following properties are equivalent.
(1) α is integral over A.
(2) The characteristic polynomial PL/K,α(X) ∈ K[X] lies in A[X].
(3) The minimal polynomial f(X) ∈ K[X] of α over K lies in A[X].

Proof. The implication (2) =⇒ (1) (resp. (3) =⇒ (2)) follows from the fact that PL/K,α(α) = 0 (resp.

from PL/K,α = f [L:K(α)]). It remains to prove that (1) implies (3). If α is integral over A, write f(X) =∏
(X − αi) ∈ M [X], where M is a splitting field of f over K and α1 = α. By assumption, there exists a

monic polynomial g ∈ A[X] such that g(α) = 0; then f divides g in K[X], which implies that g(αi) = 0
for all i; thus each αi is integral over A, and so are all coefficients of f , since they lie in Z[α1, . . . , αn]. In
particular, each coefficient of f lies in K and is integral over A, hence is contained in the integrally closed
ring A.

(3.5) Note that the implication (1) =⇒ (3) does not hold if A is not integrally closed: it is enough to
consider an element α ∈ K which is integral over A but does not belong to A; then f(X) = X − α 6∈ A[X]
(example: A = Z[

√
−3], α = ζ3).

(3.6) Corollary. Under the assumptions of Proposition 3.4, TrL/K(α) ∈ A and NL/K(α) ∈ A for any α ∈ L
integral over A.

Proof. Up to a sign, the trace (resp. the norm) of α is equal to one of the coefficients of PL/K,α(X).

(3.7) Example. If A = Z, then K = Q and L is a field of finite degree [L : Q] <∞ over Q. Proposition 3.4
tells us that α ∈ L lies in the ring of integers OL (= the normalisation of Z in L) ⇐⇒ PL/Q,α(X) ∈ Z[X].

In the simplest non-trivial case when L is a quadratic field (i.e., [L : Q] = 2), then L = Q(
√
d) for

a square-free integer d ∈ Z \ {0, 1}. Writing α ∈ L as α = a + b
√
d (a, b ∈ Q), we have PL/Q,α(X) =

X2 − 2aX + (a2 − db2); thus α ∈ OL ⇐⇒ 2a, a2 − db2 ∈ Z. An easy calculation (exercise!) shows that

OK = Z[β] = Z · 1 + Z · β, β =

{√
d, if d ≡ 2, 3 (mod 4)

1+
√
d

2 , if d ≡ 1 (mod 4).

If d < 0, then the arithmetic of OL becomes more and more complicated as |d| −→ ∞. In particu-
lar, OL is a euclidean ring ⇐⇒ d = −1,−2,−3,−7,−11; it is a UFD ⇐⇒ it is a PID ⇐⇒
d = −1,−2,−3,−7,−11,−19,−43,−67,−163. The latter property is related to the fact that, for each
d = −7,−11,−19,−43,−67,−163, the quadratic polynomial n2 + n + (1 − d)/4 with discriminant d takes
prime values for all n = 0, 1, . . . , (1− d)/4− 2.

(3.8) One can show that, if A is an integrally closed domain, so is A[X] ([De 2, Thm. 8.23]). However, we
are not going to use this fact in the sequel.

4. Finiteness of normalisation and Noether’s Normalisation Lemma

(4.1) In §4 we are going to investigate the following question. Given a domain A with fraction field
Frac(A) = K and a finite field extension K ↪→ L, under what conditions is the integral closure B of A in L
a finite A-algebra (i.e., a finitely generated A-module)?
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(4.2) One can often use the following reduction steps. Assume that

A1 ↪→ A2 ↪→ B ↪→ B′

are extensions of domains with respective fraction fields

K1 ↪→ K2 ↪→ L ↪→ L′

satisfying the following conditions:

• A2 is a finite A1-algebra;
• B is the integral closure of A1 (hence of A2, by Proposition 2.8(5)) in L;
• B′ is the integral closure of A1 (hence of A2) in L′.

In this case the following implications hold.

(i) B is finite over A1 ⇐⇒ B is finite over A2 (by Proposition 2.8(1));

(ii) if A1 is noetherian and B′ is finite over A1, then B is finite over A1 (by Proposition II.3.6).

(4.3) Theorem. If A is integrally closed and the extension K ↪→ L is separable, then:
(1) B is contained in a finitely generated A-module.
(2) If A is a noetherian ring, then B is a finitely generated A-module.
(3) If A is a PID, then B is a free A-module of finite rank (equal to [L : K]).

Proof. (1) Let n = [L : K]. As explained in 3.3(i), there exist elements β1, . . . , βn ∈ B forming a basis
of L/K. Let b ∈ B; write b =

∑n
j=1 λjβj (λj ∈ K). For each βi we have bβi ∈ B, hence TrL/K(bβi) =∑n

j=1 TrL/K(βiβj)λj ∈ A, by Corollary 3.6. This condition can be written in terms of the matrix M =
(TrL/K(βiβj)1≤i,j≤n) ∈Mn(A) as follows:

M


λ1

...

λn

 ∈ An ⊂ Kn.

After multiplying this relation by the adjoint matrix adj(M) ∈ Mn(A), we obtain that det(M)λi ∈ A for
each i = 1, . . . , n. The separability assumption implies that det(M) ∈ A∩K∗ = A \ {0}, thanks to Theorem
7.7(2). Therefore λi ∈ det(M)−1A, hence B ⊂ Aβ′1 + · · ·+Aβ′n, where β′i = det(M)−1βi.
(2) This follows from (1) and Proposition II.3.6.
(3) By (2), B is a finitely generated A-module. It is torsion-free (since it is contained in a Frac(A)-vector
space), hence free of finite rank r, by Theorem II.4.6. The argument from 3.3(i) implies that a basis of B as
a free A-module is a basis of the field extension L/K; thus r = n.

(4.4) Corollary. If [L : Q] = n < ∞, then there exists a basis α1, . . . , αn of L/Q such that OL =
Zα1 + · · ·+ Zαn.

Proof. This is a special case of Theorem 4.3(3) for A = Z.

(4.5) Example (F.K. Schmidt). Let k be a field of characteristic p > 0; fix a power series f ∈ k[[T ]]
which is transcendental over k(T ) (for example, consider the universal case when k = Fp(t0, t1, . . .) and
f = t0 + t1T + t2T

2 + · · ·). The homomorphism of k-algebras

k[X,Y ] −→ k[[T ]], g(X,Y ) 7→ g(T, f(T ))

is then injective; it extends to a field embedding

αf : k(X,Y ) ↪→ k((T )) = Frac(k[[T ]]).

The subrings

B = α−1
f (k[[T ]]) ⊂ k(X,Y ) = L, A = B ∩ k(X,Y p) ⊂ k(X,Y p) = K
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have the following properties: both A and B are integrally closed noetherian domains (in fact, discrete
valuation rings; see IV.14 below), Frac(A) = K, Frac(B) = L, L/K is a purely inseparable extension of
degree [L : K] = p, B is the normalisation of A in L and B is not a finitely generated A-module (see [BGR,
1.6.2] and an extended discussion in [Re, 9.4]).

This implies that A′ = A[Y ] = AY p−1 + AY p−2 + · · · + A ⊂ B is a noetherian domain for which
Frac(A′) = Frac(B), but whose integral closure in Frac(A′) is equal to B, hence is not a finitely generated
A′-module.

(4.6) The previous example is somewhat discourageing (there are even more sophisticated examples, in
which A is noetherian, but B is not). However, it turns out that all rings naturally encountered in algebraic
or arithmetic geometry are “excellent” (see [Gr, §7], [ILO, Exp. I]). In particular, Question 4.1 has a
positive answer for them. We are going to prove an important special case of this in Theorem 4.10, which
is indispensable for constructing normalisations in algebraic geometry. The main tool will be Noether’s
Normalisation Lemma 4.8 (proved by E. Noether under the assumption |k| =∞ and by Nagata in general).
See 5.12 below for a geometric interpretation of this statement.

(4.7) Definition. Let k be a field, let A be a k-algebra. Elements a1, . . . , an ∈ A are algebraically inde-
pendent over k if f(a1, . . . , an) 6= 0 for each non-zero polynomial f ∈ k[X1, . . . , Xn] (which is equivalent
to saying that the evaluation homomorphism

k[X1, . . . , Xn] −→ k[a1, . . . , an], f 7→ f(a1, . . . , an)

is an isomorphism of k-algebras).

(4.8) Noether’s Normalisation Lemma. Let k be a field, let A be a k-algebra of finite type. There
exist elements a1, . . . , ad ∈ A which are algebraically independent over k and for which k[a1, . . . , ad] ↪→ A is
a finite ring extension.

Proof. We argue by induction on the number of generators of A = k[b1, . . . , bm] as a k-algebra. If the
elements b1, . . . , bm ∈ A are algebraically independent over k, then we take ai = bi. If not, we apply Lemma
4.9 below and the induction hypothesis to obtain finite ring extensions

k[a1, . . . , ad] ↪→ A′ ↪→ A = A′[bm],

with a1, . . . , ad algebraically independent over k. The extension k[a1, . . . , ad] ↪→ A is then finite, thanks to
Proposition 2.8(1).

(4.9) Lemma. Let k be a field, let A = k[b1, . . . , bm] a k-algebra of finite type. If the elements b1, . . . , bm ∈ A
are not algebraically independent over k, then there exist u1, . . . , um−1 ∈ A such that bm is integral over
A′ = k[u1, . . . , um−1] and A = A′[bm]. Moreover, we can take:

ui = bi − bN
i

m for any sufficiently large integer N >> 0 (Nagata);
ui = bi − λibm for suitable λi ∈ k if |k| =∞ (E. Noether).

Proof. There exists a non-zero polynomial P ∈ k[X1, . . . , Xm] such that P (b1, . . . , bm) = 0. Fix an integer

N > 1 and write P in terms of new variables Yi = Xi −XNi

m (1 ≤ i ≤ m − 1) and Xm: P (X1, . . . , Xm) =
Q(Y1, . . . , Ym−1, Xm). We have Q(u1, . . . , um−1, bm) = 0. Each monomial cXr1

1 · · ·Xrm
m is equal to

cXrm
m

m−1∏
i=1

(Yi +XNi

m )ri = cY r11 · · ·Y
rm−1

m−1 X
rm
m + · · ·+ cXrm+r1N+···+rm−1N

m−1

m .

The highest power of Xm in this expression is equal to rm + r1N + · · ·+ rm−1N
m−1.

If N is bigger than all exponents ri appearing in P , then the values of r1, . . . , rm for each monomial
occurring in P are determined by rm+ r1N + · · ·+ rm−1N

m−1. In particular, the coefficient g(Y1, . . . , Ym−1)
at the maximal power of Xm appearing in Q(Y1, . . . , Ym−1, Xm) lies in k \ {0} ⊂ k[Y1, . . . , Ym−1] \ {0}. The
identity g−1Q(u1, . . . , um−1, bm) = 0 then gives an integral equation for bm over k[u1, . . . , um−1].

If |k| = ∞ we use new variables Yi = Xi − λibm (1 ≤ i ≤ m − 1) and Xm: P (X1, . . . , Xm) =
Q(Y1, . . . , Ym−1, Xm). Denote by Pd ∈ k[X1, . . . , Xm] the sum of all monomials of degree d = deg(P )
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occurring in P ; then deg(Q) = d and Xd
m occurs in Q(Y1, . . . , Ym−1, Xm) with coefficient equal to c =

Pd(λ1, . . . , λm−1, 1), which is non-zero for suitable λi ∈ k. After dividing Q by c we obtain an integral
equation of degree d for bm over k[u1, . . . , um−1].

(4.10) Theorem (E. Noether). Let k be a field, let A be a k-algebra of finite type which is a domain,
let K = Frac(A) ↪→ L be a finite field extension. Then the normalisation B of A in L is a finitely generated
A-module (in particular, it is again a k-algebra of finite type which is a domain).
[Note that we do not assume that A is integrally closed.]

Proof. First proof: there exist elements β1, . . . , βn ∈ B which form a basis of L/K, by 3.3(i). An
application of 4.2(i) with A1 = A and A2 = A[β1, . . . , βn] implies that we can replace A by A[β1, . . . , βn],
hence assume that K = L.

According to Noether’s Normalisation Lemma, A is finite over a polynomial ring A0 = k[a1, . . . , ad].
Another application of 4.2, this time to A1 = A0 and A2 = A shows that we can replace A by A0 (and K
by Frac(A0) = k(a1, . . . , ad)), hence assume that A = k[a1, . . . , ad] is a polynomial ring over k (but L is no
longer equal to K).

If it was possible to find A0 for which the field extension Frac(A)/Frac(A0) was separable (which
is automatic if char(k) = 0), then we could conclude by Theorem 4.3(2) applied to the integrally closed
domain A0 and the field extension L/K = Frac(A)/Frac(A0). If char(k) = p > 0, such A0 exists under
the assumption that the field k is perfect, but not in general. The argument requires an understanding of
(in-)separability for non-algebraic field extensions ([ZS1], II.13 Thm. 31; V.4 Thm. 8). In particular, this
works if the field k = k is algebraically closed (|k| =∞ in this case, which means that the original version of
Noether’s Normalisation Lemma, not Nagata’s refinement, is sufficient). The statement for a general field k
can be reduced to the case k = k rather easily ([ZS1], V.4 Thm. 9).

Second proof: we reproduce the argument given in [Ei, Cor. 13.13]. As above, we can assume that
A = k[a1, . . . , ad] is a polynomial ring over k. According to 4.2(ii), we are free to replace L by any finite
extension; we can assume, therefore, that L/K is a normal extension (by Proposition III.8.6). In the tower
of fields K ↪→ L1 = LG ↪→ L, where G = Aut(L/K), the extension K ↪→ L1 is purely inseparable (by
Proposition 10.12(6)) and L1 ↪→ L is a Galois (hence separable) extension, by Theorem 10.1.

It is enough to show that the integral closure B1 of A in L1 is finite over A, since Theorem 4.3(2) will
then apply to B1 (and the extension L1 ↪→ L) and show that B is finite over B1, hence over A. We can
replace, therefore, L by L1 and assume that the extension L/K is purely inseparable. If K = L, then there is
nothing to prove. If not, then char(k) = p > 0 and there exists a power q = pr such that L = K(y1, . . . , ym)
and yqi = fi/gi for some polynomials fi, gi ∈ A = k[a1, . . . , ad]. If c1, . . . , ct ∈ k are the non-zero coefficients
of these polynomials, then the field k′ = k( q

√
c1, . . . , q

√
ct) ↪→ L is a finite extension of k and there is a tower

of finite field extensions

L = K({ q
√
fi/gi}i) ↪→ K({ q

√
fi, q
√
gi}i) ↪→ K({ q

√
ci, q
√
aj}i,j) = k′( q

√
a1, . . . , q

√
ad) = L′.

According to 4.2(ii), we can replace L by L′. However, the integral closure B′ of A in L′ is equal to the
polynomial ring B′ = k′[ q

√
a1, . . . , q

√
ad], which is finite over A = k[a1, . . . , ad].

5. Algebra and geometry

We are now ready to develop a dictionary between algebra and geometry based on the duality between points
and functions which was alluded to in the Introduction (and elaborated on in I.2.6 and I.4.4). The reader
is encouraged to consult [Re], which gives a very readable account of the geometric intuition behind various
topics in commutative algebra.

In §5 we are going to work over an arbitrary base field K.

(5.1) For any point a = (a1, . . . , an) ∈ Kn the evaluation map

eva : K[X1, . . . , Xn] −→ K, f 7→ f(a) = f(a1, . . . , an) (5.1.1)

is a surjective homomorphism of K-algebras with kernel
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ma = Ker(eva) = (X1 − a1, . . . , Xn − an) ∈ Max(K[X1, . . . , Xn]).

In particular,

f(a) = 0 ⇐⇒ f ∈ ma

and eva induces an isomorphism of K-algebras

eva : K[X1, . . . , Xn]/ma
∼−→ K, f (modma) 7→ f(a).

This example is a principal motivation for the following general definition.

(5.2) Definition. Let A be a ring, let P ∈ Spec(A) be a prime ideal. The residue field of P is the field
k(P ) = Frac(A/P ). We use the functional notation and think of any element f ∈ A as a function and of P
as a point. The value of f at P is then defined to be f(P ) = f (modP ) ∈ A/P ⊂ k(P ). In particular,
f(P ) = 0 ⇐⇒ f ∈ P .

(5.3) Note that, in this generality, a non-zero element f 6= 0 of A can have values f(P ) = 0 at all
P ∈ Spec(A). Example: A = Z/4Z, Spec(A) = {(2)}, f = 2 ∈ A. This example is quite representative, as
the following general statement shows.

(5.4) Proposition. Let A be a ring, let I ⊂ A be an ideal. Then⋂
P∈Spec(A)

P =
√

(0),
⋂

P∈Spec(A)
P⊃I

P =
√
I.

In other words, f ∈ A vanishes at each P ∈ Spec(A) ⇐⇒ f belongs to the nilradical of A.

Proof. It is enough to consider I = (0) (the general case follows from this special case for A/I). The inclusion
P ⊃

√
(0) holds for any P ∈ Spec(A), by definition of a prime ideal. Conversely, if f ∈ A and f 6∈

√
(0),

then the ring A[1/f ] = A[Y ]/(Y f − 1) is non-zero, by Lemma 5.5 below. The inverse image under the
canonical morphism i : A −→ A[Y ]/(Y f − 1) of any m ∈ Max(A[1/f ]) (which exists, by Theorem I.6.6) is a
prime ideal P = i−1(m) ∈ Spec(A). As i(f) is invertible in A[1/f ], it is not contained in m, hence f 6∈ P .

(5.5) Lemma (inverting f). Let A be a ring, let f ∈ A. The ring A[1/f ] = A[Y ]/(Y f − 1) is the zero
ring ⇐⇒ f ∈

√
(0).

Proof. A[1/f ] = 0 ⇐⇒ there exists P (Y ) = a0 + a1Y + · · · + anY
n ∈ A[Y ] such that (1 − Y f)P (Y ) = 1.

The latter equality is equivalent to

∀i = 0, . . . , n ai = f i, fn+1 = 0;

therefore: A[1/f ] = 0 ⇐⇒ f is nilpotent.

(5.6) Returning back to the situation of 5.1, fix an ideal I ⊂ K[X1, . . . , Xn]. As in I.4.4, we can attach to
I an algebro-geometric object Z defined by the system of polynomial equations

Z : ∀f ∈ I f = 0 (5.6.1)

and the K-algebra O(Z) = K[X1, . . . , Xn]/I of regular functions on Z. Conversely, any K-algebra of finite
type is obtained in this way. According to Hilbert’s basis theorem (Theorem II.3.8), the ideal I is finitely
generated I = (f1, . . . , fr), which means that

Z : f1 = · · · = fr = 0

is given by a finite system of polynomial equations. Similarly, for each K-algebra B, the set of B-valued
points of Z is equal to
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Z(B) = {a ∈ Bn | ∀f ∈ I f(a) = 0} = {a ∈ Bn | f1(a) = · · · = fr(a) = 0}.

The discussion in 5.1 implies that a point a ∈ Kn satisfies

a ∈ Z(K) ⇐⇒ ∀f ∈ I f(a) = 0 ⇐⇒ ∀f ∈ I f ∈ ma ⇐⇒ I ⊂ ma.

Furthermore, for each a ∈ Z(K) the evaluation map (5.1.1) induces a surjective homomorphism of K-algebras

eva : O(Z) −→ K

with kernel

ma = ma/I = Ker(eva) = (X1 − a1, . . . , Xn − an) ∈ Max(O(Z)).

(5.7) To sum up, we have

Max(O(Z)) = {m/I | m ∈ Max(K[X1, . . . , Xn]), m ⊃ I} (5.7.1)

and the discussion in 5.6 defines an injective map

Z(K) −→ Max(O(Z)), a 7→ Ker(eva) = ma/I. (5.7.2)

If the field K = K is algebraically closed, a version of Hilbert’s theorem on zeroes (see Theorem 6.5
below) states that

Max(K[X1, . . . , Xn]) = {ma | a ∈ Kn},

which implies that the map (5.7.2) is bijective. In other words, classical points of Z correspond to maximal
ideals of O(Z).

(5.8) Morphisms. Given two K-algebras of finite type O(Z1) = K[X1, . . . , Xm]/I1 and O(Z2) =
K[Y1, . . . , Yn]/I2 corresponding to

Z1 : ∀f ∈ I1 f = 0, Z2 : ∀g ∈ I2 g = 0,

any homomorphism of K-algebras

α : O(Z1) −→ O(Z2)

induces maps

α∗B : Z2(B) = HomA−Alg(O(Z2), B) −→ HomA−Alg(O(Z1), B) = Z1(B), b 7→ b ◦ α

for all K-algebras B, by Proposition I.4.4(iii). In concrete terms, write

α(Xi (mod I1)) = hi(Y1, . . . , Yn) (mod I2) (1 ≤ i ≤ m).

The polynomials hi ∈ K[Y1, . . . , Yn] satisfy

∀f ∈ I1 f(h1(Y ), . . . , hm(Y )) ∈ I2

and the map α∗B is given by the formula

α∗B : (b = (b1, . . . , bn) ∈ Z2(B)) 7→ (h1(b), . . . , hm(b)) ∈ Z1(B).

We consider the system of maps α∗B , which are compatible with respect to homomorphisms of K-algebras
B −→ B′, as being induced by a “geometric morphism”

α∗ : Z2 −→ Z1.
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Note that α is determined by the collection of maps α∗B , since α ∈ Z1(O(Z2)) is the image of the tautological
point id ∈ HomA−Alg(O(Z2), O(Z2)) = Z2((O(Z2)) by α∗O(Z2) (this is a special case of Yoneda’s lemma, an

elementary but useful statement from category theory).
Let us give a few examples of such morphisms.

(5.9) Vertical projection onto a horizontal line. The polynomial ring K[T ] (resp. K[X,Y ]) is the
ring of regular functions on an affine line A1

K (resp. on an affine plane A2
K) over K. The inclusion

α : K[T ] ↪→ K[X,Y ], g(T ) 7→ g(X) (5.9.1)

corresponds to

α∗B : B2 −→ B, (b1, b2) 7→ b1,

hence to the projection on the first factor

α∗ = pr1 : A2
K −→ A1

K .

(5.10) Inclusion Z ↪→ An
K . The projection

pr : K[X1, . . . , Xn] = O(An
K) −→ K[X1, . . . , Xn]/I = O(Z) (5.10.1)

corresponds to the tautological inclusion of Z to the n-dimensional affine space An
K , since

pr∗B : Z(B) ↪→ Bn, (b1, . . . , bn) 7→ (b1, . . . , bn).

(5.11) Combination of inclusion and projection. Any non-constant polynomial f ∈ K[X,Y ] defines
a plane curve over K

C : f = 0, C ↪→ A2
K .

Combining (5.9.1) with (5.10.1) we obtain morphisms

β : K[T ] ↪→ K[X,Y ]
pr−→K[X,Y ]/(f) = O(C), g(T ) 7→ g(X) = g(X) = g(X) (mod f) (5.11.1)

and

β∗ : C ↪→ A2
K

pr1−→A1
K , (b1, b2) 7→ b1,

which is given by projecting the curve C vertically onto a horizontal line.

(5.12) Relation to finiteness. In the special case of 5.11 when f(X,Y ) = XY − 1, then

C : XY − 1 = 0, C ↪→ A2
K

is a hyperbola and the morphism (5.11.1) can be rewritten using the isomorphism

O(C) = K[X,Y ]/(XY − 1)
∼−→ K[X, 1/X] ⊂ K(X), X 7→ X, Y 7→ 1/X

as

β : K[T ] ↪→ K[X, 1/X], g(T ) 7→ g(X). (5.12.1)

Note that the ring extension (5.12.1) is not finite. Geometrically, this corresponds to the fact that the
induced map on points

β∗ : C −→ A1
K , (b1, b2) 7→ b1

has finite fibres (in fact, β∗B : C(B)
∼−→ B∗ ↪→ B = A1

K(B) is injective, for any K-algebra B), but is not
proper (say, for K = B = C): the inverse image of a compact subset of A1(C) need not be compact in
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C(C). Indeed, if (β∗C)(b1, b2) = b1 remains bounded (“finite”) but tends to 0, then b2 = 1/b1 is not bounded
(“goes to infinity”). This is the origin of the terminology “finite”.

In order to remedy this situation we can fix c ∈ K∗ and consider a slightly skewered projection

γ∗ : C −→ A1
K

corresponding to

γ : K[T ] −→ K[X,Y ]/(XY − 1)
∼−→ K[X, 1/X], g(T ) 7→ g(X + cY ) = g(X + c/X)

On the level of points,

γ∗B : (b1, b2) 7→ b1 + c/b2.

In this case γ is a finite ring extension, since

K[X, 1/X] = Im(γ) · 1 + Im(γ) ·X

and the map

γ∗C : C(C) = C∗ −→ A1(C) = C, b1 7→ b1 + c/b1

is proper.
Attentive reader will have noticed that we have been discussing here a very special case of Lemma

4.9. Noether’s Normalisation Lemma can be reformulated by saying that for any Z in (5.6.1) there exists a
morphism Z −→ Ad

K which is “nice” in the sense that it has finite fibres (is “quasi-finite”) and is proper.
The ring extension (5.12.1) has various arithmetic analogues, the simplest one being the inclusion

Z ↪→ Z[1/2].
As we shall see in Proposition 11.4(2) below, finite K-algebra homomorphisms O(Z1) −→ O(Z2)

induce surjective maps Z2(K) −→ Z1(K). The lack of surjectivity of β∗
K

= K
∗
↪→ K = A1

K(K) is related,

therefore, to the fact that (5.12.1) is not a finite ring extension.

(5.13) Normalisation in geometry (example). The plane curve

C : Y 2 −X3 = 0, C ⊂ A2
K

has a “singular point” O = (0, 0) ∈ C(K) at the origin. Intersecting C with the system of all non-vertical
lines passing through O

Lt : Y − tX = 0 (t ∈ K)

we obtain points (t2, t3) ∈ C(K). The assignment

t 7→ (t2, t3), B −→ C(B)

makes sense for any K-algebra B and is compatible with K-algebra homomorphisms B −→ B′, which means
that it comes from a geometric morphism

α∗ : A1
K −→ C. (5.13.1)

The corresponding K-algebra homomorphism α : O(C) −→ O(A1
K) = K[T ] must send X (resp. Y ) to T 2

(resp. to T 3), hence is given by

α : O(C) = K[X,Y ]/(Y 2 −X3) −→ O(A1
K) = K[T ], g(X,Y ) (mod (Y 2 −X3)) 7→ g(T 2, T 3).

Note that
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O(C) = K[X] + Y K[X], Y
2

= X
3
, α(K[X]) = K[T 2], α(Y K[X]) = T 3K[T 2],

which implies that α is injective and

Im(α) = K + T 2K[T ] = K[T 2, T 3] ( K[T ].

We use α to identify O(C) with K[T 2, T 3]; the map (5.13.1) is then induced by the inclusion K[T 2, T 3] ↪→
K[T ].

What is the main difference between the two rings K[T 2, T 3] and K[T ]? They have a common fraction
field Frac(K[T 2, T 3]) = Frac(K[T ]), but the element T ∈ K[T ] does not belong to K[T 2, T 3]. This implies
that O(C) = K[T 2, T 3] is not integrally closed and O(A1

K) = K[T ] is its integral closure. Geometrically,
this corresponds to the fact that C has a singular point O = α∗(0) and the map α∗ : A1

K −→ C is a
desingularisation of C.

This is not an accident. As we shall see in IV.15, any curve C for which O(C) is a domain can be

desingularised α : C̃ −→ C by replacing O(C) by its integral closure O(C̃) in Frac(O(C)) (Theorem 4.10
will come handy at this point).

(5.14) Exercise. In the situation of 5.13, show that the map α∗K : K −→ C(K) is bijective, but there is no

homomorphism of K-algebras K[T ] = O(A1
K) −→ O(C) for which β∗K : C(K)

∼−→ K is the inverse of α∗K .

(5.15) Exercise. What happens if we replace C in 5.13 by C ′ : Y 2 −X2(X + 1) = 0?

(5.16) Arithmetic analogue. The rings appearing in 5.13 have the following arithmetic analogues. In

the table below, Ã is the integral closure of A in Frac(A).

Geometry Arithmetic

K[X] Z

Y 2 −X3 = 0 Y 2 + 4 = 0

Y/X = T Y/2 = T

T 2 −X = 0 T 2 + 1 = 0

A = K[X,Y ]/(Y 2 −X3) = K[T 2, T 3] A = Z[Y ]/(Y 2 + 4) = Z[2i]

Ã = K[X,T ]/(T 2 −X) = K[T ] Ã = Z[T ]/(T 2 + 1) = Z[i]

Frac(A) = K(T ) Frac(A) = Q(i)

6. Hilbert’s Theorem on Zeroes (“Nullstellensatz”)

There are several versions of this fundamental result. We collect most of them in Theorems 6.5 and 6.8
below. As before, K is an arbitrary field.

(6.1) Example: the affine line. We know that

Max(K[T ]) = {(f) | f ∈ K[T ] \K monic irreducible}.

In particular, the map

C
∼−→ Max(C[T ]), a 7→ (T − a)

is bijective and the map

C
∼−→ Max(C[T ]) −→ Max(R[T ]), a 7→ (T − a) ∩R[T ]

is surjective, with fibres given by Gal(C/R)-orbits in C, since
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(T − a) ∩R[T ] =

{
(T − a) if a ∈ R

(T − a)(T − a) if a 6∈ R.

(6.2) More generally, for each a = (a1, . . . , an) ∈ Kn
the image of the evaluation morphism

eva : K[X1, . . . , Xn] −→ K, f 7→ f(a)

is the finite field extension K(a1, . . . , an) of K and its kernel Ker(eva) ⊂ K[X1, . . . , Xn] is a maximal
ideal of K[X1, . . . , Xn]. As we shall see in Theorem 6.5(2) below, all maximal ideals are obtained in this
way. Moreover, if f(a) = 0, then f(σ(a)) = 0, for all σ ∈ Aut(K/K). Therefore maximal ideals m ⊂
K[X1, . . . , Xn] correspond to Aut(K/K)-orbits in K

n
.

(6.3) Exercise. Describe explicitly all maximal ideals m ⊂ R[X,Y ].

(6.4) Lemma. Let A ↪→ B be an integral ring extension, with B a domain. Then A is a field ⇐⇒ B is a
field.

Proof. If A is a field, then A[b] is finite-dimensional A-vector space, for any b ∈ B (since b is integral over
A). If b 6= 0, then multiplication by b is an injective (since B is a domain) A-linear endomorphism of A[b],
hence it is surjective. In particular, 1 lies in its image, which means that b is invertible.

Conversely, if B is a field, then each non-zero element a ∈ A has an inverse b ∈ B. As b is integral
over A, we have bn + a1b

n−1 + · · · + an = 0 for some ai ∈ A. Multiplying this equation by an−1 we obtain
b = −(a1 + a2a+ · · ·+ ana

n−1) ∈ A.

(6.5) Theorem (Nullstellensatz). Let K be a field, let O(Z) = K[X1, . . . , Xn]/I (with I = (f1, . . . , fr))
be a K-algebra of finite type (corresponding to Z : ∀f ∈ I f = 0, Z ↪→ An

K).
(1) If O(Z) is a field, then [O(Z) : K] <∞.
(2) The map

Z(K) = HomK−Alg(O(Z),K) −→ Max(O(Z)), λ 7→ Ker(λ)

is well-defined and surjective.
(3) The fibre of the map (2) above m ∈ Max(O(Z)) consists of all homomorphisms λ = σ ◦ pr : O(Z) −→
O(Z)/m = k(m)

σ−→K, where σ ∈ HomK−Alg(k(m),K). In particular, the fibres of the map (2) are precisely
the Aut(K/K)-orbits in Z(K).
(4) If K = K is algebraically closed, then the map (2) is bijective.
(5) The following properties are equivalent:

Z(K) = ∅ ⇐⇒ O(Z) = 0 ⇐⇒ 1 ∈ I ⇐⇒ ∃ g1, . . . , gr ∈ K[X1, . . . , Xn]

r∑
i=1

gifi = 1.

(6) f ∈ K[X1, . . . , Xn] satisfies f |Z(K) = 0 ⇐⇒ f ∈
√
I.

Proof. (1) Noether’s Normalisation Lemma 4.8 tells us that O(Z) is finite over a polynomial algebra
K[a1, . . . , ad], for some d ≥ 0. If O(Z) is a field, so is K[a1, . . . , ad], by Lemma 6.4; thus d = 0 and
O(Z) is finite over K.
(2) The image of any morphism of K-algebras λ : O(Z) −→ K (which is isomorphic to O(Z)/Ker(λ)) is
equal to K[λ(X1), . . . , λ(Xn)] = K(λ(X1), . . . , λ(Xn)) ⊂ K, hence is a finite extension of K, by Proposition
III.3.15(2). Therefore Ker(λ) is a maximal ideal of O(Z). Conversely, for any m ∈ Max(O(Z)) the residue
field k(m) = O(Z)/m is a K-algebra of finite type, hence [k(m) : K] < ∞, by (1). According to Theorem
III.5.6(2) there exists a homomorphism of K-algebras k(m) ↪→ K; the kernel of the composite morphism
λ : O(Z) −→ k(m) ↪→ K then coincides with m.
(3), (4) The factorisation λ = σ◦pr of each λ mapping to m by the map (2) is automatic. The homomorphisms
σ ∈ HomK−Alg(k(m),K) form one Aut(K/K)-orbit, by Proposition III.9.7.
(5) The only non-trivial implication is “O(Z) 6= 0 =⇒ Z(K) 6= ∅”, which follows from (2), since Max(O(Z))
is non-empty if O(Z) 6= 0.
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(6) If fn ∈ I for some n ≥ 1, then f(a)n = 0 ∈ K for each a ∈ Z(K), hence f(a) = 0. Conversely, if
f 6∈
√
I, we must show that there exists a ∈ Z(K) such that f(a) 6= 0. The idea is to invert f by introducing

a new equation Y f − 1 = 0, which removes all zeroes of f and reduces (6) to the statement of (5). In
concrete terms, consider the ideal J ⊂ K[X1, . . . , Xn, Y ] generated by I and Y f−1 (cf. Lemma 5.5) and the
K-algebra of finite type O(Z ′) = K[X1, . . . , Xn, Y ]/J corresponding to Z ′ ↪→ An+1

K defined by the equations
∀g ∈ J g = 0.

We have O(Z ′) = O(Z)[Y ]/(Y f − 1), where f = f (mod I) ∈ O(Z). The assumption f 6∈
√
I implies

that f is not nilpotent in O(Z), hence O(Z ′) 6= 0, by Lemma 5.5. The statement (5) for Z ′ shows that there
exists a point (a1, . . . , an, b) ∈ Z ′(K). By definition of Z ′,

f(a1, . . . , an)b = 1, ∀g ∈ I g(a1, . . . , an) = 0,

which means that a = (a1, . . . , an) ∈ Z(K) and f(a) 6= 0, as required.

(6.6) Corollary. For any ideal I ⊂ A = K[X1, . . . , Xn],⋂
m∈Max(A)

m⊃I

m =
√
I,

⋂
m∈Max(A/I)

m =
√

(0).

[The intersection of all maximal ideals of a ring B is called the Jacobson radical of B. The statement
above says that the nilradical and the Jacobson radical coincide if B is an algebra of finite type over a field.]

Proof. For f ∈ K[X1, . . . , Xn], the condition f |Z(K) = 0 in (6) is equivalent to f ∈ m for all m ∈
Max(K[X1, . . . , Xn]) satisfying m ⊃ I, by (2) combined with (5.7.1).

(6.7) Reduced and non-reduced K-algebras. As observed in I.6.5, the set of maximal ideals does not
change if a ring is replaced by the corresponding reduced ring. In the situation of Theorem 6.5,

O(Z)red = K[X1, . . . , Xn]/
√
I = O(Zred),

where

Zred : ∀g ∈
√
I g = 0

is the reduced system of polynomial equations attached to I (for example, if I = (XY, Y 2) ⊂ K[X,Y ],
then

√
I = (Y )). In this case Zred(B) = Z(B) for any reduced K-algebra B (for example, a field) and the

canonical projection O(Z) −→ O(Zred) induces a bijection

Max(O(Zred))
∼−→ Max(O(Z)).

(6.8) Theorem-Definition (geometric version of the Nullstellensatz). Let K = K be an alge-
braically closed field. An algebraic set in Kn is a subset of Kn of the form

VK(I) = {a ∈ Kn | ∀f ∈ I f(a) = 0} = VK(
√
I),

for some ideal I ⊂ K[X1, . . . , Xn]. Conversely, for any algebraic set V ⊂ Kn the set

I(V ) = {f ∈ K[X1, . . . , Xn] | ∀a ∈ V f(a) = 0} =
√
I(V )

is an ideal of K[X1, . . . , Xn]. The maps

VK : {ideals of K[X1, . . . , Xn]} −→ {algebraic sets in Kn}

and

I : {algebraic sets in Kn} −→ {ideals of K[X1, . . . , Xn]}
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satisfy I(VK(I)) =
√
I and VK(I(V )) = V . They induce mutually inverse bijections

{algebraic sets in Kn} ∼←→ {ideals I ⊂ K[X1, . . . , Xn] satisfying I =
√
I}

(such ideals are called radical ideals).

Proof. The equality I(VK(I)) =
√
I is a reformulation of Theorem 6.5(6). If V = VK(I), then I(V ) =

I(VK(I)) =
√
I and VK(I(V )) = VK(

√
I) = VK(I) = V . Finally, if I =

√
I, then I(VK(I)) =

√
I = I.

(6.9) If the field K = K is algebraically closed and sufficiently large (i.e., containing arbitrarily large
finite sets of elements algebraically independent over Q or Fp; for example, K = C), then it is easy to prove
that I(VK(P )) = P for any prime ideal P ∈ Spec(K[X1, . . . , Xn]) ([Mu 2, Thm. 1.5]). As any radical ideal
I of K[X1, . . . , Xn] is an intersection of finitely many prime ideals I = P1 ∩ · · · ∩ Pr, by Cor. 8.11(2) below,
it follows that I(VK(I)) = I(VK(P1) ∪ · · · ∪ VK(Pr)) = I(VK(P1)) ∩ · · · ∩ I(VK(Pr)) = P1 ∩ · · · ∩ Pr = I.

(6.10) Does Z(K) determine Zred if K = K? At first glance, Theorem 6.8 tells us that the answer is
“yes”, since O(Zred) = K[X1, . . . , Xn]/

√
I and

√
I = I(Z(K)). However, this description is not intrinsic,

since it depends not only on Zred, but on its inclusion into the affine space An
K .

A more refined question is the following. If K = K and if α : O(Z1) −→ O(Z2) is a homomorphism of
K-algebras of finite type for which α∗K : Z2(K)

∼−→ Z1(K) is bijective, is α an isomorphism?
The answer to this question is “no” – we have already seen a counterexample in 5.13, in which Z2 is

the normalisation of a singular curve Z1. Another example is given by the relative Frobenius morphism if
char(K) = p > 0: take Z1 = Z2 = A1

K and

α : K[X] −→ K[X], g(X) 7→ g(Xp).

In this case Im(α) = K[Xp] ( K[X], but α∗K : K −→ K, a 7→ ap is bijective.
It may come as a surprise that these are, essentially, the only two sources of possible counterexamples

to α being an isomorphism. Zariski’s Main Theorem [Mu 1, III.9] implies that, if K = K ⊃ Q, O(Z1)
and O(Z2) are domains, O(Z1) is integrally closed and α∗K : Z2(K)

∼−→ Z1(K) is bijective, then α is an
isomorphism.

(6.11) Exercise. If A is a Z-algebra of finite type, then the residue field k(m) = A/m of each maximal
ideal m ∈ Max(A) is finite. [Hint: apply Theorem 6.5(1) to K = Z/Z ∩ m and O(Z) = k(m), and then
show that Z ∩m 6= 0.]

(6.12) Zeta-functions and counting points over finite fields. Let A be a Z-algebra of finite type.
The zeta-function of A is defined as

ζ(A, s) =
∏

m∈Max(A)

(
1− 1

N(m)s

)−1

,

where N(m) = |A/m| is the cardinality of the finite field k(m) = A/m. For example, for A = Z we obtain
the Riemann zeta-function

ζ(Z, s) =
∏

p prime

(
1− 1

ps

)−1

=

∞∑
n=1

1

ns
= ζ(s).

In general, if char(k(m)) = p, then m ⊃ pA and k(m) = k(m), where m = m/pA ∈ Max(A/pA), which
implies that

ζ(A, s) =
∏

p prime

ζ(A/pA, s).

Fix a prime number p and replace A by A/pA (still to be denoted by A), which will be an Fp-algebra of
finite type: A = Fp[X1, . . . , Xn]/I = O(Z) (for K = Fp). The zeta-function of A can be expressed in terms
of the action of the Frobenius map
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ϕ : (a1, . . . , an) 7→ (ap1, . . . , a
p
n)

on the set

Z(Fp) = {a = (a1, . . . , an) ∈ F
n

p | ∀f ∈ I f(a) = 0},

as follows: for each n ≥ 1,

Z(Fpn) = Z(Fp)
ϕn=1

is a disjoint union of orbits of length d, for various divisors d | n, under the action of ϕ. According to Theorem
6.5(3), the set of orbits of length d is in bijection with {m ∈ Max(A) | deg(m) = d}, where N(m) = pdeg(m).
As a result,

log ζ(A, s) =
∑

m∈Max(A)

− log(1− p−s deg(m)) =
∑

m∈Max(A)

∞∑
k=1

(p−s)k deg(m)

k
=

∞∑
n=1

 ∑
m∈Max(A)
deg(m)|n

deg(m)

 (p−s)n

n
=

∞∑
n=1

|Z(Fpn)| (p
−s)n

n
.

In particular,

ζ(Fp[X1, . . . , Xd], s) = exp

( ∞∑
n=1

p(d−s)n

n

)
=

(
1− 1

ps−d

)−1

and

ζ(Z[X1, . . . , Xd], s) =
∏

p prime

(
1− 1

ps−d

)−1

= ζ(s− d).

(6.13) Exercise (back to circle one). Let K be a field of characteristic char(K) 6= 2. The aim of the
first two parts of this exercise is to describe the K-valued points of the circle C : X2 + Y 2 − 1 = 0.
(1) If there exists i ∈ K such that i2 + 1 = 0, then the map

C(K) −→ K∗, (x, y) 7→ x+ iy

is bijective.
(2) If no such i ∈ K exists, then L = K[T ]/(T 2 + 1) = K(i) is a field, [L : K] = 2 and there is an exact
sequence

0 −→ K∗ −→ L∗
f−→C(K) −→ 0,

where f(u+ iv) = (x, y) ⇐⇒ (u+ iv)/(u− iv) = x+ iy.
(3) If p is a prime number and n ≥ 1, then

|C(Fpn)| = pn −
(
−1

p

)n
,

(
−1

p

)
=

{
±1 p ≡ ±1 (mod 4)

0 p = 2.

(4) The zeta-function of the Z-algebra A = Z[X,Y ]/(X2 + Y 2 − 1) corresponding to the circle is equal to

ζ(A, s) = ζ(s− 1)L(

(
−1

·

)
, s), L(

(
−1

·

)
, s) =

∏
p prime

(
1−

(
−1

p

)
1

ps

)−1

=

∞∑
n=1

(−1)n−1

(2n− 1)s
.
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(6.14) Exercise. Deduce Theorem 6.5(1) from Theorem 2.9, without using Noether’s Normalisation Lemma.
[Hint: if a field L is a K-algebra of finite type, Theorem 2.9 implies that K(X1, . . . , Xn), where n = tr.degK L,
is also a K-algebra of finite type.]

7. Zariski topology on Spec(A)

For any algebraically closed field K, the collection of all algebraic sets in Kn ∼−→ Max(K[X1, . . . , Xn])
satisfies the axioms of the system of all closed sets of a suitable topology – the Zariski topology – on Kn

(it is much coarser than the usual topology of Cn if K = C).
The definition of this topology makes sense for Max(A), for any ring A. In fact, it is much better to

consider this topology on Spec(A), not just on its subset Max(A).
We should think of Spec(A) as being the geometric object on which A is the ring of regular functions. In

this section we consider Spec(A) only as a topological space, but it has an additional structure (see 10.16(ii)
below).

(7.1) Let A be any ring. It is useful to think in terms of the functional notation introduced in 5.2: f ∈ A
is a “function”, P ∈ Spec(A) is a “point” and the image f (modP ) ∈ A/P ⊂ k(P ) = Frac(A/P ) of f is the
“value of f at P”. In particular, f(P ) = 0 ⇐⇒ f ∈ P .

Using this dictionary, we can translate the definitions from 6.8 as follows: there are natural maps

V : {subsets of A} −→ {subsets of Spec(A)}, V (S) = {P ∈ Spec(A) | S ⊂ P} = V (I) = V (
√
I),

where I = (S) is the ideal generated by S, and

I : {subsets of Spec(A)} −→ {subsets of A}, I(E) = {f ∈ A | ∀P ∈ E f ∈ P} =
⋂
P∈E

P.

Note that I(E) is an ideal of A satisfying I(E) =
√
I(E).

(7.2) Proposition-Definition. The map I 7→ V (I) (where I is an ideal of A) has the following properties.
(1) I ⊂ J =⇒ V (I) ⊃ V (J).
(2)
√
I ⊂
√
J ⇐⇒ V (I) ⊃ V (J). In particular, V (I) = V (J) ⇐⇒

√
I =
√
J .

(3) V ((0)) = Spec(A).
(4) V (I) = ∅ ⇐⇒ I = (1).
(5) For any collection of ideals Iα ⊂ A, the intersection

⋂
α V (Iα) = V (

∑
α Iα).

(6) V (I1) ∪ V (I2) = V (I1 ∩ I2) = V (I1I2).
(7) The sets V (I) form the system of closed sets of a topology on Spec(A), called the Zariski topology.
(8) The sets D(f) = Spec(A) \ V ((f)) = {P ∈ Spec(A) | f 6∈ P} (f ∈ A) form a basis of open sets of this
topology.
(9) The closure of a point P ∈ Spec(A) is the set {P} =

⋂
I⊂P V (I) = V (P ) = {Q ∈ Spec(A) | Q ⊃ P}. In

particular, the point P is closed ⇐⇒ P ∈ Max(A).

Proof. (1) and (3) are immediate. (2) If
√
I ⊂

√
J , then V (I) = V (

√
I) ⊃ V (

√
J) = V (J). Conversely,

the formula
√
I =

⋂
P∈V (I) P proved in Proposition 5.4 shows that V (I) ⊃ V (J) implies

√
I ⊂

√
J . (4)

is a special case of (2). The statement (5) is also clear, since P ∈
⋂
α V (Iα) ⇐⇒ ∀α Iα ⊂ P ⇐⇒∑

α Iα ⊂ P . (6) The inclusions I1I2 ⊂ I1 ∩ I2 ⊂ Ii imply that V (I1I2) ⊃ V (I1 ∩ I2) ⊃ V (I1) ∪ V (I2). If
P ∈ V (I1I2) \ V (I1), then there exists f1 ∈ I1 such that f1 6∈ P . For each f2 ∈ I2 we have f1f2 ∈ I1I2 ⊂ P ,
hence f2 ∈ P ; thus I2 ⊂ P and P ∈ V (I2), proving that V (I1I2) = V (I1)∪V (I2). The statement (7) follows
from (1)–(6). For any ideal I we have V (I) =

⋂
f∈I V ((f)), by (5); thus Spec(A) \ V (I) =

⋃
f∈I D(f).

Finally, (9) follows from the definition of the topology.

(7.3) Examples. (0) Spec(A) = ∅ ⇐⇒ A = 0.
(1) If K is a field, then Spec(K) consists of one point (0).
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(2) If A is a domain, then η = (0) ∈ Spec(A) and {η} = Spec(A) (η is dense in Spec(A); we say that η is a
(in fact, “the”) generic point of Spec(A)).
(3) Spec(C[T ]) = {η} ∪Max(C[T ]), where η = (0) and Max(C[T ])

∼−→ C ((T − a) 7→ a). The closed sets
in Spec(C[T ]) are Spec(C[T ]) itself and arbitrary finite subsets of C. This is a one-dimensional object (an
affine line over C).
(4) Spec(Z) = {η} ∪ Max(Z), where η = (0) and Max(Z) = {(p) | p prime number}. Again, closed sets
are Spec(Z) itself and all finite subsets of Max(Z). This is also a one-dimensional object, but of arithmetic
nature.
(5) Spec(C[X,Y ]) = {(0)} ∪ {(f) | f ∈ C[X,Y ] \ C irreducible} ∪Max(C[X,Y ]), where Max(C[X,Y ]) =
{(X − a, Y − b) | (a, b) ∈ C2}, (0) is the generic point of Spec(C[X,Y ]) and (f) is the generic point of the
curve f(X,Y ) = 0: the closure of (f) consists of (f) together with {(X − a, Y − b) | (a, b) ∈ C2, f(a, b) = 0}
(the set of all closed points on this curve). This is a surface – an affine plane – over C.
(6) Spec(Z[Y ]) = {(0)} ∪ {(p) | prime number} ∪ {(f) | f ∈ Z[Y ] \ Z, ct(f) = 1, f irreducible in Q[Y ]} ∪
Max(Z[Y ]), where (Z[Y ]) = {(p, f) | p a prime number, f ∈ Z[Y ] monic, f (mod p) irreducible in Fp[Y ]}.
See [Mu 1, II.1] for a picture of this object (an “arithmetic surface” – it has one arithmetic and one geometric
dimension).

(7.4) Corollary. The maps from 7.1 have the following properties.
(1) For each subset E ⊂ A, V (I(E)) is the closure of E.
(2) For each ideal J of A, I(V (J)) =

√
J .

(3) The maps V and I define mutually inverse bijections

{ideals I ⊂ A satisfying I =
√
I} ∼←→ {closed subsets of Spec(A)}.

(7.5) Exercise. (1) For any ring homomorphism α : A −→ B, the map α∗ : Spec(B) −→ Spec(A) defined
in I.6.4 (α∗(Q) = α−1(Q)) is continuous. More precisely, (α∗)−1(V (I)) = V (α(I)B).
(2) The projection pr : A −→ Ared induces a homeomorphism pr∗ : Spec(Ared)

∼−→ Spec(A).
(3) For any ideal I of A, the map pr∗ : Spec(A/I) −→ Spec(A) induced by the projection pr : A −→ A/I is
injective, with image equal to V (I). It induces a homeomorphism pr∗ : Spec(A/I)

∼−→ V (I).
(4) In general, Im(α∗) ⊂ V (I) ⇐⇒ α(I) ⊂

√
(0) ⇐⇒ I/

√
I ⊂ Ker(αred : Ared −→ Bred). In particular,

Im(α∗) is dense in Spec(A) ⇐⇒ αred is injective.

(7.6) Examples. (1) If α : Z ↪→ Q, then the image of α∗ : Spec(Q) ↪→ Spec(Z) is the generic point (0) of
Spec(Z).
(2) Similarly for α : C[X] ↪→ C(X).
(3) Let K be a field. The ring A = K[X,Y ]/(XY ) is generated as a K-algebra by the elements X,Y
satisfying XY = 0. In particular, each P ∈ Spec(A) contains X or Y , hence Spec(A) = V ((X)) ∪ V ((Y )).
The projections A −→ A/(X) = K[Y ] and A −→ A/(Y ) = K[X] induce Spec(K[Y ])

∼−→ V ((X)) and
Spec(K[X])

∼−→ V ((Y )). In particular, if K = K is algebraically closed, then V ((X)) = {(X)}∪{(X,Y −b) |
b ∈ K} and V ((Y )) = {(Y )} ∪ {(Y ,X − a) | a ∈ K}, with V ((X)) ∩ V ((Y )) = {(X,Y )}. This is in line
with geometric intuition: the equation XY = 0 represents a union of the horizontal Y = 0 and the vertical
X = 0 axes in the affine plane A2

K .

(7.7) Proposition. Spec(A) is disconnected ⇐⇒ A = A1×A2 is a product of two non-zero rings Ai 6= 0.

Proof. If A = A1×A2 and P ∈ Spec(A), then P = I1× I2 for some ideals Ii ⊂ Ai, by Proposition I.3.3. The
product ring A1/I1 × A2/I2 = A/P is a domain, which is equivalent to either I1 = A1 and I2 ∈ Spec(A2),
or I2 = A2 and I1 ∈ Spec(A1). Therefore the projections pi : A −→ Ai induce a decomposition Spec(A) =
Spec(A1) ∪ Spec(A2) (disjoint union).

Conversely, if Spec(A) = V (I1) ∪ V (I2) is a disjoint union of two non-empty closed subsets V (Ii),
then Ii 6= (1), I1 + I2 = (1) and

√
I1I2 =

√
(0), by Proposition 7.2(2),(3),(5). In particular, there exist

fi ∈ Ii such that f1 + f2 = 1. As f1f2 is nilpotent, we have (f1f2)n = 0 for some n ≥ 1. We can write
1 = (f1 + f2)2n = fn1 g1 + fn2 g2 = e1 + e2, where ei ∈ Ii, e1 + e2 = 1 and e1e2 = (f1f2)ng1g2 = 0. These
two idempotents define a decomposition A = A1 × A2 with Ai = eiA. Finally, Ai 6= 0, since Ii 6= (1) (=⇒
ei 6= 0).
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(7.8) Proposition. Spec(A) is (quasi-)compact (i.e., every open covering has a finite subcovering), for any
ring A. [Note that, if Spec(A) 6= Max(A), then Spec(A) is not a Hausdorff topological space.]

Proof. Any open covering
⋃
Uα = Spec(A) is of the form Uα = Spec(A) \ V (Iα), where V (

∑
Iα) = (1), by

Proposition 7.2(4),(5). The element 1 ∈ A lies in a finite sum Iα1
+ · · ·+Iαn ; thus Uα1

∪· · ·∪Uαn = Spec(A),
by reversing the argument.

(7.9) Proposition. If A is an algebra of finite type over a field, then V ∩Max(A) is dense in V , for any
closed subset V ⊂ Spec(A). [Rings A having this property – which is equivalent to the fact that every
prime ideal of A is an intersection of maximal ideals – are called Jacobson rings.]

Proof. Write V = V (J), where J =
√
J is an ideal of A. The closure of V ∩Max(A) = {m ∈ Max(A) | m ⊃ J}

in Spec(A) is equal to V (I), where

I =
⋂

m∈Max(A)
m⊃J

m.

However, Corollary 6.6 tells us that

I/J =
⋂

m∈Max(A/J)

m =
√
J/J = (0),

hence I = J .

8. Irreducible components and minimal prime ideals

(8.1) The ring A = K[X,Y ]/(XY ) from Example 7.6(3) is the ring of functions on the plane curve Z ↪→ A2
K ,

Z : XY = 0, which is a union of two lines Z1 : X = 0 and Z2 : Y = 0 (the irreducible components of Z).
This is reflected in the decomposition

Spec(A) = Spec(A/(X)) ∪ Spec(A/(Y )) = Spec(K[Y ]) ∪ Spec(K[X]) = V ((X)) ∪ V ((Y )),

where (X), (Y ) ∈ Spec(A) are the minimal prime ideals of A (with respect to inclusion).
The existence of a similar decomposition of Spec(A) for an arbitrary noetherian ring A will be established

by purely topological considerations in Proposition 8.10 below.

(8.2) Proposition-Definition. A non-empty topological space X is irreducible if the following equivalent
conditions hold.
(1) If X1, X2 ( X are closed subsets, then X1 ∪X2 6= X.
(2) If U1, U2 ⊂ X are non-empty open subsets, then U1 ∩ U2 is non-empty.
(3) Every non-empty open subset of X is dense in X.
[Note that a Hausdorff space is irreducible ⇐⇒ it consists of one point.]

Proof. (3) (resp. (1)) is equivalent to (2) by definition (resp. by taking Ui to be the complement of Xi, and
vice versa).

(8.3) Exercise. (1) An irreducible space is connected.
(2) The image of an irreducible space by a continuous map is irreducible.
(3) The closure of an irreducible subspace (in particular, of a point) is irreducible.

(8.4) What does this mean for the topological space Spec(A)
∼−→ Spec(Ared), where A is an arbitrary ring?

Recall from Proposition 7.2(9) that, for any P,Q ∈ Spec(A),

{P} ⊃ {Q} ⇐⇒ Q ∈ {P} ⇐⇒ P ⊂ Q; thus {P} = {Q} ⇐⇒ P = Q. (8.4.1)

(8.5) Proposition. (1) Spec(A)
∼−→ Spec(Ared) is irreducible ⇐⇒ Ared is a domain ⇐⇒

√
(0) ∈

Spec(A).
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(2) If this is the case, then
√

(0) is the unique dense point (= the generic point) of Spec(A).
(3) The maps V and I from 7.1 induce mutually inverse bijections

{prime ideals P ⊂ A} ∼←→ {irreducible closed subsets of Spec(A)}.

For each P ∈ Spec(A), the point P is the unique dense point (= the generic point) of V (P ) = {P} ∼−→
Spec(A/P ).

Proof. (1) We can assume that A = Ared is reduced. Thanks to Exercise 8.3(3), the only non-trivial
implication to prove is that Spec(A) is reducible whenever A is not a domain. If a, b ∈ A are non-zero
elements with ab = 0, then Spec(A) = V ((ab)) = V ((a)) ∪ V ((b)). We claim that V ((a)), V ((b)) 6= Spec(A),
hence Spec(A) is reducible. Indeed, if V ((a)) = Spec(A), then

√
(a) =

√
(0) = (0) (by Proposition 7.2(2)),

which contradicts the assumption a 6= 0 (and similarly for V ((b))).
(2) Combine 7.3(2) with (8.4.1).
(3) According to (1), a closed subset V (I) = V (

√
I)

∼−→ Spec(A/I)
∼−→ Spec(A/

√
I) of Spec(A) is irreducible

⇐⇒ (A/I)red = A/
√
I is a domain ⇐⇒

√
I = P ∈ Spec(A). The remaining statements follow from (2)

applied to A/P .

(8.6) Proposition-Definition. An irreducible component of a non-empty topological space X is a
maximal irreducible subset of X with respect to inclusion (it is closed, by Exercise 8.3(3)). Each point
x ∈ X is contained in an irreducible component of X (hence X is the union of its irreducible components).

Proof. The set {A ⊂ X | A is irreducible, x ∈ A} contains {x} and is inductive (exercise), hence contains a
maximal element, by Zorn’s Lemma.

(8.7) Proposition. Let A 6= 0 be a ring.
(1) The irreducible components of Spec(A) are the subsets {P} = V (P )

∼−→ Spec(A/P ), where P ∈ Spec(A)
is a minimal prime ideal of A (with respect to inclusion).
(2) For every Q ∈ Spec(A) there exists a minimal prime ideal P ⊂ Q.
(3) The intersection of all minimal prime ideals of A is equal to the nilradical

√
(0).

Proof. (1), (2) This is a translation of Proposition 8.6, using the dictionary of Proposition 8.5(3). The
statement (3) follows from (2) and Proposition 5.4.

(8.8) Proposition-Definition. A topological space X is noetherian if the following equivalent conditions
hold.
(1) Every descending chain of closed subsets Z1 ⊃ Z2 ⊃ · · · of X stabilises (there exists j such that Zk = Zj
for all k ≥ j).
(2) Every non-empty set of closed subsets of X has a minimal element.
(3) Every ascending chain of open subsets U1 ⊂ U2 ⊂ · · · of X stabilises (there exists j such that Uk = Uj
for all k ≥ j).
(4) Every non-empty set of open subsets of X has a maximal element.

Proof. The equivalences (1) ⇐⇒ (3) and (2) ⇐⇒ (4) are immediate. The equivalence (3) ⇐⇒ (4) is
proved as in II.3.1.

(8.9) Proposition. Spec(A) is a noetherian topological space ⇐⇒ every ascending chain I1 ⊂ I2 ⊂ · · ·
of ideals of A satisfying Ii =

√
Ii stabilises. In particular, Spec(A) is a noetherian space if A is a noetherian

ring.

Proof. This is a translation of the condition 8.8(1) using Corollary 7.4(3).

(8.10) Proposition. A noetherian topological space X has only finitely many irreducible components
X1, . . . , Xr. These components satisfy Xi 6⊂ Xj if i 6= j and X = X1 ∪ · · · ∪Xr. Conversely, if X1, . . . , Xr

are irreducible closed subsets of X with these properties, then they are the irreducible components of X.

Proof. We can assume that X is non-empty. Consider the set S of all closed subsets of X which cannot be
written as a union of finitely many irreducible closed subsets. If S is non-empty, then it contains a minimal
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element Y , which is not irreducible; thus Y = Y1 ∪ Y2 for some closed subsets Yi ( Y . By minimality of Y ,
each Yi is a union of finitely many irreducible closed subsets, hence so is Y . This contradiction implies that
S is empty; in particular, X = X1 ∪ · · · ∪Xr, where each Xi is an irreducible closed subset. After removing
several Xi if necessary, we can assume that this decomposition is irredundant, i.e., that Xi 6⊂ Xj if i 6= j.

If Y is an irreducible component of X, then Y = (Y ∩X1) ∪ · · · ∪ (Y ∩Xr). Irreducibility of Y implies
that Y ∩Xi = Y for some i; thus Y ⊂ Xi, hence Y = Xi, by maximality of Y .

Conversely, we must show that each Xi is an irreducible component of X. If Xi ⊂ Z with Z irreducible,
then Z = (Z ∩X1) ∪ · · · ∪ (Z ∩Xr) implies again that Z ⊂ Xj for some j; thus Xi ⊂ Z ⊂ Xj , hence i = j
and Z = Xi. Therefore Xi is a maximal irreducible subset.

(8.11) Corollary. (1) A noetherian ring A 6= 0 has only finitely many minimal prime ideals P1, . . . , Pr ∈
Spec(A). These prime ideals satisfy

√
(0) = P1 ∩ · · · ∩ Pr and Pi 6⊃ Pj if i 6= j, and are characterised by

these two properties. The irreducible components of Spec(A) are the subsets {Pi} = V (Pi)
∼−→ Spec(A/Pi).

(2) Let I 6= A be an ideal of a noetherian ring A. There are only finitely many prime ideals P1, . . . , Pr ∈
Spec(A) which are minimal among those prime ideals of A which contain I. These prime ideals satisfy√
I = P1 ∩ · · · ∩ Pr and Pi 6⊃ Pj if i 6= j, and are characterised by these two properties. The irreducible

components of V (I)
∼−→ Spec(A/I) ⊂ Spec(A) are the subsets {Pi} = V (Pi)

∼−→ Spec(A/Pi).

Proof. (1) Combine Proposition 8.7 with Proposition 8.10 for X = Spec(A). The statement (2) is equivalent
to (1) applied to A/I.

(8.12) Examples. (i) If A is a UFD and I = (f) is a non-zero principal ideal, then f = u
∏r
i=1 f

ni
i , where

u ∈ A∗, r ≥ 0, ni ≥ 1 and fi ∈ A are irreducible elements such that fi - fj for i 6= j. Each principal ideal
Pi = (fi) is a prime ideal and √

(f) = (f1 · · · fr) = (f1) ∩ · · · ∩ (fr).

(ii) If each ideal Pi = mi ∈ Max(A) in Corollary 8.11 is maximal, then mi + mj = (1) for i 6= j, hence
m1 ∩ · · · ∩mr = m1 · · ·mr and

(A/I)red = A/
√
I = A/(m1 ∩ · · · ∩mr)

∼−→ A/m1 × · · · ×A/mr

is a finite product of fields, by the Chinese remainder theorem I.3.5.

(iii) If A is a finite algebra over a fieldK (i.e., if dimK(A) <∞), then A is noetherian and each prime ideal P ∈
Spec(A) is maximal, by Lemma 6.4 applied to K ↪→ A/P . As a result, Spec(A) = Max(A) = {P1, . . . , Pr},
where Pi are the minimal prime ideals of A. As in (ii), we obtain Ared = k(P1) × · · · × k(Pr), where each
k(Pi) = A/Pi is a finite field extension of K. In fact, the following exercise shows that (P1 · · ·Pr)n = (0) for
some n ≥ 1, which implies that A = A/Pn1 × · · · ×A/Pnr , again by Corollary I.3.5.

(8.13) Exercise. Let A be an artinian ring, i.e., a ring satisfying the descending chain condition for
ideals: every descending chain of ideals I1 ⊃ I2 ⊃ · · · of A stabilises.
(1) If A is a domain, then it is a field.
(2) A has only finitely many prime ideals m1, . . . ,mr, all of which are maximal.
(3) The ideal m1 · · ·mr is nilpotent: there exists n ≥ 1 such that (m1 · · ·mr)n = (0).
(4) A = A/mn1 × · · · ×A/mnr .
(5) Ared = A/m1 × · · · ×A/mr is a finite product of fields.
(6) A is a noetherian ring.
(7) Conversely, a noetherian ring in which all prime ideals are maximal (e.g., the ring A/I in Example
8.12(ii)) is artinian.

(8.14) Exercise. Let A be an algebra of finite type over a field. Consider Max(A) ⊂ Spec(A) with the
induced topology. Show that the maps “intersection with Max(A)” and “closure in Spec(A)” define mutually
inverse bijections

{closed subsets of Spec(A)} ∼←→ {closed subsets of Max(A)}

and
{irreducible closed subsets of Spec(A)} ∼←→ {irreducible closed subsets of Max(A)}.
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(8.15) Irreducibility and extension of scalars. Let K be a field. An affine K-variety Z ↪→ An
K is

given by a system of polynomial equations

Z : ∀f ∈ I f = 0,

where I ∈ Spec(K[X1, . . . , Xn]) is a prime ideal. In other words, the ring A = O(Z) = K[X1, . . . , Xn]/I
of regular functions on Z is a domain ( ⇐⇒ A is reduced and Spec(A) is irreducible). The fraction field
Frac(A) is the field of rational functions on Z.

For any field extension K ↪→ L we can consider the extension of scalars of Z to L, i.e., the object
ZL ↪→ An

L given by the same system of equations, but this time over L. If we write I = (f1, . . . , fr), then

AL = O(ZL) = L[X1, . . . , Xn]/(f1, . . . , fr) = A⊗K L.

When is ZL an L-variety? The following examples are instructive.

(i) A = R[X,Y ]/(X2 + Y 2), K = R, L = C. In this case AC = C[X,Y ]/((X + iY )(X − iY )) is reduced,
but Spec(AC) is reducible: it corresponds to a pair of complex conjugate lines intersecting transversally.

Note that the element t = X/Y ∈ Frac(A) satisfies t2 + 1 = 0. In other words, the field of constants
of Z, namely, K ∩ Frac(A) = R(t)

∼−→ C, is a non-trivial separable extension of K.

(ii) Let K be a non-perfect field, char(K) = p, a ∈ K \ Kp. The K-algebra A = K[X,Y ]/(Y p − a) is
a domain. If L is a field extension of K containing α such that αp = a, then AL = L[X,Y ]/(Y p − a) =
L[X,Y ]/((Y −α)p) is not reduced; it represents a line over L with multiplicity p. The corresponding reduced
ring (AL)red = L[X,Y ]/(Y − α)

∼−→ L[X] is a domain, so ZL is not an L-variety, but (ZL)red is.

The field of constants of Z is K ∩ Frac(A) = K(α), a non-trivial purely inseparable extension of K.

(iii) Let K = Fp(a, b), where a, b are variables. Again, the K-algebra A = K[X,Y ]/(Y p + aXp + b) is a
domain, but its extension of scalars to any field L ⊃ K containing elements α, β such that αp = a and
βp = b is a non-reduced ring AL = L[X,Y ]/((Y +αX + β)p) corresponding again to a line with multiplicity
p ((AL)red = L[X,Y ]/(Y +αX+β)

∼−→ L[X] is again a domain). Unlike in (ii), K∩Frac(A) = K. However,
the elements X,Y , 1 ∈ Frac(A) which are linearly independent over K become linearly dependent in any
field extension of Frac(A) containing K(α, β) = K1/p, since Y + αX + β = 0 in such a field (“Frac(A) and
K1/p are not linearly disjoint over K”).

(8.16) What is going on? There exists a theory of (in-)separability for arbitrary field extensions ([Ei,
A.1.2-1.3], [ZS 1, II.15]). In examples 8.15(ii) and (iii) the field extension Frac(A)/K is not separable (for
each element z ∈ Frac(A) transcendental over K the extension Frac(A)/K(z) is a finite inseparable extension;
cf. the comments in the first proof of Theorem 4.10).

The general result is the following ([ZS 1, III.15], [Mu 1, II.4, Prop. 4]). If A is a domain of finite type
over K and L is an algebraically closed field extension of K, then:

A⊗K L is reduced ⇐⇒ Frac(A)⊗K L is reduced ⇐⇒ Frac(A)/K is separable (8.16.1)

and

(A⊗K L)red is a domain ⇐⇒
√

(0) ∈ Spec(Frac(A)⊗K L) ⇐⇒ Ksep ∩ Frac(A) = K. (8.16.2)

It follows that

A⊗K L is a domain ⇐⇒ (0) ∈ Spec(Frac(A)⊗K L) ⇐⇒ Frac(A)/K is separable and K ∩ Frac(A) = K.
(8.16.3)

Note that A ⊗K K ′ is contained in A ⊗K L, for any algebraically closed field L containing K ′; thus the
condition (8.16.3) is equivalent to A⊗K K ′ being a domain for every field extension K ↪→ K ′.

Note that the field of constants K ∩ Frac(A) is always a finite extension of K, by Exercise 9.6(2).
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9. Dimension theory for affine algebras over a field

There are at least four different definitions of dimension in commutative algebra; the fact that they all agree
is a non-trivial (and very useful) theorem. This theory applies both in algebraic geometry and in arithmetic.
We are going to discuss two global definitions of dimension; a local definition will be mentioned in passing
in 13.8 below. Throughout §9, K is an arbitrary field.

(9.1) Our first goal is to define the dimension of classical algebro-geometric objects, namely

Z : ∀f ∈ I f = 0, Z ↪→ An
K ,

where I ⊂ K[X1, . . . , Xn] is the ideal of polynomial functions vanishing on Z.

We can visualise Z in at least three different ways: either as the set of classical points Z(K)
∼−→

Max(A⊗K K), where A = O(Z) = K[X1, . . . , Xn]/I is the ring of regular functions on Z, or as Spec(A) or
as Max(A)

∼−→ Z(K)/Aut(K/K). Each of these three sets is equipped with the Zariski topology.

What is the dimension of Z equal to? Geometric intuition suggests that we should first decompose
Z = Z1 ∪ · · · ∪ Zr into a union of its irreducible components and then define

dim(Z) = max
1≤i≤r

dim(Zi), (9.1.1)

where dim(Zi) is the number of independent parameters defining Zi. We need to translate this intuition into
a purely algebraic language involving only the ring of regular functions A = O(Z). We use the decomposition
into irreducible components of Spec(A), which is equivalent to an analogous decomposition of Max(A), by
Exercise 8.14 (examples 8.15(i)-(iii) tell us that such a decomposition need not be preserved under extension
of scalars K ↪→ L, but it turns out that dim(ZL) = dim(Z); cf. Theorem 11.6 below).

(9.2) The first step is easy. Any K-algebra of finite type A 6= 0 has finitely many minimal prime ideals
P1, . . . , Pr (r ≥ 1), which correspond to the irreducible components {Pi} = V (Pi)

∼−→ Spec(A/Pi) of
Spec(A), by Corollary 8.11(1). In line with (9.1.1), we impose

dim1(A) = max
1≤i≤r

dim1(A/Pi) (9.2.1)

(we use the subscript “1” to distinguish this geometrically intuitive dimension from the abstract dimension
defined in 9.14 below).

In the second step we consider the domain Ai = A/Pi (which depends only on the reduced ring Ared and
which is again a K-algebra of finite type). According to Noether’s Normalisation Lemma 4.8, Ai is finite over
a suitable polynomial ring K[a1, . . . , adi ] ↪→ Ai (this inclusion corresponds to a “finite” geometric morphism
Zi −→ Adi

K , where Zi is the irreducible component of Z with the ring of regular functions O(Zi) = Ai).
The corresponding extension of the fields of rational functions K(a1, . . . , adi) ↪→ Frac(Ai) is again finite, by
3.3(ii).

Proposition 9.5 below shows that di depends only on the field extension Frac(Ai)/K: it is the maximal
number of elements of Frac(Ai) that are algebraically independent over K (the transcendence degree of
Frac(Ai) over K). We define, therefore,

dim1(A/Pi) = tr.degK Frac(A/Pi) (9.2.2)

and

dim1(A) = max
1≤i≤r

tr.degK Frac(A/Pi). (9.2.3)

As observed above, the collection of domains A/Pi depends only on the reduced ring Ared, hence

dim1(A) = dim1(Ared). (9.2.4)
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(9.3) Definition. A transcendence basis of a field extension K ↪→ L is a subset B ⊂ L such that L is
algebraic over K(B) and B is algebraically independent over K (i.e., every finite subset of B is algebraically
independent over K).

(9.4) We can take, for example, B = {X1, . . . , Xn} (resp. B = ∅) if L = K(X1, . . . , Xn) (resp. if L is
algebraic over K). We are going to show that the cardinality of B depends only on the field extension L/K.
For our purposes, it will be enough to consider finitely generated field extensions (see [ZS 1, II.12] for the
general case).

(9.5) Proposition-Definition. Let K ↪→ L be a field extension of finite type.
(1) If B (resp. S) is a finite subset of L such that B is algebraically independent over K (resp. L is algebraic
over K(S)), then |B| ≤ |S|. In particular, |B| is bounded above by the number of generators of the field
extension L/K.
(2) If |B| is maximal, then B is a transcendence basis of L/K and all transcendence bases of L/K have
cardinality |B|. We say that L/K has transcendence degree (notation: tr.degK L) equal to |B|.
(3) Any finite set S of generators of the field extension L/K contains a transcendence basis of L/K.

Proof. (1) We can assume that B = {b1, . . . , bn} with n > 0. We claim that there exists s1 ∈ S which is
transcendental over K(b2, . . . , bn). Indeed, if all s ∈ S were algebraic over K(b2, . . . , bn), then the exten-
sion K(S)/K(b2, . . . , bn), hence also L/K(b2, . . . , bn), would be algebraic, but b1 ∈ L is not algebraic over
K(b2, . . . , bn). Therefore s1, b2, . . . , bn are algebraically independent over K. Repeating the procedure, we
obtain s1, . . . , sn ∈ S, which are algebraically independent over K, hence distinct; thus |B| = n ≤ |S|.
(2) If B has maximal cardinality among algebraically independent (over K) subsets of L, then B is a
transcendence basis of L/K, by definition. If B′ is another transcendence basis of L/K, then (1) for S = B′

yields |B| ≤ |B′|, hence |B| = |B′|, by maximality of |B|.
(3) The proof of (1) applied to S and any transcendence basis B implies that S contains a subset S′ ⊂ S con-
sisting of algebraically independent elements (over K) which has cardinality |S′| = |B|; it is a transcendence
basis of L/K, by (2).

(9.6) Exercise. A field extension K ↪→ L is purely transcendental if L = K(B) for some transcendence
basis B of L/K.
(1) If K ↪→ L ↪→ M are field extensions with K ↪→ L purely transcendental, then the minimal polynomials
over K and over L of any element α ∈M which is algebraic over K coincide.
(2) If K ↪→ M is a field extension of finite type, then {α ∈ M | α is algebraic over K} is a finite extension
of K.
(3) If K ↪→ M is a field extension of finite type, then for any intermediate field K ↪→ L ↪→ M , the field
extensions K ↪→ L and L ↪→M are of finite type and tr.degKM = tr.degK L+ tr.degLM .

(9.7) Proposition. If A 6= 0 is a K-algebra of finite type, then:

dim1(A) = 0 ⇐⇒ each minimal prime ideal of A is maximal ⇐⇒ Spec(A) = Max(A) ⇐⇒
⇐⇒ Ared is a finite product of fields

Proof. Let P1, . . . , Pr be the minimal prime ideals of A. If dim1(A) = 0, then each A/Pi ⊂ Frac(A/Pi) is
a K-algebra of finite type consisting of elements algebraic over K, hence is a finite field extension of K, by
Proposition III.3.10 and III.3.15. It follows that Pi ∈ Max(A), hence Spec(A) = Max(A) = {P1, . . . , Pr}.
As in Example 8.12(ii), Ared ∼−→ A/P1 × · · · × A/Pr. Conversely, if Ared is a finite product of fields, then
each of these fields must be finite over K, by Theorem 6.5(1), hence Ared is as in Example 8.12(iii), which
implies that dim1(Ared) = 0.

If dim1(A) = d > 0, then at least one of the rings A/Pi is finite over K[X1, . . . , Xd], hence A/Pi is not
a field and Spec(A) 6= Max(A).

(9.8) The key property of dimension is the following special case of Krull’s Principal Ideal Theorem (see
10.21 below for the general statement). It makes precise the geometric intuition according to which dimension
decreases by one if we impose one non-trivial condition f = 0.
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(9.9) Theorem (A special case of Krull’s Principal Ideal Theorem (Hauptidealsatz)). Let A be a
domain of finite type over K, let f ∈ A, f 6= 0, let P ∈ Spec(A) be minimal among the prime ideals containing
f (in other words, {P} = V (P )

∼−→ Spec(A/P ) is an irreducible component of V ((f))
∼−→ Spec(A/(f)), the

locus of the points where f = 0). Then

tr.degK Frac(A/P ) = tr.degK Frac(A)− 1.

[Note that the existence of P , which we assume, implies that f 6∈ A∗.]

Proof. The following argument is due to Tate (see [Mu 1, I.7. Thm.2]). It consists of three simple steps.
Step 1: reduction to the case when V (P ) is the only irreducible component. This is done by
localising, i.e., by finding a function g ∈ A which identically vanishes on the remaining irreducible components
(but not on V (P )) and then removing all zeroes of g by imposing a new equation Y g − 1 = 0 (cf. the proof
of Theorem 6.5(6)).

In concrete terms, let P1, . . . , Pr (with P1 = P ) be as in Corollary 8.11(2), for I = (f); then
√

(f) =
P1 ∩ · · · ∩ Pr. For each i 6= 1 choose gi ∈ Pi \ P ; then g = g2 · · · gr ∈ P2 · · ·Pr \ P , which means that
V (P2) ∪ · · · ∪ V (Pr) ⊂ V ((g)), but V (P ) 6⊂ V ((g)). We remove the set of all zeroes V ((g)) of g by replacing
A by the K-algebra of finite type

B = A[Y ]/(Y g − 1) = A[1/g] ⊂ Frac(A) = Frac(B).

Note that PB ∈ Spec(B), since B/PB = (A/P )[1/g], g = g (modP ) ∈ (A/P ) \ {0}. On the other hand,
PiB = B for i 6= 1, since 1 = g · Y ∈ PiB; thus

√
(f)B = (P1 ∩ · · · ∩ Pr)B ⊂ P1B ∩ · · · ∩ PrB = PB = PP2 · · ·PrB ⊂ (P1 ∩ · · · ∩ Pr)B =

√
(f)B,

which implies that
√

(f)B = PB is a prime ideal of B and Frac(B/PB) = Frac(A/P ). As a result, we can

replace the triple (A, f, P ) by (B, f, PB) and assume that
√

(f) = P is a prime ideal.
Step 2: reduction to the case when A is a polynomial ring. This is done by combining Noether’s
Normalisation Lemma 4.8 with a norm argument. More precisely, there exists a polynomial subalgebra
A0 = K[X1, . . . , Xd] ⊂ A such that A is finite over A0. We want to replace all objects√

(f) = P ⊂ A ⊂ Frac(A) = L

by

P0 = P ∩A0 ⊂ A0 = K[X1, . . . , Xd] ⊂ Frac(A0) = L0 = K(X1, . . . , Xd).

As A is finite over A0, so is L over L0 and A/P and A0/P0; thus

tr.degK L = tr.degK L0 = d, tr.degK Frac(A/P ) = tr.degK Frac(A0/P0).

(9.10) Lemma. P0 =
√

(f0), where f0 = NL/L0
(f).

Proof of Lemma. According to Proposition 3.4, the minimal polynomial equation for f over the integrally

closed ring A0 is of the form fn+an−1f
n−1 + · · ·+a0, with all ai ∈ A0. In particular, f0 = ±a[L:L0(f)]

n ∈ A0.
Moreover, a0 ∈ A0 ∩ fA ⊂ A0 ∩ P = P0, which implies that f0 ∈ P0, hence

√
(f0) ⊂ P0. Conversely, if

h ∈ P0, then hm ∈ fA for some m ≥ 1, hence hm[L:L0] = NL/L0
(h) ∈ NL/L0

(f)NL/L0
(A) ⊂ f0A0 = (f0)

(using Corollary 3.6), which proves that P0 ⊂
√

(f0). Lemma is proved.
Step 3: elementary verification of Theorem 9.9 in the case when A is a polynomial ring. Thanks
to Step 2 and Lemma 9.10 we can replace the triple (A, f, P =

√
(f)) by (A0 = K[X1, . . . , Xd], f0, P0 =√

(f0)). The condition
√

(f0)) = P0 ∈ Spec(A0) implies, by Example 8.12(i), that P0 = (f00), where
f00 ∈ K[X1, . . . , Xd] is an irreducible element (non-constant). Theorem 9.9 is then a consequence of the
following elementary statement.
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(9.11) Lemma. Let f00 ∈ K[X1, . . . , Xd] be an irreducible non-constant polynomial. The ring R =
K[X1, . . . , Xd]/(f00) is a domain and tr.degK Frac(R) = d− 1.

Proof of Lemma. The ring R is a domain, by Proposition I.5.7. We can assume that the variable Xd occurs
in f00; its image Xd ∈ R is then algebraic over K[X1, . . . , Xd−1] ⊂ R, which implies that tr.degK Frac(R) ≤
d − 1. Conversely, if X1, . . . , Xd−1 were algebraically dependent over K, then there would be a non-zero
polynomial h ∈ K[X1, . . . , Xd−1] such that h = 0, hence h ∈ f ·K[X1, . . . , Xd], which is impossible; therefore
tr.degK Frac(R) ≥ d− 1.

(9.12) Corollary. If A is a K-algebra of finite type and P0 ( P1 are prime ideals of A, then

dim1(A/P1) ≤ dim1(A/P0)− 1,

with equality if P1 is minimal among the prime ideals 6= P0 containing P0.

Proof. We can replace A by A/P0, hence assume that P0 = (0) and A is a domain. Let f ∈ P1 be any
non-zero element and let Q ⊂ P1/(f) be a minimal prime ideal of A/(f); then Q = P/(f) for a prime ideal
P ⊂ P1 of A which is minimal among prime ideals containing f . As A/P1 is a quotient of A/P , we have
dim1(A/P1) ≤ dim1(A/P ), with equality if P1 is minimal among non-zero prime ideals (since P = P1 then).
Applying Theorem 9.9 to the triple (A, f, P ), we obtain

dim1(A/P ) = dim1(A/P0)− 1,

which concludes the proof.

(9.13) In view of Corollary 9.12, it is natural to study the lengths of chains of prime ideals of A

P0 ( P1 ( · · · ( Pr, (9.13.1)

which correspond to chains of irreducible closed subsets of Spec(A)

V (P0) ) V (P1) ) · · · ) V (Pr), V (Pi) = {Pi}
∼−→ Spec(A/Pi).

This makes sense for arbitrary rings A. Corollary 9.12 then serves as a motivation for the following general
definition.

(9.14) Definition. (1) Let X 6= ∅ be a topological space. The Krull dimension of X is

dim(X) = sup{r ≥ 0 | ∃ Z0 ) Z1 ) · · · ) Zr, Zi irreducible closed subset of X} ∈ N ∪ {+∞}.

(2) Let A 6= 0 be a ring. The Krull dimension of A is

dim(A) = dim(Spec(A)) = sup{r ≥ 0 | ∃ P0 ( P1 ( · · · ( Pr, Pi ∈ Spec(A)} ∈ N ∪ {+∞}.

(9.15) Examples. (i) dim(A) = 0 ⇐⇒ Spec(A) = Max(A). In particular, a domain of dim(A) = 0 is a
field.
(ii) For A = K[X1, . . . , Xn] the chain

(0) ( (X1) ( · · · ( (X1, . . . , Xn)

has length n, hence dim(K[X1, . . . , Xn]) ≥ n = dim1(K[X1, . . . , Xn]). Theorem 9.16 below implies that this
is, in fact, an equality.
(iii) If A is a noetherian ring, then all chains (9.13.1) have finite length. However, this does not necessarily
imply that dim(A) <∞. In fact, Nagata constructed an example of a noetherian ring of infinite dimension
(see [De 2, Ex. 6.7], [Re, 9.4(3), Ex. 9.2]).
(iv) Chains of prime ideals (9.13.1) with fixed P0 are in bijection with the corresponding chains

(0) ( P1/P0 ( · · · ( Pr/P0
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of prime ideals of the domain A/P0.
(v) Proposition 8.7 tells us that every P0 ∈ Spec(A) contains a minimal prime ideal Q. Chains (9.13.1) with
P0 containing a fixed minimal ideal Q then correspond bijectively to chains

P0/Q ( P1/Q ( · · · ( Pr/Q

in the domain A/Q. As a result,

dim(A) = sup{dim(A/Q) | Q minimal prime ideal},

which is analogous to (9.2.1).

(9.16) Theorem. Let A 6= 0 be a K-algebra of finite type.
(1) dim(A) = dim1(A).
(2) Let P ⊂ Q be prime ideals of A. If P = P0 ( P1 ( · · · ( Pr = Q is a chain of prime ideals of A between
P and Q, then

r ≤ dim1(A/P )− dim1(A/Q) = tr.degFrac(A/Q) Frac(A/P ),

with equality if the chain is saturated (i.e., if it cannot be refined). [Rings for which all saturated chains
between any fixed pair P ⊂ Q of prime ideals have the same length are called catenary.]
(3) If P ∈ Spec(A) and if If P = P0 ( P1 ( · · · ( Pt is an increasing chain of prime ideals starting at P ,
then

t ≤ dim1(A/P ) = tr.degK Frac(A/P ),

with equality if the chain is saturated (i.e., if it cannot be refined nor extended beyond Pt).

Proof. The statement (2) for P = (0) and Q ∈ Max(A) implies (1) in the case when A is a domain (since
A/Q is a finite field extension of K, by the Nullstellensatz, hence dim1(A/Q) = 0). The general case of (1)
follows by combining (9.2.1) with Example 9.15(v).

Any chain in (2) has finite length, since A is noetherian. Corollary 9.12 tells us that

∀ i = 0, . . . , r − 1 dim1(A/Pi+1) ≤ dim1(A/Pi)− 1,

with equalities everywhere ⇐⇒ the chain is saturated. Taking the sum of these (in)equalities yields (2).
(3) There exists Q ∈ Max(A) containing Pt. Replacing Pt with Q and applying (2) to this modified chain,
we obtain, as in the proof of (1),

t ≤ dim1(A/P )− dim1(A/Q) = dim1(A/P ),

with equality if the original chain was saturated.

(9.17) Nagata constructed a non-catenary local noetherian domain, which has saturated chains of prime
ideals (between (0) and the unique maximal ideal) of different lengths (2 and 3). See [Re, 9.4(2), Ex. 9.4].

(9.18) Theorem. Let A be a domain of finite type over K, let f1, . . . , fr ∈ A. If the ring A′ = A/(f1, . . . , fr)
is non-zero, then dim(A′/P ′) ≥ dim(A)− r, for every minimal prime ideal P ′ of A′.

Proof. This follows from Theorem 9.9 by induction on r.

(9.19) Example. The union of the three coordinate axes in A3
K is given by three equations

X1X2 = X1X3 = X2X3 = 0.

In this example A = K[X1, X2, X3], f1 = X2X3, f2 = X1X3, f3 = X1X2, r = 3, dim(A) = 3, dim(A′/P ′) = 1
for every minimal prime ideal P ′ of A′. In fact, the ideal (f1, f2, f3) ⊂ A cannot be generated by two elements
(exercise!).

10. Localisation

We saw in 5.4-5.5 how to formally invert an arbitrary element f of a ring A, by passing to a new ring
A[1/f ] = A[Y ]/(Y f − 1), in which (the image of) f has an inverse, namely, Y . However, the ring A[1/f ]
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can sometimes be zero. In this section we are going to study rings obtained by inverting an arbitrary subset
of A.

(10.1) Let A be any ring. A subset S ⊂ A is multiplicative if 1 ∈ S and st ∈ S for all s, t ∈ S.
Our goal is to construct a “universal” ring S−1A containing fractions a/s = a

s (a ∈ A, s ∈ S) satisfying
the usual relations. We want to imitate the classical procedure for constructing the fraction field of a domain
A (for S = A \ {0}), when a/s is the class of a pair (a, s) ∈ A× S with respect to the equivalence relation

(a, s) ∼ (a′, s′) ⇐⇒ as′ − a′s = 0. (10.1.1)

The problem is that the relation (10.1.1) need not be transitive if A is not a domain. The correct general
definition is the following:

(a, s) ∼ (a′, s′) ⇐⇒ ∃ t ∈ S t(as′ − a′s) = 0. (10.1.2)

One checks that (10.1.2) is, indeed, an equivalence relation on A× S and that the set S−1A of equivalence
classes forms a ring with respect to the usual operations

a

s
+
a′

s′
=
as′ + sa′

ss′
,

a

s

a′

s′
=
aa′

ss′
,

where a/s = a
s denotes the equivalence class of (a, s). The zero (resp. the unit) of S−1A is 0/1 (resp. 1/1).

(10.2) Proposition. (1) S−1A = 0 ⇐⇒ 0 ∈ S.
(2) The canonical map α : A −→ S−1A, α(a) = a/1, is a ring homomorphism with kernel Ker(α) = {a ∈ A |
∃s ∈ S sa = 0}.
(3) (Universal property) If β : A −→ B is a ring homomorphism such that β(S) ⊂ B∗, then there is a unique
ring homomorphism β : S−1A −→ B such that β ◦ α = β, namely, β(a/s) = β(a)β(s)−1.
(4) If S = {fn | n ≥ 0} for some f ∈ A, then the map β : S−1A

∼−→ A[Y ]/(Y f − 1) = A[1/f ] corresponding
to the canonical morphism β : A −→ A[Y ]/(Y f − 1) is an isomorphism of A-algebras.
(5) If A is a domain and 0 6∈ S, then S−1A = {a/s ∈ Frac(A) | a ∈ A, s ∈ S} ⊂ Frac(A).

Proof. Easy exercise ([Re, 6.2]).

(10.3) S−1A is a limit of A[1/f ] (f ∈ S). Note that, if A is a domain and 0 6∈ S, then

S−1A =
⋃
f∈S

A[1/f ] ⊂ Frac(A).

A similar relation holds in general, since S−1A requires inverting all elements of S. However, the rings A[1/f ]
are no longer contained in a common big ring. Nevertheless, S−1A is the direct limit of A[1/f ] (f ∈ S):

S−1A = lim−→
f∈S

A[1/f ]. (10.3.1)

(10.4) What is a direct limit? Assume that I is a non-empty ordered set with the property that for all
i, j ∈ I there exists k ∈ I such that i < k and j < k. In addition, assume that we are given sets Xi (i ∈ I)
and maps αij : Xi −→ Xj (i < j) which are transitive: αik = αjk ◦ αij . The direct (or inductive) limit of
the Xi is the set

X = lim−→i∈I
Xi =

∐
i∈I

Xi/ ∼

defined as the quotient of the disjoint union of the sets Xi by the equivalence relation

xi ∼ xj ⇐⇒ ∃ k i < k, j < k, αik(xi) = αjk(xj).

For each i ∈ I there is a natural map βi : Xi −→ X sending xi to the class of xi in X; these maps
satisfy βj ◦ αij = βi. The direct limit X is the universal object among sets having this property. If all
Xi are contained in some set Y (which means that the maps αij are the corresponding inclusions), then
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X =
⋃
Xi ⊂ Y . If all Xi are groups (rings, modules . . . ) and all αij are homomorphisms of groups (rings,

modules . . . ), then X is again a group (ring, module . . . ).
In (10.3.1), if f | f ′, then f ′ = fg for some g ∈ A and the ring homomorphism

A[1/f ] −→ A[1/f ′],
a

fn
7→ agn

(fg)n

depends only on f and f ′, not on g. Moreover, these maps are transitive for f | f ′ | f ′′, hence give rise to
the direct limit lim−→A[1/f ] (indexed by I = S with order f < f ′ ⇐⇒ f | f ′).
(10.5) A construction similar to that in 10.1 works for an arbitrary A-module M . One checks that the
relation

(m, s) ∼ (m′, s′) ⇐⇒ ∃ t ∈ S t(ms′ −m′s) = 0

on M × S is an equivalence relation and that the set S−1M of equivalence classes forms an S−1A-module
with respect to the operations

m

s
+
m′

s′
=
ms′ + sm′

ss′
,

a

s

m′

s′
=
am′

ss′
,

where m/s = m
s ∈ S

−1M denotes the equivalence class of (m, s). Again,

S−1M = lim−→
f∈S

M [1/f ],

where M [1/f ] = {1, f, f2, . . .}−1M . We leave it as an exercise to formulate an analogue of Proposition 10.2
for S−1M . One can show that S−1M = S−1A ⊗A M , but we are not going to use this fact. The most
important property of the localisation for modules is the following exactness property.

(10.6) Proposition (M 7→ S−1M is an exact functor). If M
f−→N

g−→P is an exact sequence of
A-modules, then

S−1M
f ′−→S−1N

g′−→S−1P,

where f ′(m/s) = f(m)/s and g′(n/s) = g(n)/s, is an exact sequence of S−1A-modules.

Proof. One checks that f ′ (and g′) are well-defined homomorphisms of S−1A-modules. The condition
Im(f) = Ker(g) implies that g ◦ f = 0, hence g′ ◦ f ′ = 0, which means that Im(f ′) ⊂ Ker(g′). Conversely,
if g′(n/s) = g(n)/s = 0 ∈ S−1P , then there exists t ∈ S such that tg(n) = g(tn) = 0 ∈ P , hence
tn ∈ Ker(g) = Im(f), tn = f(m) for some m ∈ M . It follows that f ′(m/st) = f(m)/st = tn/st = n/s;
therefore Ker(g′) ⊂ Im(f ′).

(10.7) Corollary. If L ⊂ M is an A-submodule, then S−1L ⊂ S−1M and S−1(M/L) = S−1M/S−1L. In
particular, if I is an ideal of A, then S−1I is an ideal of S−1A.

(10.8) Proposition (Localisation commutes with quotients). For any ideal I of A the image S

of S in A = A/I is a multiplicative subset of A and the canonical map S−1A/S−1I −→ S
−1
A sending

a/s (modS−1I) to a/s is a ring isomorphism.

Proof. If we view A as an A-module, then S
−1
A = S−1A is canonically isomorphic to S−1A/S−1I as an

S−1A-module, by Corollary 10.7. It is easy to check that the map in question is a ring homomorphism.

(10.9) Definition. If P ∈ Spec(A), then S = A \ P is a multiplicative set. The corresponding localisation
AP (resp. MP ) is called the localisation of A (resp. of M) at P .

(10.10) Examples. (i) If A is a domain and P = (0), then AP = Frac(A).
(ii) If A = Z and P = (p), where p is a prime number, then

Z(p) = {a/b | a, b ∈ Z, p - b} ⊂ Q.

(iii) If A = K[X] for a field K and P = (X − c) (c ∈ K), then
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K[X](X−c) = {f/g | f, g ∈ K[X], g(c) 6= 0} ⊂ K(X).

This is the ring of those rational functions on the affine line A1
K which are defined at the point c ∈ K.

(iv) Both rings in (ii) and (iii) are examples of discrete valuation rings (see §14 below), since

Z(p) \ {0} =
⋃
n≥0

pn (Z(p))
∗, K[X](X−c) \ {0} =

⋃
n≥0

(X − c)n (K[X](X−c))
∗.

As we shall see, discrete valuation rings are non-singular local objects of dimension one.
(v) If Q ⊂ P are prime ideals of A, then QAP ∈ Spec(AP ) and one can check that the localisation of AP
at QAP coincides with AQ. For example, if A = K[X,Y ] (K a field), Q = (X) and P = (X,Y ), then
AP = {f/g | f, g ∈ K[X,Y ], g(0, 0) 6= 0} and AQ = {f/g | f, g ∈ K[X,Y ], X - g}. Geometrically, AP (resp.
AQ) consists of those rational functions on the plane A2

K which are defined at the origin (0, 0) (resp. which
are defined at sufficiently “generic” points of the line X = 0).

(vi) The ring A = K[X,Y ]/(XY 2) is generated as a K-algebra by X,Y , where XY
2

= 0. We are going to
determine the localisations of A at the two minimal prime ideals (X), (Y ) ∈ Spec(A) of A. The localisation
A(X) contains 1/Y , hence X/1 = 0 ∈ A(X). It follows that

A(X) = (A/(X))(0) = Frac(K[Y ]) = K(Y ).

Similarly, 1/X ∈ A(Y ), hence Y
2
/1 = 0 ∈ A(Y ); thus

A(Y ) = (A/(Y
2
))(Y ) = (K[X,Y ]/(Y 2))(Y ) = K(X)[Y ]/(Y 2)

(the dual numbers over K(X)). Geometrically, A = O(Z), where Z : XY 2 = 0 (Z ↪→ A2
K) is a union of the

vertical axis X = 0 with the double horizontal axis Y 2 = 0, since (XY 2) = (X) ∩ (Y 2).

(10.11) Geometric interpretation of AP . For each f ∈ A, the ring A[1/f ] can be interpreted as the
ring of functions on D(f) = Spec(A) \ V ((f)) = {P ∈ Spec(A) | f 6∈ P}. Indeed, the value of any element
a/fn ∈ A[1/f ] (a ∈ A) at P ∈ D(f) is equal to

a

fn
(P ) =

a (modP )

(f (modP ))n
∈ Frac(A/P ) = k(P ),

which makes sense, since f(P ) = f (modP ) 6= 0 ∈ A/P .
For fixed P ∈ Spec(A), the sets D(f) for f 6∈ P form a basis of open neighbourhoods of P in Spec(A),

which means that (10.3.1) for S = A \ P

AP = lim−→
f 6∈P

A[1/f ] = lim−→
P∈D(f)

A[1/f ] (10.11.1)

identifies AP with the ring of germs of functions on Spec(A) at P . In general, a germ at a point x
is represented by a function defined on some open set U 3 x; two functions define the same germ if they
become equal on some open neighbourhood of x contained in their common domain of definition. This is a
very general and very useful concept.

For example, we can consider continuous or differentiable or holomorphic functions. In the latter case,
the ring of germs at 0 ∈ C is the ring C{X} of power series f ∈ C[[X]] with positive radius of convergence.

(10.12) Ideals of S−1A. The canonical morphism α : A −→ S−1A induces the extension and restriction
maps

e : {ideals of A} −→ {ideals of S−1A}, e(I) = S−1A · α(I) = S−1I

r : {ideals of S−1A} −→ {ideals of A}, r(J) = α−1(J).

(10.13) Proposition. (1) e(r(J)) = J holds for all ideals J of S−1A.
(2) r(e(I)) = {a ∈ A | ∃s ∈ S sa ∈ I} (= the “S-saturation of I”) holds for all ideals I of A.
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(3) The maps r and e define mutually inverse bijections between the set of all ideals of S−1A and the set of
all S-saturated ideals

{ideals I of A such that [s ∈ S, sa ∈ I =⇒ a ∈ I]}

of A.
(4) If A is a noetherian ring, so is S−1A.
(5) An ideal I of A satisfies e(I) = S−1A ⇐⇒ r(e(I)) = A ⇐⇒ I ∩ S 6= ∅.
(6) For a prime ideal Q ∈ Spec(A) the extension S−1Q = e(Q) is a prime ideal of S−1A (resp. is equal to
S−1A) if Q ∩ S = ∅ (resp. if not).
(7) The canonical homomorphism α : A −→ S−1A induces an injective map α∗ : Spec(S−1A) −→ Spec(A)
with image Im(α∗) = {Q ∈ Spec(A) | Q ∩ S = ∅}.

Proof. (1), (2) This is an easy calculation ([Re, 6.3]). (3) is a consequence of (1) and (2). If I = (f1, . . . , fr),
then e(I) = (f1, . . . , fr) in S−1A. As every ideal of S−1A is of the form e(I), this proves (4). In (5),

S−1I = S−1A ⇐⇒ S
−1

(A/I) = 0 (by Proposition 10.8), which is equivalent to 0 ∈ S ⇐⇒ I ∩ S 6= ∅.
Similarly, in (6) we have S−1A/S−1Q = S

−1
(A/Q), which is a domain (resp. is the zero ring) if 0 ∈ S (resp.

if not), where S is the image of S in A/Q. The map α∗ in (7) is given by r; as e ◦ r = id, α∗ is injective. By
(3), Q ∈ Spec(A) lies in Im(α∗) ⇐⇒ Q is S-saturated, which is equivalent to Q ∩ S = ∅ (by (6)).

(10.14) Proposition-Definition. (1) Let P ∈ Spec(A). The map Q 7→ QAP = (A \ P )−1Q defines a
bijection {Q ∈ Spec(A) | Q ⊂ P} ∼−→ Spec(AP ). In particular, the ring AP has a unique maximal
ideal (rings having this property are called local rings), namely PAP . The residue field of AP is equal to
AP /PAP = Frac(A/P ) = k(P ).
(2) The semi-localisation of A at a finite set of prime ideals P1, . . . , Pr ∈ Spec(A) is the ring S−1A
for S = A \ (P1 ∪ · · · ∪ Pr). The map Q 7→ Q · S−1A = S−1Q defines a bijection {Q ∈ Spec(A) | ∃i Q ⊂
Pi}

∼−→ Spec(S−1A). In particular, Max(S−1A) = {S−1P1, . . . , S
−1Pr}.

Proof. (1) Combine Proposition 10.13(7) with 10.8, which gives AP /PAP = {A/P \ {0}}−1(A/P ) =
Frac(A/P ). In (2) we must check that a prime ideal Q ∈ Spec(A) satisfying Q ⊂ P1 ∪ · · · ∪ Pr is con-
tained in one of the Pi, which is a special case of the following lemma.

(10.15) Lemma (Prime avoidance). Let J, I1, . . . , In be ideals of A such that J ⊂ I1 ∪ · · · ∪ In and that
at most two among I1, . . . , In are not prime ideals. Then J ⊂ Ii for some i.

Proof. By induction on n, we can assume that n ≥ 2 and that J is not contained in
⋃
i 6=j Ii for any j; we

have, therefore, xj ∈ J such that xj 6∈
⋃
i 6=j Ii, for all j = 1, . . . , n. We can also assume that I1 is a prime

ideal if n > 2. The element y = x1 + x2 · · ·xn ∈ J then satisfies y 6∈ I1 ∪ · · · ∪ In, which is a contradiction.

(10.16) Examples. (i) According to Proposition 10.14(1), chains of prime ideals P0 ( P1 ( · · · ( Pr
of A 6= 0 for which Pr is contained in a fixed prime ideal P ∈ Spec(A) correspond bijectively to chains
P0AP ( P1AP ( · · · ( PrAP of prime ideals of AP . In particular,

dim(AP ) = sup{r ≥ 0 | ∃P0 ( P1 ( · · · ( Pr ⊂ P, Pi ∈ Spec(A)},

dim(A) = sup
m∈Max(A)

dim(Am)

and, thanks to 9.15(iv),

dim(A) ≥ dim(AP ) + dim(A/P ).

(ii) For every f ∈ A, the canonical morphism α : A −→ A[1/f ] induces a bijection

α∗ : Spec(A[1/f ])
∼−→ {P ∈ Spec(A) | f 6∈ P} = D(f) = Spec(A) \ V ((f)) = Spec(A) \ Spec(A/(f)),

by Proposition 10.13(7) for S = {fn | n ≥ 0}. In particular, each open set D(f) ⊂ Spec(A) is naturally of
the form Spec(−).
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This is not true for more general open subsets. For example, the plane with one point removed,
A2
K \ {(0, 0)} = Spec(K[X,Y ]) \ {(X,Y )} is not of the form Spec(−). However, making this statement

precise requires some non-trivial foundational work. Here is a hint: the “true” Spec(A) is not just the
topological space we have been studying here, but it is equipped with rings of regular functions O(U) on
each open subset U ⊂ Spec(A). For example, O(D(f)) = A[1/f ], and O(U) for general U is determined by
a glueing property.

In the special case U = Spec(K[X,Y ])\{(X,Y )} we can write U = D(X)∪D(Y ), where D(X)∩D(Y ) =
D(XY ) (D(X) is the plane with the Y axis removed, D(Y ) the plane with the X-axis removed). The ring
O(U) of functions regular on A2

K \ {(0, 0)} should be the intersection of O(D(X)) = K[X,Y, 1/X] and
O(D(Y )) = K[X,Y, 1/Y ] inside O(D(XY )) = K[X,Y, 1/X, 1/Y ], which is equal to K[X,Y ] = O(A2

K).

(10.17) Exercise. Assume that 0 6∈ S.
(1) If A is an integrally closed domain, so is S−1A.
(2) If A is a PID, so is S−1A.
(3) If A is a UFD, so is S−1A.

(10.18) Exercise. The support of an A-module M is supp(M) = {P ∈ Spec(A) |MP 6= 0} (geometrically,
one should think of the collection {MP } as a family of spaces living over Spec(A)).
(1) If P ∈ supp(M), then V (P ) ⊂ supp(M).
(2) M = 0 ⇐⇒ ∀P ∈ Spec(A) MP = 0 ⇐⇒ ∀m ∈ Max(A) Mm = 0.
(3) If 0 −→M −→ N −→ P −→ 0 is an exact sequence of A-modules, then supp(N) = supp(M)∪ supp(P ).
(4) If I is an ideal of A, then supp(A/I) = V (I).
(5) If M is a finitely generated module over a noetherian ring M , then there exists a finite filtration 0 =
M0 ⊂M1 ⊂ · · · ⊂Mr = M (r ≥ 0) by submodules such that Mi+1/Mi

∼−→ A/Qi for some Qi ∈ Spec(A).
(6) In the situation of (5), supp(M) =

⋃r
i=1 V (Qi). [This is the beginning of the theory of primary

decomposition; see [Re, §7] and [Ei, ch. 3] for more details.]

(10.19) Proposition. Let A be a domain with fraction field K.
(1)

⋂
m∈Max(A)Am = A (the intersection taken in K).

(2) If Am is integrally closed for each m ∈ Max(A), then A is integrally closed.

Proof. (1) For x ∈ K the set I = {a ∈ A | ax ∈ A} is an ideal of A. Moreover, x ∈ Am ⇐⇒ I 6⊂ m. In
particular, if x ∈

⋂
m∈Max(A)Am, then I = A, which means that x ∈ A.

(2) If x ∈ K is integral over A, then it is integral over each Am, hence is contained in
⋂

m∈Max(A)Am = A.

(10.20) Theorem. If A is a domain of finite type over a field, then

∀P ∈ Spec(A) dim(A) = dim(AP ) + dim(A/P ).

Proof. Let m ∈ Max(A) be any maximal ideal containing P . There exists a saturated chain (0) ( P1 ( · · · (
Pk = P of prime ideals of A between (0) and P of length k = dim(AP ) and a saturated chain of prime ideals
P = Q0 ( · · · ( Ql = m between P and m of length l = dim(A/P ). Their concatenation (0) ( P1 ( · · · (
P ( · · · ( Ql is a saturated chain of prime ideals between (0) and m of length k+ l = dim(AP ) + dim(A/P ).
According to Theorem 9.16(3), the length of this chain is equal to dim(A).

(10.21) The general form of Krull’s Principal Ideal Theorem (Hauptidealsatz) is the case n = 1 of the
following statement ([Ei, Thm. 10.2], [M, Thm. 13.5], [De 2, Thm. 7.2]).

If A is a noetherian ring and f1, . . . , fn ∈ A, then any P ∈ Spec(A) which is minimal among prime
ideals containing (f1, . . . , fn) satisfies dim(AP ) ≤ n.

We have proved this result in the case when A is an algebra of finite type over a field, by Theorem 9.18
and Theorem 10.20 (one can replace A by its quotient by a minimal prime ideal, hence suppose that A is a
domain).
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(10.22) Theorem. If A is a domain of finite type over a field, then A is a UFD ⇐⇒ every prime ideal
P ∈ Spec(A) which is minimal among non-zero prime ideals ( ⇐⇒ dim(AP ) = 1) is principal. [In fact,
this result holds for arbitrary noetherian domains, but the proof requires Krull’s Principal Ideal Theorem.]

Proof. We know that a noetherian domain A is a UFD ⇐⇒ the principal ideal (f) generated by any
irreducible element f of A is a prime ideal, by Corollary II.3.13. Assume that this condition holds. If
P ∈ Spec(A) is minimal among non-zero prime ideals, take any a ∈ P , a 6= 0. The element a is not invertible
in A, hence can be written as a non-trivial product a = f1 · · · fr of irreducible elements fi (r ≥ 1). The ideal
P is prime, hence fi ∈ P for some i; then (fi) ⊂ P is a non-zero prime ideal, hence (fi) = P , by minimality
of P .

Conversely, assume that the condition in the statement of the theorem holds. If f ∈ A is irreducible,
let P ∈ Spec(A) be minimal among prime ideals containing f ; then dim(AP ) = 1, by 10.21 for n = 1
(dim(AP ) 6= 0, since P 6= (0)). Our assumtion then says that P = (g) is principal. The inclusion (f) ⊂ (g)
implies that g | f , hence f = gu for some u ∈ A∗ (g is not invertible); therefore (f) = (g) is a prime ideal.

11. Fibres of a morphism and theorems of Cohen-Seidenberg

(11.1) Given a ring homomorphism α : A −→ B, what can be said about the fibres of the induced map
α∗ : Spec(B) −→ Spec(A)?

For example, if A and B are algebras of finite type over a field K, then α∗ : Q 7→ α−1(Q) maps
Max(B) to Max(A) (since A/α−1(Q) ⊂ B/Q and B/Q is a finite field extension of K if Q ∈ Max(B), by the
Nullstellensatz). If K = K is algebrically closed, then the map α∗ : Max(B) −→ Max(A) is just the map
between the classical points of the algebraic sets corresponding to B and A.

(11.2) Proposition. Let α : A −→ B be a ring homomorphism. For any P ∈ Spec(A) there is a natural
bijection between (α∗)−1(P ) ⊂ Spec(B) and Spec(BP /PBP ), where BP = S−1B for S = α(A \ P ) and
BP /PBP = BP /α(P )BP . [Exercise: this bijection is, in fact, a homeomorphism.]

Proof. A prime ideal Q ∈ Spec(B) satisfies

α∗(Q) ⊃ P ⇐⇒ Q ⊃ α(P )B ⇐⇒ Q ∈ V (α(P )B), α∗(Q) ⊂ P ⇐⇒ Q ⊂ α(P ) ⇐⇒ Q∩α(A\P ) = ∅.

The statement then follows by applying 7.5(3) and 10.13.(7).

(11.3) From now on we concentrate on the case when α : A −→ B is injective, i.e., when A ↪→ B is a ring
extension. In this case α∗(Q) = Q ∩A and Im(α∗) is dense in Spec(A), by 7.5(4).

(11.4) Proposition. Let α : A ↪→ B be an integral ring extension.
(1) Q ∈ Spec(B) lies in Max(B) ⇐⇒ P = Q ∩A ∈ Max(A).
(2) The map α∗ : Spec(B) −→ Spec(A) is surjective.
(3) The map α∗ : Spec(B) −→ Spec(A) is closed (i.e., the image of a closed set is closed).
(4) If Q ⊂ Q′ are prime ideals of B such that Q ∩A = Q′ ∩A = P , then Q = Q′.
(5) Moreover, if A ↪→ B is a finite ring extension, then the map α∗ has finite fibres.

Proof. (1) Apply Lemma 6.4 to the integral ring extension A/P ↪→ B/Q.
(2) We can assume that A 6= 0. Fix P ∈ Spec(A) and consider the localised integral ring extension αP : AP ↪→
BP , where BP = S−1B for S = A \ P . There exists n ∈ Max(BP ) (since AP 6= 0); then α−1

P (n) = n ∩AP ∈
Max(AP ) = {PAP }, by (1); thus α−1

P (n) = PAP . If we denote by i : A −→ AP (resp. j : B −→ BP ) the
canonical maps, then the prime ideal Q = j−1(n) ∈ Spec(B) satisfies Q∩A = α−1(j−1(n)) = (j ◦α)−1(n) =
(αP ◦ i)−1(n) = i−1(α−1

P (n)) = i−1(PAP ) = P .

(3) Let V (J)
∼−→ Spec(B/J) ⊂ Spec(B) be a closed subset (where J is an ideal of B). If Q ⊃ J is a prime

ideal of B, then P = α∗(Q) = Q ∩ A ⊃ J ∩ A = I; thus α∗(V (J)) ⊂ V (I)
∼−→ Spec(A/I). On the other

hand, the statment (2) applied to the integral ring extension A/I ↪→ B/J tells us that the restriction of α∗

to Spec(B/J) −→ Spec(A/I) is surjective, hence α∗(V (J)) = V (I) is closed in Spec(A).
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(4) As in the proof of (2) we localise at S = A \P . We obtain an integral ring extension AP ↪→ BP and two
prime ideals QBP ⊂ Q′BP of BP whose intersection with AP is the maximal ideal PAP of AP . Applying (1),
we deduce that both QBP and Q′BP are maximal ideals of BP . They must coincide, since one is contained
in the other. The equality QBP = Q′BP implies that (Q′/Q)P = 0 (by Corollary 10.7), hence for each
b ∈ Q′ there exists s ∈ S (hence s 6∈ Q) such that sb ∈ Q; thus b ∈ Q, since Q is a prime ideal. This shows
that Q = Q′.
(5) If P ∈ Spec(A) and B is finite over A, then BP /PBP is finite over the field AP /PAP = Frac(A/P ),
hence (α∗)−1(P )

∼−→ Spec(BP /PBP ) is finite, by 8.12(iii).

(11.5) Theorem (“Going up”). Let A ↪→ B be an integral ring extension. Given prime ideals P0 ⊂ P1

of A and Q0 ∈ Spec(B) such that Q0 ∩ A = P0, then there exists Q1 ∈ Spec(B) such that Q0 ⊂ Q1 and
Q1 ∩A = P1.

Proof. Proposition 11.4(2) applied to the integral ring extension A/P0 ↪→ B/Q0 tells us that there exists
a prime ideal of B/Q0, necessarily of the form Q1/Q0 for some Q1 ∈ Spec(B) containing Q0, such that
Q1/Q0 ∩A/P0 = P1/P0; thus Q1 ∩A = P1.

(11.6) Theorem. If 0 6= A ↪→ B is an integral ring extension, then dim(A) = dim(B).

Proof. If Q0 ( Q1 ( · · · ( Qr are distinct prime ideals of B, then Q0 ∩ A ( Q1 ∩ A ( · · · ( Qr ∩ A are
distinct prime ideals of A, by Proposition 11.4(4); thus dim(B) ≤ dim(A). Conversely, given distinct prime
ideals P0 ( P1 ( · · · ( Pr of A, we deduce from Proposition 11.4(2) and a repeated application of “going
up” that there exist prime ideals Q0 ⊂ Q1 ⊂ · · · ⊂ Qr of B satisfying Qi ∩ A = Pi for all i. These prime
ideals are necessarily distinct, hence dim(B) ≥ dim(A).

(11.7) Exercise. Use Theorem 11.6 together with Noether’s Normalisation Lemma to prove, inductively,
that dim(K[X1, . . . , Xn] ≤ n. Deduce from this (and Noether’s Normalisation Lemma) the statement 9.16(1).
[However, this method is insufficient for proving 9.16(2). To do so, one must combine Noether’s Normali-
sation Lemma with the following result.]

(11.8) Theorem (“Going down”). Let A ↪→ B be an integral extension of domains, with A integrally
closed. Given prime ideals P0 ⊂ P1 of A and Q1 ∈ Spec(B) such that Q1 ∩ A = P1, then there exists
Q0 ∈ Spec(B) such that Q0 ⊂ Q1 and Q0 ∩A = P0.

Proof. The proof is more involved that that of “going up”. As we are not going to use this result, we refer
the interested reader to [De 2, III.13] or [Ei, Thm. 13.9].

12. Algebraic and analytic local rings

(12.1) Let K be a field, let Z ↪→ An
K be the zero locus of polynomials f1, . . . , fr ∈ K[X1, . . . , Xn]:

Z : f1 = · · · = fr = 0.

The ring of regular functions on Z

O(Z) = K[X1, . . . , Xn]/(f1, . . . , fr)

contains information about global geometry of Z. What can we say about local geometry of Z around a
given point?

In order to simplify the notation, write B = K[X1, . . . , Xn], J = (f1, . . . , fr) and A = O(Z) = B/J . If
we visualise Z as Spec(A), then a “point” means a prime ideal P ∈ Spec(A); it is of the form P = Q/J ,
where Q ∈ Spec(B) and Q ⊃ J .

According to (10.11.1) we can interpret the localisation AP as the local ring of Z at P – its elements
are represented by functions regular on a suitable open neighbourhood of P in the Zariski topology.

As localisation commutes with quotients, by Proposition 10.8, we have

AP = BQ/JBQ.
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In the special case when P = m ∈ Max(A) corresponds to a K-rational point a = (a1, . . . , an) ∈ Z(K) ⊂ Kn

of Z, then Q = (X1 − a1, . . . , Xn − an), m = (X1 − a1, . . . , Xn − an) and

Am = K[X1, . . . , Xn](X1−a1,...,Xn−an)/(f1, . . . , fr).

(12.2) Unfortunately, it turns out that the local rings Am are not local enough. The problem is that
non-empty Zariski open sets are quite large (for example, on an irreducible curve they are just complements
of finite sets of closed points). They do not allow us to “zoom in” on truly small neighbourhoods of m. Here
is a typical example.

Let char(K) 6= 2,

Z : Y 2 −X2(X + 1) = 0, Z ↪→ A2
K ,

a = O = (0, 0) ∈ Z(K), Q = (X,Y ). The polynomial Y 2 −X2(X + 1) is irreducible in both B = K[X,Y ]
and BQ = K[X,Y ](X,Y ), which means that both rings

A = B/(f), Am = BQ/(f)

are integral domains. However, the curve Z has two branches at the singular point O. This can be seen by
expanding everything in terms of power series in X and Y (the “local coordinates of A2

K at O”). In other
words, we replace the local ring BQ of the plane at the origin by the power series ring

B̂ = lim←−
k
B/Qk = lim←−

k
K[X,Y ]/(X,Y )k = K[[X,Y ]]. (12.2.1)

Note that BQ = K[X,Y ](X,Y ) is a subring of B̂, since any power series (in particular, a polynomial) of the

form 1 + h with h ∈ Q has an inverse (1 + h)−1 = 1− h+ h2 − h3 + · · · ∈ B̂.
As observed in I.4.11, there exists g ∈ 1 +XK[[X]] such that g2 = 1 +X, which implies that

Y 2 −X2(X + 1) = (Y −Xg)(Y +Xg) ∈ K[[X,Y ]]

is reducible in the power series ring K[[X,Y ]]. The two local branches are given by Y ±Xg = 0.
It is natural to interpret the ring

K[[X,Y ]]/(f) = K[[X,Y ]]/((Y −Xg)(Y +Xg))
∼−→ K[[X,Y1]]/((Y1 −X)(Y1 +X)) (Y = Y1g)

(12.2.2)
as the analytic local ring of Z at m. Note that, after a non-algebraic change of coordinates Y = Y1g,
the two branches become linearised: the equation (Y1 − X)(Y1 + X) = 0 represents two lines intersecting
transversally.

However, we must be careful in dealing with the ring (12.2.2). It is of the form B̂/JB̂, but it is not clear
that it depends only on Am. It is true that completions such as (12.2.1) commute with quotients (cf. 12.10
below), but the proof requires some work ([Ei, Thm. 7.2]). If we admit this result (which will be proved in

a special case in Theorem 13.11(1) below), then we can, indeed, identify the ring B̂/JB̂ from (12.2.2) with
the m-adic completion of A (or of Am):

B̂/JB̂
∼−→ Â = lim←−

k
A/mk = lim←−

k
Am/(mAm)k. (12.2.3)

These are special cases of I-adic completions, which generalise power series rings. We now prove a few basic
results about such rings.

(12.3) Definition. Let I be an ideal in a ring A, let M be an A-module. The I-adic completion of M
is the projective limit (see Definition I.3.7)

M̂ = lim←−
k
M/IkM.
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It is a module over the I-adic completion of A

Â = lim←−
k
A/Ik.

There are canonical homomorphisms M −→ M̂ and A −→ Â.

(12.4) Examples. (i) A = K[X1, . . . , Xn], I = (X1 − a1, . . . , Xn − an) = m ∈ Max(K[X1, . . . , Xn]),

Â = K[[X1 − a1, . . . , Xn − an]]. Any power series g ∈ A with non-zero constant term (in particular, any

polynomial that does not vanish at a) is invertible in Â, which implies that Am is naturally a subring of Â.

(ii) A = Z, I = (p) = m ∈ Max(Z) (p a prime number), Â = Zp. Again, Am = Z(p) is a subring of Â = Zp.

(iii) A = K[X,Y ], I = (X) = P ∈ Spec(A) \Max(A), Â = (K[Y ])[[X]]. However, AP is not a subring of Â
(for example, 1/Y ∈ AP ).

(iv) A = K[X,Y ](X), I = (X) = m ∈ Max(A), Â = (K(Y ))[[X]]. In this case Am = A is a subring of Â.

(v) A = R[X], I = (X2 + 1) = m ∈ Max(A), Â
∼−→ C[[Y ]] (this example appeared in the midterm).

(12.5) Exercise. If m ∈ Max(A), then A/mk = Am/m
kAm = Am/(mAm)k for all k ≥ 1; therefore the

m-adic completion Â of A coincides with the mAm-adic completion of the local ring Am. In particular, there
is a canonical homomorphism Am −→ Â. [Hint: use exact sequences 0 −→ mk/mk+1 −→ A/mk+1 −→
A/mk −→ 0 and induction on k.]

(12.6) In examples 12.4(i),(ii),(iv),(v), the canonical homomorphism Am −→ lim←−Am/(mAm)k was injective.

In general, we should think of the canonical homomorphism A −→ Â as a power series expansion. What can
we say about functions with trivial expansion, namely, about

Ker(A −→ Â) =
⋂
k≥1

Ik ⊂ A ?

(12.7) Theorem (Krull). If I is an ideal in a noetherian ring A, then⋂
k≥1

Ik = (0) ⇐⇒ no element of 1 + I is a divisor of zero in A.

Proof. We use the notation I∞ :=
⋂
k≥1 I

k. If there exists a ∈ I for which 1 − a is a divisor of zero, then

x = xa for some x 6= 0, which implies that x = xa = xa2 = · · · ∈ I∞.
Conversely, assume that no element of 1 + I is a divisor of zero. It is enough to show that each element

x ∈ I∞ satisfies x ∈ xI, since an equality x = xa with a ∈ I yields (1− a)x = 0, hence x = 0.
The ideal I = (f1, . . . , fr) is finitely generated, since A is noetherian. For each k ≥ 1 there exists a

homogeneous polynomial Pk ∈ A[X1, . . . , Xr] of degree k such that x = Pk(f1, . . . , fr). The chain of ideals
(P1) ⊂ (P1, P2) · · · in the noetherian ring A[X1, . . . , Xr] stabilises, which means that Pn+1 ∈ (P1, . . . , Pn)
for some n ≥ 1. Writing Pn+1 = QnP1 + · · ·+Q1Pn with Qi ∈ A[X1, . . . , Xr] homogeneous of degree i, we
obtain x = x((Q1 + · · ·+Qn)(f1, . . . , fr)) ∈ xI.

(12.8) Corollary. If A is a noetherian ring, then
⋂
k≥1 I

k = (0) in each of the following cases.
(1) I 6= A and A is a domain.
(2) I ⊂

⋂
m∈Max(A) m (since 1 + I ⊂ A \

⋃
m m = A∗).

(3) I 6= A and A is a local ring (since I ⊂ m, Max(A) = {m}).

(12.9) Proposition. If (A,m) is a noetherian local ring and J = (f1, . . . , fr) ⊂ A is any ideal, then⋂
k≥1(J + mk) = J and the m-adic completion Â = lim←−A/m

k satisfies J = A ∩ JÂ. In particular, A/J is

naturally a subring of Â/JÂ.

Proof. There is nothing to prove if J = A, so we can assume that J ⊂ m. Corollary 12.8(3) applied to the
local ring (A/J,m/J) tells us that

⋂
k≥1((J + mk)/J) = J/J , but the L.H.S. contains (

⋂
k≥1(J + mk))/J ,
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which proves the non-trivial inclusion
⋂
k≥1(J + mk) ⊂ J . This implies that A ∩ JÂ = {a ∈ A | a =∑

figi, gi ∈ Â} ⊂
⋂
k≥1(J + mk) = J (writing each gi (modmk) as hi,k (modmk) for some hi,k ∈ A).

(12.10) If J 6= A in 12.9, then J ⊂ m and there is a canonical ring homomorphism

Â/JÂ −→ (A/J )̂ , (12.10.1)

where (A/J )̂ denotes the m-adic (or m/J-adic, which amounts to the same) completion of A/J .
Another general result of Krull ([Ei, Thm. 7.2], [M, Thm. 8.11]) implies that (12.10.1) is an isomorphism,

of which (12.2.3) (with A in 12.9 being equal to K[X1, . . . , Xn](X1−a1,...,Xn−an)) is a special case. In Theorem
13.11(1) below we prove that (12.10.1) is an isomorphism in the “smooth” case.

13. Local rings in the smooth case and regularity

(13.1) Implicit function theorem in real (resp. complex) analysis. Recall that, if f1, . . . , fr are C∞

(resp. holomorphic) real-valued (resp. complex-valued) functions on some open set U ⊂ Rn (resp. U ⊂ Cn)
containing a = (a1, . . . , an) ∈ Rn (resp. a ∈ Cn) such that

det
(( ∂fi

∂Xj

)
(a)
)

1≤i,j≤r 6= 0, (13.1.1)

then there exists an open subset U ′ ⊂ U containing a such that the projection

pr : Z = {x ∈ U | f1(x) = · · · = fr(x) = 0} −→ Rn−r (resp. Cn−r), (x1, . . . , xn) 7→ (xr+1, . . . , xn)

is a diffeomorphism (resp. a biholomorphic map) between Z ∩ U ′ and the open neighbourhood pr(Z ∩ U ′)
of (ar+1, . . . , an) ∈ Rn−r (resp. in Cn−r). In other words, xr+1 − ar+1, . . . , xn − an are “local coordinates
on Z at a”.

(13.2) We are going to study the condition (13.1.1) in the algebraic situation of 12.1, when K is a field,

f1, . . . , fr ∈ K[X1, . . . , Xn] = B, Z : f1 = · · · = fr = 0, Z ↪→ An
K ,

A = O(Z) = B/J, J = (f1, . . . , fr).

According to Theorem 9.18, the dimension of each irreducible component V (Pi) (where Pi is a minimal
prime ideal of A) of Spec(A) (= of Z) satisfies

dim(A/Pi) ≥ n− r. (13.2.1)

(13.3) “Definition”. We say that P ∈ Spec(A) is a smooth point of Z over K if, after renumbering
of the coordinates X1, . . . , Xn,

det
(( ∂fi

∂Xj

)
(Q)
)

1≤i,j≤r 6= 0 ∈ Frac(B/Q) = Frac(A/P ), (13.3.1)

where P = Q/J , Q ∈ Spec(B). In particular, if P ′ ⊂ P and P is a smooth point of Z over K, so is
P ′. [The attentive reader will have noticed that this “definition” is somewhat horrible, as it depends on
the presentation of A as A = B/J and on the choice of a set of generators f1, . . . , fr of the ideal J . The
true definition is suggested by the statement of Proposition 13.11 below.]

(13.4) Example. The simplest case is that of a plane curve

Z : f(X,Y ) = 0, Z ↪→ A2
K

smooth at the origin O = (0, 0). In other words,
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Q = (X,Y ), f ∈ K[X,Y ], f(0, 0) = 0,
∂f

∂X
(0, 0) 6= 0.

After multiplying f by a non-zero constant in K∗ we can assume that

f = X + c Y +
∑
i+j≥2

ci,jX
iY j .

An easy division algorithm for power series shows that

∀g ∈ K[[X,Y ]] ∃h ∈ K[[X,Y ]] g − fh ∈ K[[Y ]];

moreover, h is unique. In algebraic terms, the composite map

K[[Y ]] ↪→ K[[X,Y ]] −→ K[[X,Y ]]/(f)

is an isomorphism of K-algebras. This a formal power series counterpart of 13.1: from an analytic point of
view, Z is isomorphic around O to a line with the coordinate Y . A general statement of this kind will be
proved in Theorem 13.11(1) below.

(13.5) Proposition (Smoothness at K-rational points and tangent spaces). Let Q = (X1 −
a1, . . . , Xn−an) ∈ Max(B), where a = (a1, . . . , an) ∈ Z(K) ⊂ Kn, P = Q/J = m = (X1−a1, . . . , Xn−an) ∈
Max(A) (then A/m = B/Q = K).
(1) The dual of the tangent space TaZ to Z at the point a (see I.4.6) is naturally isomorphic to the K-vector
space

Q/(Q2 + J) = m/m2 = mAm/m
2Am = mAm/(mAm)2.

(2) dimK(TaZ) ≥ n− r, with equality ⇐⇒ m is a smooth point of Z over K.
(3) If (13.3.1) (= (13.1.1)) holds, then the elements Xr+1 − ar+1, . . . , Xn − an (modm2) form a basis of
the K-vector space m/m2 and mAm = (Xr+1 − ar+1, . . . , Xn − an). [This is an algebraic version of the
statement that Xr+1 − ar+1, . . . , Xn − an are “local coordinates” on Z at a.]

Proof. (1) By definition,

TaZ = {y ∈ Kn |My = 0}, M =

(
∂fi
∂Xj

(a)

)
∈Mr×n(K)

(we consider y as a column vector). The entries of the matrix M can be expressed purely in terms of Q ⊃ J ,
as follows.

Q/Q2 =

n⊕
j=1

K · (Xj − aj) (modQ2), fi (modQ2) =

n∑
j=1

∂fi
∂Xj

(a) (Xj − aj) (modQ2).

If we identify {(Xj − aj) (modQ2)} with the dual basis of the standard basis of Kn, then we obtain that
TaZ ⊂ TaAn

K = Kn = HomK(Q/Q2,K) is equal to

TaZ = Ker(HomK(Q/Q2,K) −→ HomK(J/Q2,K)) = HomK(Q/(Q2 + J),K).

Alternatively, one can use the abstract description of TaZ given in I.4.6. The point a ∈ Z(K) corresponds
to λ ∈ HomK−Alg(A,K) and the tangent space TaZ to the set

{λ̃ ∈ HomK−Alg(A,K[ε]) | pr ◦ λ̃ = λ},

where pr : K[ε] = K + Kε −→ K is the canonical projection. In other words, λ̃(c + x) = c + µ(x)ε for all

c ∈ K and x ∈ m, for a certain map µ : m −→ K. The fact that λ̃ commutes with products is equivalent to

∀ ci ∈ K ∀xi ∈ m µ(c1x1 + c2x2 + x1x2) = c1µ(x1) + c2µ(x2). (13.5.1)
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This condition implies that µ(c1x1) = c1µ(x1), µ(x1x2) = 0 and µ(x1(1 + x2)) = µ(x1). The universal

property 10.2(3) implies that λ̃ canonically extends to a homomorphism of K-algebras Am −→ K[ε]. We
can replace, therefore, A by Am. In this case 1 + mAm ⊂ A∗m and the condition (13.5.1) implies that, for all
x1, x2 ∈ m,

µ(x1) + µ(x2) = µ(x1) + µ(x2(1 + y)) = µ(x1 + x2(1 + y) + x1x2(1 + y)) = µ(x1 + x2),

if we let y = (1+x1)−1−1 ∈ m. It follows that µ is of the form µ = µ̃◦pr, where pr : mAm −→ mAm/(mAm)2

and µ̃ : mAm/(mAm)2 = m/m2 −→ K is K-linear. Conversely, any such µ satisfies (13.5.1).
(2) dimK(TaZ) = n− rk(M) ≥ n− r, with equality ⇐⇒ m is a smooth point of Z over K.
(3) By assumption, M = (M1|M2), where M1 ∈ GLr(K) and M2 = Mr×(n−r)(K), which implies that the
projection

TaZ ⊂ Kr ×Kn−r −→ Kn−r

on the last n − r coordinates is an isomorphism. This is equivalent, by (1), to the fact that Xr+1 −
ar+1, . . . , Xn − an (modm2) form a basis of the K-vector space m/m2 = mAm/(mAm)2. The remaining
statement follows from Corollary 13.7 below applied to Am and N = mAm.

(13.6) Nakayama’s Lemma. Let A be a ring, let J ⊂ A be an ideal contained in all maximal ideals of A.
If M is a finitely generated A-module satisfying M = JM , then M = 0.

Proof. Let M = Am1 + · · ·+Amn. By assumption, there exists a matrix U ∈Mn(J) such that
m1

...

mn

 = U


m1

...

mn

 ∈Mn,

which implies that

det(I − U)


m1

...

mn

 = adj(I − U)(I − U)


m1

...

mn

 = 0 ∈Mn,

hence det(I − U) ·m = 0 for all m ∈M . However,

det(I − U) ∈ 1 + J ⊂ A \
⋃

m∈Max(A)

m = A∗;

therefore m = 0 for all m ∈M .

(13.7) Corollary. If (A,m) is a local ring, N is a finitely generated A-module and n1, . . . , nr ∈ N are
elements whose images n1, . . . , nr ∈ N/mN generate N/mN as a vector space over A/m, then n1, . . . , nr
generate N as an A-module.

Proof. M = N/(An1 + · · ·+ Anr) is a finitely generated A-module satisfying M/mM = 0; thus M = 0 and
N = An1 + · · ·+Anr.

(13.8) Dimension of local noetherian rings. The first definition of dimension dim1 (= the number of
independent parameters) has the following local variant.

Let (A,m) be a local noetherian ring. For every N ≥ 1, the quotient ring A/mN is artinian, hence of
dimension zero. It is natural to consider, therefore, the following integer:

dim3(A) = min{k ≥ 0 | ∃x1, . . . , xk ∈ m ∃N ≥ 1 (x1, . . . , xk) ⊃ mN} ∈ N
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(one should think of x1, . . . , xk as a system of “weak local coordinates”). Note that dim3(A) is bounded
above by the minimal number of generators of the ideal m, which is equal to dimA/m(m/m2), by Corollary
13.7. Therefore

dim3(A) ≤ dimA/m(m/m2). (13.8.1)

One of the main results of dimension theory states that

dim3(A) = dim(A), (13.8.2)

which is, essentially, a reformulation of Krull’s Principal Ideal Theorem in its general form 10.21; see [Ei,
Cor. 10.7] (in particular, all local noetherian rings have finite dimension!). As a result,

dim(A) ≤ dimA/m(m/m2). (13.8.3)

In the situation considered in Proposition 13.5(1), (13.8.3) reads as

dim(Am) ≤ dimK(TaZ), (13.8.4)

with dim(Am) being equal to the maximum of dimensions of all irreducible components of Spec(A) (= of Z)
containing m (= a). Recall that (13.2.1) tells us that

n− r ≤ dim(Am). (13.8.5)

In particular, if we admit (13.8.2), then (13.8.4) becomes an equality ⇐⇒ m is a smooth point of Spec(A).
This observation leads naturally to the following definition.

(13.9) Definition. A noetherian local ring (A,m) is regular if dim(A) = dimA/m(m/m2).

(13.10) As observed in 13.8, smoothness of aK-rational point is equivalent to regularity of the corresponding
local ring, provided we admit the fundamental equality dim3 = dim. We are now going to relate smoothness
to regularity using power series expansions and completions. This methods yields directly the equality
dim3(Am) = dim(Am) and the isomorphism (12.10.1) at smooth K-rational points.

(13.11) Theorem. Let Q = (X1 − a1, . . . , Xn − an) ∈ Max(B), where a = (a1, . . . , an) ∈ Z(K) ⊂ Kn,
P = Q/J = m = (X1 − a1, . . . , Xn − an) ∈ Max(A). Assume that (13.3.1) (= (13.1.1)) holds.

(1) (Formal implicit function theorem) The canonical maps α : K[[Xr+1 − ar+1, . . . , Xn − an]] −→ B̂/JB̂,

where B̂ = K[[X1 − a1, . . . , Xn − an]] = lim←−
k
B/Qk = lim←−

k
BQ/Q

kBQ, and β : B̂/JB̂ −→ Â, where Â =

lim←−
k
A/mk = lim←−

k
Am/m

kAm, are isomorphisms of K-algebras.

(2) The ring Am is a domain.
(3) mAm = (Xr+1 − ar+1, . . . , Xn − an).
(4) Spec(A) (= Z) has a unique irreducible component containing m (= a); its dimension is dim(Am) = n−r.
(5) Am is a regular local ring.
(6) Am is a UFD. [In fact, one can show that every regular local ring is a UFD.]

Proof. (1) After a linear change of variables X1, . . . , Xr we can assume that ∂fi/∂Xj(a) = δij (1 ≤ i, j ≤ r).
This means that the power series expansion of fi − (Xi − ai) in K[[X1 − a1, . . . , Xn − an]] contains only
linear terms involving Xj − aj for j > r and terms of degree ≥ 2. As in 13.4, an easy division algorithm
shows that every g ∈ K[[X1 − a1, . . . , Xn − an]] can be written in a unique way as g = f1h + g1, where
g1 ∈ K[[X2 − a2, . . . , Xn − an]]. By induction, this implies that α is an isomorphism. The statement

about β follows from the fact that A/mk = B/(Qk + J) = B̂/(QkB̂ + JB̂), which is isomorphic (via α) to
K[[Xr+1 − ar+1, . . . , Xn − an]]/(Xr+1 − ar+1, . . . , Xn − an)k.
(2) Proposition 12.9 applied to the local ring (BQ, Q) and the ideal JBQ tells us that Am = BQ/JBQ is a

subring of B̂/JB̂, which is a domain, by (1).
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(3) The two ideals I = (Xr+1−ar+1, . . . , Xn−an) ⊂ (X1−a1, . . . , Xn−an) = mAm ⊂ Am generate the same

ideals of B̂/JB̂, since α is an isomorphism. Applying β, we obtain that IÂ = (mAm)Â, hence I = mAm, by
Proposition 12.9 applied to Am.
(4) Uniqueness follows from (2). The arguments in (1) and (2) show that, for each i ≤ r,

Bi = BQ/(f1, . . . , fi)BQ ↪→ B̂/(f1, . . . , fi)B̂
∼−→ K[[Xi+1 − ai+1, . . . , Xn − an]]

is a domain and the class of fi+1 in Bi (if i < r) maps to Xi+1 − ai+1, which implies that it is neither
zero nor invertible in Bi. Therefore dim(Bi+1) = dim(Bi/(fi+1)) = dim(Bi) − 1, by Theorem 9.9 (strictly
speaking, we should work with the rings B′i = B[1/h]/(f1, . . . , fr)B[1/h] of finite type over K, where h ∈ B,
h(a) 6= 0 is chosen in such a way that V (h) contains all irreducible components of Z not containing a; then
B′i injects into Bi), hence dim(Am) = dim(Br) = dim(B0)− r = n− r.
(5) Combine (4) with Proposition 13.5(2).

(6) The mAm-adic completion Â of Am is isomorphic to a power series ring over K, which is a UFD [ZS 2,

VII.1, Thm. 6]. To show that Am itself is a UFD one must check that the condition I.5.7(ii’) for Â implies
the same condition for Am; see the arguments in ([Mu 1, III.7, Lemma 2] and [Mu 2, Thm. 1.28]).

(13.12) The UFD property. (i) The statement of Theorem 13.11(6) can be reformulated geometrically,

using Theorem 10.20, as follows: any closed irreducible subset V (P̃ )
∼−→ Spec(A/P̃ ) ⊂ Spec(A) of dimension

dim(A/P̃ ) = dim(Am)−1 containing m is given by a single equation g = 0, on a suitable open neighbourhood

of m ∈ Spec(A) in the Zariski topology. Indeed, dim(A
P̃

) = 1, hence P̃Am = gAm for some g ∈ Am, which

gives already P̃A[1/h] = gA[1/h] for some h ∈ A \m and g ∈ A[1/h].
(ii) This property can sometimes hold even in the non-smooth case. The following examples are discussed
in detail in [Mu 1, III.7, Ex. J]. Let K be a field of characteristic char(K) 6= 2, let f(X1, . . . , Xn) be a
non-degenerate quadratic form over K in n ≥ 3 variables. Then f is irreducible and the quadratic cone

Z : f = 0, Z ⊂ An
K

has ring of functions A = O(Z) = K[X1, . . . , Xn]/(f), which is a domain. The origin O = (0, . . . , 0) ∈ Z(K)
(which corresponds to Q = (X1, . . . , Xn) ∈ Max(K[X1, . . . , Xn]) and m = Q/(f) ∈ Max(A)) is not a smooth
point of Z over K.
(iii) If n = 3 and f = X2

1 + X2
2 − X2

3 , then the factorisations X1 · X1 = (X3 + X2)(X3 − X2) ∈ A show

that A (in fact, even Am) is not a UFD. Geometrically, this means that the prime ideal P̃ = (X1, X3 −X2)
defining a line L on Z passing through O cannot be defined by a single equation (the equation X3−X2 = 0
defines a double line, since A/(X3 −X2)

∼−→ K[X1, X2]/(X2
1 ); geometrically, the plane H : X3 −X2 = 0 is

tangent to Z and the intersection Z ∩H is the line L taken with multiplicity two).
(iv) Similarly, if n = 4 and f = X2

1 + X2
2 − X2

3 − X2
4 , then the factorisations (X1 + X4)(X1 − X4) =

(X3 + X2)(X3 − X2) ∈ A show that A (in fact, even Am) is not a UFD. The ideal (X1 − X4, X3 − X2)
defines a plane lying on Z which cannot be defined (locally around O) by a single equation.
(v) By contrast, A is a UFD for n ≥ 5 ([Mu 1, III.7, Ex. J]).

(13.13) Proposition. If m ∈ Max(A) corresponds to a K-rational point a ∈ Z(K) and if Am is regular,
then m is a smooth point of Z over K in the following sense: there exist g1, . . . , gs ∈ J and h ∈ B such that
h(a) 6= 0 (⇐⇒ h 6∈ m), JB[1/h] = (g1, . . . , gs)B[1/h] and, after renumbering of the coordinates X1, . . . , Xn,

det
(( ∂gi

∂Xj

)
(a)
)

1≤i,j≤s 6= 0. (13.13.1)

[Geometrically, the equality JB[1/h] = (g1, . . . , gs)B[1/h] means that Z is given on the Zariski open neigh-
bourhood D(h) ⊂ Spec(B) = An

K of Q by the set of equations g1 = · · · = gs = 0.]

Proof. Choose a minimal set g1, . . . , gs ∈ J ⊂ Q whose linear terms define the tangent space TaZ; then

n− s = dimK(TaZ) = dim(Am),
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since Am is regular. Consider the ideal J ′ = (g1, . . . , gs) ⊂ J and the ring A′ = B/J ′ ⊃ m′ = Q/J ′. By
construction, m′ is a smooth point of Z ′ : g1 = · · · = gs = 0, which yields (13.13.1), after renumbering of the
coordinates.

In Spec(B), we have V (J) ⊂ V (J ′). Geometrically, V (J ′) contains a unique irreducible component
containing Q, by Theorem 13.11(2); it has dimension n − s, by Theorem 13.11(4). As dim(Am) = n − s,
V (J) also contains an irreducible component containing Q of dimension n−s. This suggests that V (J)∩U =
V (J ′) ∩ U for some open neighbourhood of m ∈ Spec(A).

We can prove a more precise property algebraically. The previous statements can be rephrased by saying
that A′m′ is a domain and that there exists a minimal prime ideal P̃ ⊂ Am such that

dim(Am/P̃ ) = n− s = dim(A′m′). (13.13.2)

Consider the surjection α : A′m′ −→ Am/P̃ between two domains of the same dimension. If α is not an
isomorphism, then any chain of prime ideals P0 ( · · · ( Pr in Am gives rise to a longer chain (0) ( Ker(α) ⊂
α−1(P0) ( · · · ( α−1(Pr) in A′m′ , which contradicts (13.2.2). It follows that α is an isomorphism, which

implies that α′ : A′m′ −→ Am and Am −→ Am/P̃ are also isomorphisms (in particular, Am is a domain,
which means that Z has a unique irreducible component containing m). The fact that α′ is an isomorphism
is equivalent to JBQ = (g1, . . . , gs)BQ, which implies that JB[1/h] = (g1, . . . , gs)B[1/h] for some h 6∈ m,
since both ideals J and (g1, . . . , gs) are finitely generated.

(13.14) Smoothness = regularity. We can sum up Theorem 13.11(5) and Proposition 13.13 by saying
that

∀m ∈ Max(A) such that A/m = K m is a smooth point of Z over K ⇐⇒ Am is a regular local ring.

This equivalence still holds if A/m is a separable extension of K (in particular, for all m ∈ Max(A) if K is a
perfect field).

If A/m is an inseparable extension of K, then smoothness still implies regularity, but the converse need
not hold. Here is a simple example.

(13.15) Smoothness 6= regularity. Let K be a non-perfect field of char(K) = 3, let c ∈ K \K3. Consider
the curve

Z : Y 2 − (X3 − c) = 0, Z ↪→ A2
K

with A = O(Z) = K[X,Y ]/(Y 2− (X3− c)). The extension L = K(γ), where γ3 = c, is a purely inseparable
cubic extension of K. The point a = (γ, 0) ∈ Z(L) gives rise to maximal ideals Q′ = (X − γ, Y ) ∈
Max(L[X,Y ]), Q = Q′∩K[X,Y ] = (X3−c, Y ) ∈ Max(K[X,Y ]) and m = Q/(Y 2−(X3−c)) = (X

3−c, Y ) =

(Y
2
, Y ) = (Y ) ∈ Max(A). In particular, mAm = (Y ) is generated by one element, which means that Am is a

regular local ring of dimension one. Its residue field is A/m = K[X,Y ]/(Y, Y 2−(X3−c)) = K[X]/(X3−c) =
L.

On the other hand, the polynomial f = Y 2 − (X3 − c) satisfies

∂f

∂X
(a) =

∂f

∂Y
(a) = 0,

which means that m is not a smooth point of Z over K. In fact, the same curve over L becomes

ZL : Y 2 − (X − γ)3 = 0,

as in 5.13. The localisation of O(ZL) = L[X,Y ]/(Y 2 − (X − γ)3) at (X − α, Y ) is not regular.

(13.16) Smoothness and dimension of intersections. The existence of the “local coordinates” Xi−ai
(r < i ≤ n) on Z around a smooth K-rational point a ∈ Z(K) established in Proposition 13.5 and Theorem
13.11 has the following important consequence ([Mu 1, III.6, Prop. 4], [Mu 2, Prop. 3.28]).
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If we embed Z into Z ×Z ⊂ An
K ×An

K diagonally (∆ : b 7→ (b, b)) and if we denote by Xi (resp. by X ′i)
the coordinates on the first (resp. on the second) copy of An

K , then ∆(Z) ⊂ Z × Z is given, in a suitable
Zariski open neighbourhood of ∆(m), by n− r equations

Xi −X
′
i = 0, r < i ≤ n.

If J1, J2 ⊃ J are ideals of K[X1, . . . , Xn] containing Q, they define Z1 ⊂ Z and Z2 ⊂ Z containing m. Their
intersection Z1 ∩Z2 ⊂ Z is equal to (Z1 ×Z2)∩∆(Z). As a result, any irreducible component Y of Z1 ∩Z2

containing m is obtained (in a Zariski open neighbourhood U of m) from Z1×Z2 by imposing n−r equations.
Theorem 9.18 applied to A = O(Z1 × Z2)/P0, for any minimal prime ideal P0, then yields

dim(Y ) ≥ dim(Z1) + dim(Z2)− (n− r) = dim(Z1) + dim(Z2)− dim(Z) (13.16.1)

(we can shrink U so that Z becomes irreducible).
The inequality need not hold if m is not smooth. The following standard example ([Mu 1, III.6, Ex.

I]) coincides with the quadratic cone from 13.12(iv), after an obvious linear change of coordinates. Let
Z1, Z2 ↪→ Z ↪→ A4

K be given by

Z : X0X3 −X1X2 = 0, Z1 : X0 = X1 = 0, Z2 : X2 = X3 = 0.

Then Y = Z1 ∩ Z2 is the non-smooth point O = {0, 0, 0, 0} of Z and

dim(Zi) = 2, dim(Z) = 3, dim(Y ) = 0. (13.16.2)

A proper understanding of this example involves projective geometry. If we consider (X0 : X1 : X2 : X3) as

homogeneous coordinates in the projective space P3
K , then Z̃ (= the image of Z \{O} in P3

K) is a projective
quadratic surface

Z̃ : X0X3 −X1X2 = 0, Z̃ ↪→ P3
K

and each Z̃i (= the image of Zi \ {O} in P3
K) is a projective line on the quadric Z̃. Their intersection

Z̃1 ∩ Z̃2 = ∅ is empty.
In fact Z̃ is isomorphic to the product P1

K ×P1
K of two projective lines via the Segre embedding

P1
K ×P1

K ↪→ P3
K , (a : b), (c : d) 7→ (ab : ac : bd : cd)

and Z̃1 = {(0 : 1)} ×P1
K = {0} ×P1

K , Z̃2 = {(1 : 0)} × P1
K = {∞} ×P1

K . In other words, this example is
a projective analogue of the fact that two parallel affine lines {0} ×A1

K and {1} ×A1
K do not intersect in

A1
K ×A1

K = A2
K .

14. Discrete valuation rings

(14.1) Discrete valuation rings are the simplest one-dimensional rings, namely, regular one-dimensional
local rings. An archetypal example is provided by the local ring A = K[X](X) of a line A1

K over a field K

at the origin and by its completion Â = K[[X]].

Both A and Â are principal local domains. In particular, their maximal ideals are principal, generated
by X (a “local parameter”). Every non-zero element a of A resp. Â can be written in a unique way as
a = Xnu, where u is invertible and n = v(a) ≥ 0 is the valuation of a (= the order of vanishing of a,
considered as a function on A1

K , at the origin).

(14.2) Definition. A discrete valuation on a field K is a surjective map v : K −→ Z ∪ {+∞} such that
(i) v(x) = +∞ ⇐⇒ x = 0.
(ii) ∀x, y ∈ A v(xy) = v(x) + v(y).
(iii) ∀x, y ∈ A v(x+ y) ≥ min(v(x), v(y)).
The valuation ring of v is the subring A = {x ∈ K | v(x) ≥ 0}. Its multiplicative group is equal to
A∗ = {x ∈ A | v(x) = 0}, which implies that A is a local ring with maximal ideal m = {x ∈ A | v(x) > 0} =
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(t), where t ∈ A is any element of valuation v(t) = 1 (such an element is called a uniformiser or a local
parameter of A).

(14.3) Definition. A domain A is a discrete valuation ring (often abbreviated as DVR) if it is the
valuation ring of a suitable discrete valuation v on its fraction field K = Frac(A). In concrete terms, A is
a local domain whose maximal ideal m = (t) is principal and for which A \ {0} =

⋃
n∈N tnA∗ (a disjoint

union). Indeed, this decomposition gives a disjoint union K \ {0} =
⋃
n∈Z t

nA∗ and the corresponding
discrete valuation v(tnA∗) = n.

(14.4) Exercise. If A is a discrete valuation ring with uniformiser t, so is its completion

Â = lim←−n
A/tnA.

(14.5) Examples. (i) K = k(X), where k is a field. As in I.5.10, every irreducible non-constant polynomial
π ∈ k[X] defines a discrete valuation on K = Frac(k[X]) given by

vπ(f/g) = vπ(f)− vπ(g),

where vπ(f) is the maximum exponent n ≥ 0 for which πn divides f in k[X]. The corresponding valuation

ring is A = k[X](π) and π is its uniformiser. If π = X − c for some c ∈ k, then Â = k[[X − c]] and

Frac(Â) = k((X − c)).
(ii) K = k(X) has another discrete valuation, namely

v∞(f/g) = deg(g)− deg(f),

whose uniformiser is 1/X (a “local parameter at ∞ ∈ P1(k)”). In this case Â = k[[1/X]] and Frac(Â) =
k((1/X)).
(iii) K = Q has p-adic discrete valuations (where p is a prime number) given by

vp(p
n a

b
) = n, a, b ∈ Z, p - ab.

The valuation ring of vp is equal to Z(p), its uniformiser is p and its completion is the ring of p-adic integers
Zp (whose fraction field is the field of p-adic numbers Qp).

(14.6) Before we pass to an abstract characterisation of discrete valuation rings we need a few definitions.

(14.7) Definition. A fractional ideal of a domain A is an A-submodule I ⊂ K = Frac(A) of the form
I = α−1I0, where α ∈ A \ {0} and I0 is a non-zero ideal of A.

(14.8) Exercise. If I and J are fractional ideals of A, so are I + J = {x + y | x ∈ I, y ∈ J}, IJ =
{
∑r
i=1 xiyi | r ≥ 0, xi ∈ I, yi ∈ J} and I−1 = {x ∈ K | xI ⊂ A}.

(14.9) Definition. A fractional ideal I of a domain A is invertible if there exists a fractional ideal J such
that IJ = A (⇐⇒ II−1 = A). For a non-zero ideal I ⊂ A, this is equivalent to the existence of a non-zero
ideal I ′ ⊂ A such that II ′ = (a) is a principal ideal.

(14.10) Proposition. An invertible fractional ideal I is finitely generated (as an A-module).

Proof. If II−1 = A, then there exist xi ∈ I and yi ∈ I−1 such that
∑r
i=1 xiyi = 1. Multiplying this

identity by an arbitrary z ∈ I, we obtain that z =
∑r
i=1(zyi)xi ∈ Ax1 + · · · + Axr, since zyi ∈ A; thus

I = Ax1 + · · ·+Axr.

(14.11) Theorem. Let A be a local ring with non-zero maximal ideal m 6= (0) (in other words, A is not a
field). The following properties are equivalent.
(1) A is a DVR.
(2) A is a PID.
(3) A is a regular noetherian local ring of dimension dim(A) = 1.
(4) A is noetherian, m = (t) is principal and dim(A) 6= 0.
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(5) A is a noetherian normal domain of dimension dim(A) = 1.
(6) A is a domain and every fractional ideal of A is invertible.

Proof. The implications (1) =⇒ (2) =⇒ (3) =⇒ (4) and (1) =⇒ (6) are automatic (note that the only
non-zero ideals of a DVR are (tn), n ≥ 0). The implication (2) =⇒ (5) follows from Proposition 3.2 and
Lemma III.3.11.
(4) =⇒ (1): for each a ∈ A \ {0} we have either a ∈ A \ m = A∗, or a = ta1 for some a1 ∈ A \ {0}. In the
latter case we can apply the same argument to a1 and continue. This process must stop after finitely many
steps, since

⋂
n≥1(tn) = (0), by Krull’s Theorem 12.7. Therefore A \ {0} =

⋃
n≥1 t

nA∗. By assumption,
there exists a prime ideal P ( m. If P 6= (0), then there exists a ∈ P , a 6= 0. As above, a = tnu with u ∈ A∗
and n ≥ 1 (n 6= 0, since 1 6∈ P ). However, tn ∈ P implies that t ∈ P (since P ∈ Spec(A)), which yields a
contradiction m = P . It follows that P = (0), hence A is a domain (and Spec(A) = {(0),m}), which implies
that A \ {0} =

⋃
n≥1 t

nA∗ is a disjoint union; thus A is a DVR.

(5) =⇒ (3): the assumptions imply that Spec(A) = {(0),m}. As m 6= (0), the quotient m/m2 is non-zero, by
Nakayama’s Lemma 13.6. Fix x ∈ m such that x 6∈ m2. We must show that m = (x). Corollary 8.11(2) tells
us that

√
(x) = m. This ideal is finitely generated, which implies that mn ⊂ (x) ⊂ m for some n ≥ 2. For each

y ∈ mn−1 the ideal (y/x)m ⊂ A cannot be equal to A, since x 6∈ mn; thus (y/x)m ⊂ m. Proposition 2.6(3)
implies that y/x ∈ Frac(A) is integral over A, hence y/x ∈ A, which means that mn−1 ⊂ (x). Decreasing
induction shows that m ⊂ (x) ⊂ m, hence m = (x).
(6) =⇒ (4): the assumption (0) ∈ Spec(A) \ {m} implies that dim(A) 6= 0. According to Proposition
14.10, A is noetherian. In particular, m = (x1, . . . , xr) is finitely generated. If xi | xj , then we can omit
xj . As a result, if m is not principal, then there exist x, y ∈ m \ {0} such that x - y and y - x. Neither
of the ideals {a ∈ A | ax ⊂ (y)} and {a ∈ A | ay ⊂ (x)} contains 1, which means that they are both
contained in m, hence (x)−1 ⊂ y−1m and (y)−1 ⊂ x−1m. It follows that the ideal I = (x, y) satisfies
I−1 = (x)−1 ∩ (y)−1 ⊂ x−1m ∩ y−1m, hence II−1 ⊂ xx−1m + yy−1m = m, which means that I is not
invertible. This contradiction implies that m = (t) is principal.

(14.12) Branches of plane curves, Newton polygons, Puiseux expansions. Let k be an algebraically
closed field of characteristic zero. The complete DVR k[[T ]] is a very simple object. The only finite extensions
of Frac(k[[T ]]) = k((T )) are the fields k((T 1/d)) (d ≥ 1), and the normalisation of k[[T ]] in k((T 1/d)) is
k[[T 1/d]] ([Ei, Cor. 13.15]).

It follows that every polynomial f ∈ K[X,T ] =
∑
ci,jX

iT j with degX(f) = n ≥ 1 factors as

f(X,T ) = h(T )

n∏
i=1

(X − gi),

for suitable gi ∈ k((T 1/di)). The exponents 1/di and the leading terms of the series gi can be read off from
the Newton polygon of f , which is the lower boundary of the convex hull of the finite set S = {(i, j) |
ci,j 6= 0} ⊂ {0, 1, . . . , n} ×N.

For example,

X2 + aT 2X − T = (X − g1)(X − g2), g1,2 = ±T 1/2 + · · ·

and S = {(0, 1), (1, 2), (2, 0)}. Another example is given by

TX2 + (1 + bT )X − T 4 = (X − g1)(X − g2), g1 = −T−1 + · · · , g2 = T 3 + · · ·

and S = {(0, 4), (1, 0), (1, 1), (2, 1)}. Can you guess the general rule?

15. Dedekind rings

Discrete valuation rings are non-singular one-dimensional local objects. Dedekind rings are non-singular
one-dimensional global objects. This is a geometric characterisation, but they first appeared in arithmetic,
thanks to the property 15.2 for rings of integers in finite extensions of Q.
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(15.1) Definition. A Dedekind ring is a domain A which is not a field (even though some authors allow
fields to be Dedekind rings . . . ) and which satisfies the following equivalent conditions.
(1) A is noetherian and the localisations of A at all maximal ideals are discrete valuation rings.
(2) A is noetherian, integrally closed and all non-zero prime ideals are maximal.
(3) All fractional ideals of A are invertible (equivalently, the set of all fractional ideals of A is a group with
respect to multiplication).
[For example, a PID which is not a field is a Dedekind ring.]

Proof. (1) =⇒ (2): by assumption, Am is a DVR, for each m ∈ Max(A). Proposition 10.19(2) then shows
that A is integrally closed. Moreover, dim(A) = supm∈Max(A) dim(Am) = 1, which implies that non-zero
prime ideals of A are maximal.
(2) =⇒ (1): the assumption (2) implies that dim(Am) = 1 for all m ∈ Max(A) and that each Am is a normal
domain (by 10.17(1)); thus Am is a DVR, thanks to Theorem 14.11(5).
(3) =⇒ (1): the assumption (3) implies that A is noetherian, by Proposition 14.10, and that all fractional
ideals of Am (m ∈ Max(A)) are invertible. As Am is not a field, Am is a DVR, by Theorem 14.11(6).
(1) =⇒ (3): see Corollary 15.3 below (the reader is invited to check that our reasoning is not circular).

(15.2) Theorem (Unique factorisation into prime ideals). Let A be a Dedekind ring in the sense of
Definition 15.1(1). The (well-defined) maps

div : {non− zero ideals of A} −→
⊕

m∈Max(A)

N, I 7→ (vm(I)), IAm = (mAm)vm(I)

and
I :

⊕
m∈Max(A)

N −→ {non− zero ideals of A}, (nm) 7→
∏
m

mnm

define mutually inverse bijections satisfying div(IJ) = div(I) + div(J).

Proof. According to Corollary 8.11(2), the radical of any non-zero ideal I of A is of the form
√
I =

m1 ∩ · · · ∩mr = m1 · · ·mr, for some mi ∈ Max(A). As
√
I is finitely generated, there exists k ≥ 1 such that

I ⊃ (m1 · · ·mr)k, which implies that IAm = Am for all maximal ideals m 6= m1, . . . ,mr. In particular, the
map div is well-defined.

For m′ 6= m we have m′ + m = A, which implies that m′Am = Am. Consequently, div ◦ I = id.
As I((nm))I((n′m)) = I((nm + n′m)), it remains to check that div is injective. If IAm = JAm for all m,

then the ideal I0 = {x ∈ A | xI ⊂ J} satisfies I0Am = Am, hence (A/I0)m = 0, for all m; thus I0 = A by
10.18(2). In particular, I ⊂ J ; by symmetry, J ⊂ I and I = J .

(15.3) Corollary. Let A be a Dedekind ring in the sense of Definition 15.1(1). Then every non-zero ideal
I of A is invertible (hence A satisfies the condition 15.1(3)).

Proof. Fix a ∈ I, a 6= 0. As (a) ⊂ I, we have (a)Am ⊂ IAm and vm((a)) ≥ vm(I) for all m ∈ Max(A). The
ideal J =

∏
m mvm((a))−vm(I) (the product is finite) then satisfies IJ = (a), since div(I) + div(J) = div((a)).

(15.4) Corollary. Let A be a Dedekind ring. The bijections from Theorem 15.2 naturally extend to
mutually inverse isomorphisms of abelian groups

{fractional ideals of A} ∼−→
⊕

m∈Max(A)

Z.

(15.5) Theorem. Let A be a noetherian domain of dimension dim(A) = 1, let L be a finite extension of
the fraction field K = Frac(A), let B be the normalisation of A in L. If either (i) A is a Dedekind ring, or
(ii) A is an algebra of finite type over a field k, then B is a Dedekind ring (of finite type over k in (ii)).
[In fact, B is always a Dedekind ring, but the hard part is to show that it is noetherian; this is the content
of the Krull-Akizuki theorem [Ei, Thm. 11.13], [M, Thm. 11.7].]

Proof. In the special case when B is a finitely generated A-module, so is every ideal of B (since A is
noetherian), which implies that B is also noetherian. Moreover, dim(B) = dim(A) = 1, by Theorem 11.6.
Consequently, B satisfies 15.1(2).
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The above argument applies in the case (ii), thanks to Theorem 4.10, and in the case (i) if the extension
L/K is separable, by Theorem 4.3(2). By transitivity of normalisation, it remains to treat the case (i) when
L/K is a non-trivial purely inseparable extension. In this case char(K) = p and there exists q = pr > 1 such
that Lq ⊂ K. The extensions K ⊂ L ⊂ K1/q contain rings A ⊂ B ⊂ A1/q and B = {b ∈ L | bq ∈ A}. The
Frobenius morphism ϕq : A1/q ∼−→ A is bijective, which means that A1/q is a Dedekind ring. In particular,
for every non-zero ideal I ⊂ B there exists a non-zero ideal J ⊂ A1/q such that (IA1/q)J = (α) (α ∈ A1/q)
is a principal ideal. Taking the q-th powers we obtain A(IqJq) = αqA, hence I(Iq−1JqB) = αqB; therefore
I is invertible and B is a Dedekind ring, thanks to 15.1(3).

(15.6) In the situation (ii) of Theorem 15.5 we can interpret A as the ring of regular functions O(Z) on an
irreducible reduced affine curve Z over k. Taking L = K = Frac(A), the normalisation B of A in Frac(A)

corresponds to a curve Z̃, which is regular everywhere. The inclusion A ↪→ B defines a map Z̃ −→ Z, (a
“desingularisation of Z”), which is an isomorphism outside a finite set of closed points. If the field k is

perfect, then all points of Z̃ are smooth over k.

(15.7) What is the relation between normalisation and desingularisation in the higher-dimensional case?
If A = O(Z) = K[X1, . . . , Xn]/I is a normal domain, so are its localisations AP at all P ∈ Spec(AP ). In
particular, if P is minimal among non-zero prime ideals, then dim(AP ) = 1 and AP is a DVR, by Theorem
14.11(5). Geometrically, V (P )

∼−→ Spec(A/P ) ⊂ Spec(A) is an “irreducible subvariety” of Z of dimension
dim(A/P ) = dim(A) − dim(AP ) = dim(A) − 1. The fact that AP is a regular local ring means that Z is
non-singular along V (P ). Therefore all singularities of Z occur in dimension ≤ dim(A) − 2 (Z is regular
in codimension 1). Moreover, the discrete valuation on Frac(AP ) = Frac(A) attached to AP defines the
order of vanishing of rational functions f ∈ Frac(A)∗ along V (P ).

The cone Z : X2
1 + X2

2 −X2
3 = 0 from 13.12(iii) gives an example when A is normal, dim(A) = 2 and

there is a singularity in dimension 2− 2 = 0: Am is not regular if m = (X1, X2, X3) is the maximal ideal of
A corresponding to the origin (0, 0, 0) ∈ Z(K).

In general, there is a whole hierarchy of algebraic and geometric properties of rings, such as

regular =⇒ local complete intersection =⇒ Gorenstein =⇒ Cohen−Macaulay

(see [AK], [BH]). Serre’s criterion ([Se, III.C, Prop. 9])

normal ⇐⇒ regular in codimension 1 and Cohen−Macaulay in codimension 2

implies that, for any irreducible f ∈ K[X1, . . . , Xn] \ K, the hypersurface Z : f = 0 is normal ⇐⇒ it is
regular in codimension one ([Mu 1, III.8, Prop. 2]). On the other hand, Example K(B) in [Mu 1, III.8] shows
that there exists a surface in A4

K which is regular in codimension one, but which is not normal.

(15.8) If A = Z, K = Q and [L : Q] <∞, then we obtain from Theorem 15.5(i) that the ring of algebraic
integers OL of L is a Dedekind ring. In particular, non-zero ideals of OL have unique factorisation into
maximal ideals (= non-zero prime ideals).

(15.9) Ramification. If A is a Dedekind ring, K = Frac(A) ↪→ L a finite extension and B the normalisation
of A in L, then each m ∈ Max(A) factors in B as

mB =

r∏
i=1

meii , (mi ∈ Max(B)),

where ei ≥ 1 is the ramification index of mi above m. The phenomenon of ramification (when ei > 1) is
related to the discriminants studied in III.7. Each residue field B/mi is a finite extension of A/m; denote by
fi = [B/mi : A/m] its degree. There is a fundamental inequality

r∑
i=1

eifi ≤ [L : K], (15.9.1)

which becomes an equality
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r∑
i=1

eifi = [L : K] (15.9.2)

in the special case when Bm is a finitely generated module over Am (which is true, for example, if L/K is
separable or if A is an algebra of finite type over a field or if A is a complete DVR).

(15.10) Exercise. Discuss the equality (15.9.2) in the case when A = Z, B = Z[i] (resp. A = k[X],
B = k[Y ], Y 2 = X).
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[Ei] D. Eisenbud, Commutative algebra, Graduate Texts in Mathematics 150, Springer, New York, 1995.
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Hautes Études Scientifiques 24, 1965.

[ILO] L. Illusie, Y. Laszlo, F. Orgogozo, Travaux de Gabber sur l’uniformisation locale et la cohomologie
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[Sa] P. Samuel, Théorie algébrique des Nombres, Hermann, 1967.
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