FIMFA: Examen du mercredi 30 mai 2012, Analyse complexe, durée 3h.

Les notes de cours ou les calculatrices ne sont pas autorisées.

Question de cours.

Rappeler la preuve du fait que si f_n est une suite de fonctions holomorphes sur le disque unité ouvert $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, telle que pour tout n et tout $z \in \mathbb{D}$, $|f_n(z)| \leq 1$, alors il existe une sous-suite f_{n_k} qui converge uniformément sur tout disque $\mathbb{D}_r = r\mathbb{D}$ avec r < 1, vers une fonction holomorphe f.

Partie I. Applications du théorème d'Hadamard.

0) Rappel:

On se donne une fonction entière F telle que pour un certain $\rho > 0$, il existe un réel C de sorte que pour tout $z \in \mathbb{C}$, $|F(z)| \leq C(1 + \exp(C|z|^{\rho}))$. Rappeler précisément (sans donner la preuve...) ce que le théorème d'Hadamard permet d'en déduire concernant la factorisation de cette fonction F.

1) Deux applications simples:

- 1a) Montrer qu'il existe une infinité de nombres complexes z_n pour lesquels $e^{z_n} z_n = 0$.
- 1b) Soit F une fonction entière d'ordre fini, telle que pour tout $z \in \mathbb{C}$, $F(z) \neq 0$. Que peut-on dire de la fonction F? On suppose de plus que F n'est pas constante. Montrer qu'alors $F(\mathbb{C}) = \mathbb{C} \setminus \{0\}$.

2) Généralisation de la formule de duplication.

a) Rappeler (sans preuve) quels sont les zéros de la fonction $1/\Gamma$, leur multiplicité, ainsi que l'ordre de la fonction $1/\Gamma$.

On définit (quand c'est possible)

$$G(z) = \Gamma\left(\frac{z}{3}\right) \Gamma\left(\frac{z+1}{3}\right) \Gamma\left(\frac{z+2}{3}\right).$$

- b) Quels sont les pôles de la fonction méromorphe G? Justifier le fait que la fonction 1/G se prolonge en une fonction entière, dont on précisera l'ordre.
- c) Déterminer alors la fonction $\Gamma(z)/G(z)$ en utilisant le théorème d'Hadamard (pour identifier les constantes, on pourra étudier les valeurs de cette fonction en z=0 et z=1, et utiliser l'équation fonctionnelle $\Gamma(s)\Gamma(1-s)=\pi/\sin(\pi s)$).

Partie II. Autour des transformations conformes.

Pour tout $z \neq 1$, on définit $G(z) = z/(1-z)^2$.

- 1) On collecte quelques résultats simples: Montrer que pour tout $z \neq 1$, G(z) = G(1/z), et que pour tout $y \in \mathbb{C}$, il existe au plus deux valeurs de z telles que G(z) = y. En déduire que deux points distincts du disque unité ouvert \mathbb{D} ont forcément deux images distinctes.
- 2) Quelle est l'image de $\{z \in \mathbb{C} : |z| = 1\} \setminus \{1\}$ par G?
- 3) En conclure que G est une transformation conforme du disque unité $\mathbb D$ dans le domaine $\mathbb C$ privé de la demi-droite $(-\infty,-1/4]$ telle que G(0)=0 et G'(0) est un réel positif. Y-en-a-t-il d'autres?
- 4) Vérifier que $G(z) = \sum_{n \geq 1} nz^n$ pour tout $z \in \mathbb{D}$ (on pourra commencer par dériver 1/(1-z)...).

B)

On suppose que $F(z) = \sum_{n \geq 1} a_n z^n$ est une série entière de rayon de convergence supérieur ou égal à 1, telle que tous les a_n sont réels et $a_1 = 1$. De plus, on suppose que la fonction F est injective sur le disque unité: Pour tous $z \neq z'$ avec |z| < 1 et |z'| < 1, $F(z) \neq F(z')$. Le but de cette partie est de montrer qu'alors $|a_n| \leq n$ pour tout $n \geq 2$ (rappelons que d'après A, la fonction $\sum_{n \geq 1} nz^n$ vérifie les conditions demandées).

On note g la partie imaginaire de F.

1) Soit $r \in (0,1)$ et $N \in \mathbb{Z}$. Que vaut $\int_0^{2\pi} F(re^{i\theta})e^{-iN\theta}d\theta$? Et $\int_0^{2\pi} F(re^{i\theta})\sin(N\theta)d\theta$? En déduire que pour tout $n \geq 1$,

$$a_n r^n = \frac{2}{\pi} \int_0^{\pi} g(re^{i\theta}) \sin(n\theta) d\theta.$$

- 2) On note \mathbb{D} le disque unité, $\mathbb{D}^+ = \{z \in \mathbb{D} : \Im(z) > 0\}$ et $\mathbb{D}^- = \{z \in \mathbb{D} : \Im(z) < 0\}$. Justifier le fait que pour tout $z \in \mathbb{D}^+$, $\Im(F(z)) > 0$.
- 3) On pourra admettre dans la suite le simple résultat suivant: Pour tout $\theta \in (0, \pi)$ et tout $n \ge 1$, $|\sin(n\theta)| \le n\sin(\theta)$.

Montrer que pour tout $n \ge 1$ et r < 1, $|a_n|r^n \le na_1r$. En déduire que $|a_n| \le n$.

Partie III. Variations autour de la fonction (

On définit pour tout nombre complexe s avec $\Re(s) > 1$,

$$\tilde{\zeta}(s) = \sum_{n>1} \frac{(-1)^{n+1}}{n^s}.$$

 ζ désignera la fonction Zêta de Riemann, comme dans le cours.

1)

- a) Justifier rapidement le fait que $\tilde{\zeta}$ est holomorphe sur le demi-plan $\{s : \Re(s) > 1\}$.
- b) Montrer que pour tout s réel avec s > 1, $\frac{1}{2}(\zeta(s) \tilde{\zeta}(s)) = 2^{-s}\zeta(s)$. En déduire que $\tilde{\zeta}$ se prolonge de manière unique en une fonction entière. Quelle est la valeur de $\tilde{\zeta}(1)$?

2)

- a) Montrer que pour tout s avec $\Re(s) > 0$, $\sum_{n=1}^{n=N} ((2n-1)^{-s} (2n)^{-s})$ converge lorsque $N \to \infty$.
- b) Justifier le fait que cette limite est égale à $\tilde{\zeta}(s)$.
- c) Montrer que $\tilde{\zeta}(s) > 0$ lorsque s est un réel strictement positif. En conclure que la fonction ζ ne s'annule pas sur le segment (0,1).
- 3) On se donne un réel $\theta \in (0, 2\pi)$. On définit pour tout nombre complexe s avec $\Re(s) > 1$,

$$\tilde{\zeta}^{\theta}(s) = \sum_{n \ge 1} \frac{e^{in\theta}}{n^s}.$$

a) Montrer que pour tout réel s > 1,

$$\Gamma(s)\tilde{\zeta}^{\theta}(s) = \int_{0}^{\infty} x^{s-1} \frac{dx}{e^{x}e^{-i\theta} - 1}.$$

b) Montrer que $\tilde{\zeta}^{\theta}$ se prolonge en une fonction entière.