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Chapitre 1

Preliminaries

1.1 Definitions
Definition 1.1. An algebraic curve of a given degree d in RP k(respectively CP k) is the zero set of
a homogeneous polynomial p, where p is of three variables and deg(p) = d.

Definition 1.2. The logarithmic map, denoted by µ : (C∗)k → Rk is the map :

(x1, . . . , xk) → (log |x1|, . . . , log |xk|).

Definition 1.3. Let A be a complex algebraic curve defined by a polynomial p. The logarithmic
Gauss map, denoted by γ : A → CPm−1 is the map :

(z1, . . . , zm) → [z1∂z1p(z1, . . . , zm) : . . . : zm∂zmp(z1, . . . , zm)].

Definition 1.4. We call f a Laurent polynomial if f(x1, . . . , xk) =
∑

ω∈Zk

aωx
ω, where for almost

every ω, aω is 0.

Definition 1.5. The amoeba of a Laurent polynomial f is the subset µ(A) ⊂ Rk, where A is the
hypersurface defined in (C∗)k by f.

Notation. It is almost a convention in this report that we denote :
(1) A is a hypersurface defined in (C∗)k by some Laurent polynomial f
(2) RA is the intersection of some A with (R∗)k

(3) RĀ the algebraic curve in RP k related to some A, where the Laurent polynomial defining A is
changed into a homogeneous polynomial by adding an extra variable.

Definition 1.6. The Newton polytope N(f) of a Laurent polynomial f = f(x1, . . . , xk) =
∑

ω∈Zk

aωx
ω

is the convex hull in Rk of the set {ω : aω ̸= 0}.
The amoeba and the Newton polytope for P (z, w) = 1+z+z2+z3+z2w3+10zw+12z2w+10z2w2

are as in the picture.
We introduce the amoebas as tools for the last part, and discuss the basic properties of amoebas,

as well as stating the relationships between the amoebas and the Newton polytopes. More precisely,
the vertices of Newton polytope are in one-to-one correspondence with the connected components
of the complement of the amoebas which contain an affine convex cone with non-empty interior.
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Figure 1.1 – Amoeba Figure 1.2 – Newton polytope

Theorem 1.7. Vertices of the Newton polytope ∆ = N(f) are in bijection with those connected
components of the complement Rk − µ(A) which contain an affine convex cone with non-empty
interior.

A deeper relation states that we have a natural injection from the set of the connected com-
ponents of the complement of the amoeba to the set of interger points belonging to the Newton
polytope.

Theorem 1.8. (Forsberg-Passare-Tsikh) For a polynomial f with m variables, we have a natural
injective map :

Ind :{the connected component of Rm − µ(A)} → (∆ = N(f))
∩

Zm

Then we step on to use the idea of amoebas to discover a relation between the Newton polytope
and the topological type of M-curves, which is the Mikhalkin theorem.

1.2 The Mikhalkin theorem
Definition 1.9. An algebraic curve RĀ ⊂ RP 2, which is the zero set of a polynomial p of degree
d, is an M-curve if :
(1) RĀ is nonsingular.
(2) the number of connected components of RĀ is (d−1)(d−2)

2 + 1.

Definition 1.10. We say that RĀ is in maximal position with respect to a collection of n lines
l1, . . . , ln if :
(1) RĀ is an M-curve.
(2) there are n disjoint arcs a1, . . . , an ⊂ RĀ s.t. :

(a) aj intersects lj in d points.
(b) all the arcs belong to the same component of RĀ.

We say that RĀ is in cyclically maximal position with respect to a collection of n lines l1, . . . , ln if,
in addition, the numbered sequence of arcs cj appears in the cyclic order on the component of RĀ.

2



The word ’maximal’ comes form the following Harnack’s Inequality.

Theorem 1.11. (Harnack) Let C ⊂ RP 2 be a curve defined by equation f(X,Y, T ) = 0, where f
is homogeneous of degree d. Suppose C is non-singular, then the number of connected components
of C does not exceed g+1, with g = (d−1)(d−2)

2 .

The main questions we are going to ask ourselves in this presentation are : do M-curves in
maximal position really exist for some n and d and if they do what are the possible topological
types (called maximal types) of (RP 2,RA, l1 ∪ ...∪ ln) when we fix n and d ? First let’s take a look
at what those questions mean for some small value of n. If n = 0 it means that we don’t actually
make any assumption on the M-curves we consider : this is a part of Hilbert’s 16th problem which
is still an open question today so we do not discuss this case . While the case where n = 1 does
not appear to be any easier, we have some ideas imposed nevertheless. If n = 1 the condition of
maximality can be translated to : the set RA \ l1 has at least (d−1)(d−2)

2 + d components but by
Harnack’s inequality it can not have more components than that. In this case M-curves in maximal
position were classified for d strictly less than 6 (see the figure below for all the maximal topological
types for d = 5).

 

Figure 1.3 – Maximal topological types for n = 1, d = 5

For n = 2 the question is still open for d > 4 but for d = 4 for instance we can describe all the
topological types (see the figure below).

 

Figure 1.4 – Maximal topological types for n = 2, d = 4

Now n = 3 is the case that we are going to deal with in this presentation. The result that we
are aiming for is the following :

Theorem 1.12. If RĀ is in cyclically maximal position in RP 2 with respect l1, . . . , ln then the
topological type of (RP 2;RĀ, l1

∪
. . .

∪
ln) depends only on ∆.
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This theorem will be proved in the last chapter of this presentation. In fact we also have the
existence of such maximal types for any d and M-curves having such types can be constructed by
a method called "patchworking". This method will be briefly explained in chapter four.
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Chapitre 2

Forsberg-Passare-Tsikh Theorem

We first state some basic properties of amoeba :

Property 1. The amoeba µ(A) is a closed subset of R2.

This is clear since A is closed in (C∗)2, and µ is proper and continuous, and we have a theorem
saying that :

If f : X → Y is a proper continuous map and Y is a locally-compact Hausdorff space then f is
closed.

Property 2. Each connected component of Rk − µ(A) is convex.

This property is due to two complex analysis results.

Proposition 2.1. Let f(x) =
∑

ω∈Zk

cωx
ω be a (formal) Laurent series in x1, . . . , xk with complex

coefficients cω (which may be non-zero for all ω).Then the domain of convergence of f(x) in (C∗)k

has the form µ−1(B), where B ⊂ Rk is a convex subset.

Proposition 2.2. If φ(x) is a holomorphic function in a domain of the form µ−1(B), where B ⊂ Rk

is convex open subset, then there is a unique Laurent series converging to φ(x) in this domain.

proof. Let there be components C1, . . .. Because we know that Ci is an open set, we choose any
D ⊂ Ci a disk.

Consider 1/f on the set µ−1(D). By proposition 2.2, we know that there is a unique Laurent
series g =

∑
ω∈Zk

cωx
ω that converges to 1/f on µ−1(D)

Moreover, this Laurent series converges on some convex set µ−1(B) by proposition 2.1. Suppose
B is the maximal.

Clearly B ⊂ Ci, but if there is B ̸= Ci, thus we can find v ∈ Ci − B, s.t d(v,B) = 0. Thus we
can find D′ ⊂ Ci ̸= ∅.

Because on set µ−1(D′) and µ−1(D′ ∩B), there is unique convergent Laurent series g. Thus g
converges on µ−1(B

∪
D′), this contradicts the maximality of B.

It turns out that there is a strong relation between the Newton polytope and the amoeba.
One basic result about the relationship between Newton polytope and the ameoba is the following
theorem :
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Theorem 2.3. The vertices of the Newton polytope ∆ = N(f) are in a bijection with those connec-
ted components of the complement Rk − µ(A) which contain an affine convex cone with non-empty
interior.

proof. The tool we use to detect for an x ∈ (C∗)k if f(x) ̸= 0 is to try to construct 1/f .
We want to find an element l = (l1, . . . , lk) ∈ Zk s.t. for all ω ∈ Zk

∩
N(f), we have l.(ω−α) ≪ 0.

This is possible because α is a vertex of N(f).
we build such a cone

Nα(∆) = {l|l.(α− δ) ≤ 0, ∀δ ∈ Q}

We verify this set is a cone with a non-empty interior.
Because α is a vertex, so we can always find some hyperplane with normal vector all of interger

coefficients that can separate α and other interger points belonging to the Newton polytope, and
it wouldn’t hurt much if we perturb slightly the hyperplan. The collection of the normal directions
of these hyperplane is in Nα(∆), which is what we want.

So, now the last step is to show that if µ(x) ∈ l + Nα(∆). To do this, we can construct 1/f
using Laurent expansion :

f(x) = aαx
α(1 +

∑
ω ̸=α

aω
aα

xω−α)

Now

µ(x) ∈ l +Nα(∆)

⇒µ(x).(ω − α) = l.(ω − α) + δ.(ω − α) ≪ 0

⇒|xω−α| ≪ 1

⇒g(x) = |
∑
ω ̸=α

aω
aα

xω−α| ≪ 1

⇒Rα =
1

f
=

1

1 + g
= 1− g + g2 − . . .

So up to now we have deduce that l(α) +Nα(∆) is contained in some connected component of
Rk−µ(A). Moreover we want to show that if α ̸= β then if l(α)+Nα(∆) ⊂ Cα, and l(β)+Nβ(Q) ⊂
Cβ , then Cα ̸= Cβ .

Otherwise, if l(β) + Nβ(Q) ⊂ Cα, then we can find a normal direction a = (a1, . . . , ak) ∈
Zk

∩
Nβ(Q) s.t. a.ω < a.β, for all ω ∈ ∆

∩
Zk.

Let x(z) = (za1el(β)1 , . . . , zakel(β)k). First we note that x(z) /∈ A for |z| ≫ 0, this is because
µ((za1el(β)1 , . . . , zakel(β)k)) = l(β) + ta ∈ l(β) +Nβ(Q) ⊂ Cα,

Thus we consider m(z) = gα(x(z)) = gα((z
a1el(β)1 , . . . , zakel(β)k)).
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g(x(z)) = |
∑
ω ̸=α

aω
aα

xω−α|

⟩|aβ
aα

xβ−α| −
∑

ω ̸=α,β

|aω
aα

xω−α|

= C1(e
(l+ta).(β−α) − C2

∑
ω ̸=α,β

e(l+ta).(β−ω))

→ ∞ as t → ∞

As Rα converges on µ−1(l(α) +Nα(∆)), combined with the proof of 2, we can deduce that Rα

converges on µ−1(Cα). But for the x(z) ∈ µ−1(Cα) chosen we see that 1 − g + g2 + . . . does not
absolutely converge thus a contradiction.

Conversely, if a connected component of Rk−µ(A) contains a affine convex cone with non-empty
interior, then this convex cone must intersects l(α) +Nα(∆) for some vertex α as Nα(∆) splits the
whole plane, so this component must contains l(α) +Nα(∆) thus can be mapped to α.

Now we look deeper into the problem and we can find a more subtle structure as the following
theorem states.

Definition 2.4. Let x be a point in the amoeba complement µ(A)c. The order of x is then defined
as the vector v ∈ Zn whose components are

vj =
1

(2πi)n

∫
µ−1(x)

zj∂jf(z)

f(z)

dz1 ∧ . . . ∧ dzn
z1 . . . zn

, j = 1, . . . , n

Since the homology class of the cycle µ−1(x) is the same for all x in the same component C of
µ(A)c, we can call v the order of the component C. When we wish to emphasize the dependence
on f and x we will write vj(f, x) rather than vj .

Remark. We note further, that we actually have

vj(f, x) =
1

2πi

∫
|zj |=exj ,zk=exk ,k ̸=j

∂jf(z)

f(z)
dzj

=
1

2π

∫ 2π

0

eiθ∂jf((e
x1 , . . . , exj−1 , exj+iθ, exj+1 , . . . , exn))

f((ex1 , . . . , exj−1 , exj+iθ, exj+1 , . . . , exn))
dθ.

Lemma 2.5. For any vector s ∈ Zn − {0}, the direction order ⟨s, v(f, x)⟩ is equal to the number
of zeros (minus the order of the pole at the origin) of the one-variable Laurent polynomial

φ : w → f(c1w
s1 , . . . , cnw

sn)

inside the unit circle |w| = 1. Here c ∈ (C∗)n is any vector with µ(c) = x

proof. By argument principle, the value we are going to calculate is

1

2πi

∫
|w|=1

∂ log f(c1w
s1 , . . . , cnw

sn).
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But we have [φ] = [s1γ1+. . .+snγn in Hn(µ
−1(x))], where γj : θ → (ex1 , . . . , exj−1 , exj+iθ, exj+1 , . . . , exn).

We therefore have ∫
|w|=1

∂ log f(cws) =

n∑
j=1

sj

∫
γj

∂ log f(z)

=

n∑
j=1

sj

∫
|zj |=exj

∂jf(z)

f(z)
dzj

= 2πi

n∑
j=1

sjvj .

This proves the lemma.

Proposition 2.6. The order v of any component of µ(A)c is contained in the Newton polytope ∆.

proof. It suffice to show that ⟨s, v⟩ ≤ max
α∈∆

⟨s, α⟩ for any vector s ∈ Zn−{0}. From 2.5 we know that

⟨s, v⟩ is equal to the number of zeros of w → f(cws) inside the unit circle. Since the top degree of
this one-variable Laurent polynomial is equal to max

α∈∆
⟨s, α⟩, the proposition follows.

Proposition 2.7. Two different components C and C ′ of µ(A)c cannot have equal orders v and v′.

proof. Take two points x and x′ in Qn − µ(A) and let s ∈ Zn − {0} be the direction from x to
x′, so that x′ = x + rs for some r > 0. We shall show that ⟨s, v′⟩ > ⟨s, v⟩. Indeed, by 2.5 these
two numbers coincide with the number of zeros inside |w| = 1 of the one-variable polynomials
w → f(c′ws) and w → f(cws) respectively, where µ(c′) = x′ and µ(c) = x. Now, since c′j/cj = ersj ,
and hence c′ws = c(erw)s, we may also interpret ⟨s, v′⟩ as the number of zeros of f(cws) inside the
larger circle |w| = er. But if there would be no zero of this polynomial in the ring 1 < |w| < er,
then the line segment [x, x′] would not intersect the amoeba µ(A).

Theorem 2.8. (Forsberg-Passare-Tsikh Theorem)For a polynomial f with m variables, we have an
natural injective map :

Ind :{the connected component of Rm − µ(A)} → (∆ = N(f))
∩

Zm

proof. We just set Ind to take the order of the component, and the theorem follows from all the
lemmas and propositions above.
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Chapitre 3

Harnack’s Inequality

One thing to notice is that the word ’maximal’ comes from the following theorem of Harnack
which describe an extreme case of the topology of the algebraic curves in the real projective plane.

Definition 3.1. For any connected component of non-singular algebraic curve of dimension 1 in
RP 2 we can divide them into two kinds : (1) bounded disks, later we refer to them as ovals. (2)
one-sided circle.

Lemma 3.2. Any two one-sided circle must intersects.

proof. Let these two circles be γ1 and γ2. Any one-sided circle corresponds to the element [1] ∈
Z/2Z ≃ H1(RP 2,Z/2Z), and any these two circles intersect. This is because if we consider π : S2 →
RP 2 the canonical covering map, then π−1(γ1) divide the sphere into two parts, however, if π−1(γ2)
lies in only one part, and as γ1 and γ2 are two different curves, thus there is one point v ∈ γ2 − γ1,
thus −v lies in different part, thus π−1(γ1) intersects with π−1(γ2), thus γ1 intersects with γ2.

Lemma 3.3. Let C ⊂ RP 2 be a curve defined by equation f(X,Y, T ) = 0, where f is homogeneous
polynomial of degree d. Suppose C is non-singular, then C is a union of several separated components
of dimension 1, C has at most one component which is a one-sided circle.

proof. Suppose the contrary, then we have γ1 and γ2 both are one-sided circle, but they intersect,
so f is singular on γ1

∩
γ2, thus a contradiction.

Theorem 3.4. (Bezout)X and Y are hypersurface in RP 2 defined by two polynomials, whose po-
lynomial greatest common divisor is a constant. Then the total number of intersection points of X
and Y counted with their multiplicities, is smaller than or equal to the product of the degrees of X
and Y.

Theorem 3.5. (Harnack) Let C ⊂ RP 2 be a curve defined by equation f(X,Y, T ) = 0, where
f is homogeneous polynomial of degree d. Suppose C is non-singular in RP 2, then the number of
connected components of C p does not exceed g+1, with g = (d−1)(d−2)

2 .

proof. If f = f1f2 is reducible, let deg f1 = d1, deg f2 = d2 then denote C1, C2 the curve defined
by f1 and f2, thus we have p1, p2 the number of connected components of C1 and C2, thus if we
have shown for all irreducible case, we have

p = p1 + p2 ≤ (d1 − 1)(d1 − 2)

2
+ 1 +

(d2 − 1)(d2 − 2)

2
+ 1 ≤ (d1 + d2 − 1)(d1 + d2 − 2)

2
+ 1 = g + 1.
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If d ≤ 2, the claim is trivail, so we suppose d > 2.
If C has components C1, . . . , Cg+2, we find a contradiction.
First, we consider the space of plane curves of degree d−2, it is a space of dimension (d−2)(d+1)

2 ,
so if we fix q = (d−2)(d+1)

2 points in RP 2, there is a curve of degree d− 2 through those points.
But as d > 2, we have q > g+1, let us take g+1 points Pi ∈ Ci(1 ≤ i ≤ g+1), and q-g-1 other

distinct points on Cg+2. By 3.3 , we can suppose Ci are all ovals for (1 ≤ i ≤ g+1) thus there is C ′,
a curve of degree d-2 passing through these points. We notice that, for each component Ci, as Ci

is an oval, which means the intersection number of Ci and C ′ is at least two(multiplicity counted).
Thus we have the total intersection number of at least 2g+2+ q− g− 1 = q+ g+1 points(counted
with multipicity).

But as C is irreducible so the intersection points of C and C ′ are isolated of at most of number
d(d− 2). So we have d(d− 2) ≥ q + g + 1 = (d− 1)2 which is a contradiction.

The inequality is actually achievable, for d = 1, any homogeneous polynomial of degree 1 is
of the form ax + by + ct, thus defines a line, thus satisfies the claim. For d = 2, we can consider
x2 + y2 = z2, where its component is an oval, for greater d, the method to construct an M-curve is
described in the later section.
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Chapitre 4

Introduction to tropical geometry

Besides giving a proof of the theorem we can also give some more insights on why heuristically
this result should be true through what is called tropical geometry.

4.1 Introduction to tropical geometry
The tropical semi-field denoted by T is the set of real numbers endowed with what is called

the tropical addition (denoted by +∞) and the tropical multiplication (denoted by ×∞) which are
respectively defined by :

x+∞ y = max(x, y) x×∞ y = x+ y (4.1)

to which we add −∞ so that our new addition possesses a neutral element. Tropical geometry studies
algebraic curves on the tropical semi-field but since it is not a field (the reader may have noticed
that the new addition still doesn’t have any inverses) we need a new definition of algebraic curves.
First notice that tropical polynomial functions in two variables are now defined by expressions such
as :

maxi,j(ai + ix+ jy) (4.2)

Such functions are piecewise linear and globally convex. It means that their graph is an unbounded
polygon with vertices and edges. We define the set of roots of a tropical polynomial function to be
the projection of the edges of the polygon on the plane. This is the set of points (x, y) such that
the maximum defining the polynomial is obtained at least twice at (x, y). Here are some examples
of tropical curves in the plane :

Now the interesting thing about tropical curves is that the relation between a tropical curve and
its Newton polygon is much more explicit than in the classical case. Let P be a tropical 2-dimensional
polynomial, A be its tropical curve and ∆ its Newton polygon. By definition of a tropical curve in
the plane the vertices of A correspond to the set of couples (x, y) where the maximum defining P is
obtained at least for three monomials. For each vertex δ of A denote by ∆δ the convex hull of the
integer points (i, j) for which the monomial aij + ix+ jy is maximal in δ. Each ∆δ is a subset of ∆
and by the convexity of the graph of P we can see that the family of ∆δs forms in fact subdivisions
of ∆. The figure below shows some tropical curves and their Newton polygon subdivisions :
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Figure 4.1 – Some tropical curves
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Figure 6. 

Figure 4.2 – Some tropical curves and their subdivisions

The edges of this subdivision form a graph in R2 for which every face corresponds to a vertex
of A, every vertex corresponds to a face of A and edges correspond to (orthogonal) edges. In terms
of graph theory our graph is the dual graph of A. But the faces of A are exactly the components of
R2 \ A and the vertices of the subdivision graph are integer points of ∆ : we have just proved the
Forsberg-Passare-Tsikh theorem for tropical curves. What remains to highlight is the link between
tropical and classical geometry.

4.2 How tropical geometry is related to classical geometry
A summarised answer to that question is that the tropical semi-field is obtained as a limit of

classical semi-fields. To see this recall that we have the well-known semi-field (R+,+,×) and the
family of functions (logt)t>1):R+ → T which defines a family of semi-field structures on T by the
formulas :

∀t > 1 x+t y = logt(t
x + ty) x×t y = logt(t

xty) = x+ y. (4.3)
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But since in R+ we have max(x, y) ≤ x+ y ≤ 2max(x, y) by applying logt we get :

∀t > 1,max(x, y) ≤ x+t y ≤ max(x, y) + logt2. (4.4)

Thus t → +∞ shows that the tropical semi-field can be obtained as a limit of semi-fields arising
naturally from the classical semi-field. Now applying that to geometry we can obtain tropical objects
as limit deformations of classical objects simply by taking the logarithmic map of classical curves(see
chapter one for the definition) -which gives us an amoeba- and then rescaling the base of the
logarithm to ∞. For instance the figure below show how we can deform a classical line in the plane
to a tropical line.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) b)  c) d)  e) f ) 

Figure 4.3 – From a classical line to a tropical line. a)b)c)Apply the logarithmic map d)e)f)Rescale
t → ∞

This process is called dequantization. However one can remark that doing this will only enable
us to obtain a certain class of tropical curves : those with only one vertex. To obtain all the diversity
of tropical curves the solution is to modify the polynomial as we rescale the amoeba. More precisely
take a family Pt of polynomials indexed by t > 1, denote by At the image of the algebraic curve
of Pt by the mapping (x, y) → (logt(|x|)logt(|y|)) and look at the limit as t tends to infinity. The
following theorem states that all tropical curves can be obtained using this technique :

Theorem 4.1. Let P∞(x, y) =
∑

i,j ai,jx
iyj be a tropical polynomial. For each coefficient ai,j

different from −∞ choose a finite set Ii,j ⊂ R such that aij, = max Ii,j and choose αi,j(t) =∑
r∈Iij

βi,j,rt
r with βi,j,ai,j ̸= 0. Define Pt(x, y) =

∑
i,j αi,j(t)x

iyj. Then At(Pt) tends to the tropical
curve defined by P∞ when t tends to +∞.

4.3 Viro’s patchworking
In this section we describe a method which was developed by Oleg Viro to prove the existence of

certain algebraic curves having some wanted topological type via purely combinatorial means and
tropical geometry (in fact the formulation we are going to use here is not Viro’s since he developed
this method before tropical geometry had taken shape). The method consists in starting from a
tropical curve and modify it to obtain at the end a subset in the plane which is neither a tropical
curve nor a classical curve but which has the same topological type as a certain classical curve. Let
us describe now this method (one could see it as the reverse action of dequantization).

Define R2
(−1)j1 ,(−1)j2

= {(x1, x2)|(−1)j1x1 > 0, (−1)j2x2 > 0}. Let C be a tropical curve. We
suppose that C verifies some technical properties : for every edge of C we have that max(gcd(|i−
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k|, |j − l|)) where the maximum is taken on all the couples of pairs ((i, j), (k, l)) such that the
two faces which are on both sides of the edge are respectively given by the monomials (i, j) and
(k, l) is an odd integer. Furthermore C only has vertices with 3 adjacent edges. Now the steps are
the following : first- Shift the curve so that every vertices of C belongs to a single quadrant of
(R \ 0)2 and erase what doesn’t fit in this quadrant then second- copy the result on all the 3 other
quadrants by means of reflexions, then third - for every edge of the initial curve erase two out of
the four copies of this curve following two rules : if e′ is erased then the other copy erased is in
the quadrant R2

(−1)i1 ,(−1)i2
where the couple (i1, i2) defines a vector tangent to the initial edge.

For each vertex of C and for each quadrant either one or three out of the three adjacent edges are
erased. See the figures below for some examples :

     

     

     

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

       

       

   

 

 

a) b)  c) d) 

Figure 4.4 – Viro’s patchworking applied to a tropical line

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

a) b)  c) d) 

Figure 4.5 – Viro’s patchworking applied to a degree three tropical curve

We have then the following theorem :

Theorem 4.2 (O. Viro). For any curve C satisfying the technical properties for the patchworking
method the patchworking result has the same topological type as some real algebraic curve in the
plane with the same degree.

We will not prove this theorem here but it can be found in Viro’s paper [2].
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Chapitre 5

Proof of Mikhalkin’s theorem

In this part we prove the results that were stated in the first part concerning the topological
type of real algebraic M-curves in cyclical maximal position in the real projective plane :

Theorem 5.1 (G. Mikhalkin). If RĀ is in cyclically maximal position in RP 2 with respect to
l1, . . . , ln then the topological type of (RT ;RĀ, l1

∪
. . .

∪
ln) depends only on ∆.

We are going to present the proof given by Mikhalkin in [3]. We only deal with the case n = 3
and we restrict ourselves to M-curves whose Newton polygon is the convex hull of the points
(0, 0), (0, d), (d, 0) (a triangle).

For the rest of the chapter let A be a complex non singular algebraic curve in the complex
projective plane given by a polynomial with real coefficients. Suppose that RA is an M-curve in
cyclical maximal position with regard to the x-axis, the y-axis and the infinite line. Suppose also that
the Newton polygon of A is the triangle described above. The proof will consist in demonstrating
the two following propositions :

Proposition 5.2. µ RA is an embedding.

Proposition 5.3. ind (described in chapter three) is a bijection that maps unbounded components
of R2 \ µ(A) to exterior integer points of ∆ and bounded components to interior integer points of
∆. Furthermore each half-plane is bounded by an arc of µ(RA) and each disk is bounded by an oval
of µ(RA).

For the first one we will use the logarithmic Gauss map which was introduced in the first chapter.
The main result we need to know about the logarithmic Gauss map is the following :

Lemma 5.4. The degree of the logarithmic Gauss map γ : A → CP 1 is 2Area(∆).

The proof of this result is omitted but can be found in [1]. We can already notice that since γ
is a holomorphic map between smooth complex varieties the lemma gives us the exact cardinal of
each fiber of γ (where each preimage is counted with its multiplicity).

Now denote by F the set of critical points of µ A. We have the following lemma :

Lemma 5.5. F = RA
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proof. First we show that F=γ−1(RP 1). Indeed by the definition of µ a point P is critical for µ A

if and only if the tangent space to A at P contains ∂θ1 or ∂θ2 which is equivalent to the tangent
space at log(P ) (where log is one of the branches of the holomorphic logarithm) having a purely
imaginary vector which is equivalent to the fact that the complex direction normal to this tangent
space is real. Thus locally we have F= (G ◦ log)−1

(RP 1) and we have locally γ= G ◦ log which
gives the result. Now since by definition of γ and by the fact that we consider real coefficiented
polynomials we have γ(RA) ⊂ RP 1 which gives the inclusion RA ⊂ F .

We’ve just seen that F=γ−1(RP 1) and RA ⊂ F so what remains to show is that all the preimages
of a real direction by γ are indeed in RA and furthermore by 5.4 we have an upper bound of the
cardinal of the preimage so it is sufficient to find enough preimages in RA (enough being exactly
2Area(∆)).

Denote by A the area of ∆, a the number of lattice points in the interior of ∆ and b the number
of lattice points on the boundary of ∆. Pick’s formula gives us the relation : 2A = 2a + b − 2.
Since we consider only M-curves we know that the number of components of RA is exactly a + 1
and by the maximality assumption a is the number of ovals in RA. The remaining component of
RA is a collection of h arcs which go from axis to axis. By the cyclical maximality we know that
the number of arcs which go from one axis to the same axis is exactly

∑
j(dj − 1) = b − n where

dj is the number of lattice points on the side j of the Newton polygon. We have n remaining arcs
which respectively go from axe li to axe li+1. Now let x be any element in RP 1. Each one of the a
ovals add at least 2 elements in γ−1(x)∩RA, each one of the first category of arcs add at least one
element and the last n arcs give together at least n− 2 preimages (see the figure below). Summing
up the three terms we obtain exactly 2a− b− 2 preimages which is what we needed.

So in the end we have γ−1(RP 1) = F = RA and RA is non singular so γ does not have any real
critical point and thus µ(RA) does not have any inflection point. From this we can deduce :

Lemma 5.6. ∂µ(A) = µ(RA)

We are now ready to prove 5.2 :

proof. By its definition µ RA is an immersion. Suppose it is not injective : there exists a point in
the plane where two branches of µ(RA) collide but since µ(RA) does not have any inflexion point
and µ(RA) = ∂µ(A) one of the branches must intersect R2 \ µ(RA) which is a contradiction.

Now by 5.2 and 5.6 to each component of R2 \µ(A) we can associate a component of RA (given
by the inverse image of the boundary of the component by µ) and this association is bijective.
Furthermore we know that the number of components of RA is precisely the cardinal of ∆∩Z2. Thus
ind is an injective map between finite sets of same cardinal : it is a bijection. Besides we can verify
that it sends unbounded components to boundary lattice points and bounded components to interior
lattice points. We have just proved 5.3. We now detain a lot of information on the number and the
location of the components of RA but what is still left to do is to determine how those components
are distributed among the quadrants of (R \ {0})2. Denote Ωj1,j2 = ind−1((j1, j2)) and denote
R2

(−1)j1 ,(−1)j2
= {(x1, x2)|(−1)j1x1 > 0, (−1)j2x2 > 0}. Fix a point y ∈ RA ; we have µ(y) ∈ ∂Ωj1,j2

for some (j1, j2). By a simple change of coordinates we can assume that y ∈ R2
(−1)j1 ,(−1)j2

. It turns
out that after this choice of signs the same is true for all RA :

Lemma 5.7. If x ∈ RA and µ(x) ∈ ∂Ωi1,i2 then x ∈ R2
(−1)i1 ,(−1)i2
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Figure 5.1 – The first category gives two preimages each and the second category one each

Thus we can describe the arrangement of every component of RA through the data given by
∆ : this ends the proof of the main result.

17



Bibliographie

[1] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976),
1-31.

[2] O. Viro Dequantization of real algebraic geometry on logarithmic paper. In
European Congres of Mathematics, Vol . I (Barcelona2000 ), volume 201 of Progr .Math., pages
135− 146. Birkhauser, Basel, 2001.

[3] G. Mikhalkin, Real algebraic curves, the moment map and amoebas. In Annals of Mathematics,
151,year 2000,pages 309− 326

[4] M. Forsberg, M. Passare, A. Tsikh, Laurent Determinants and Arrangements of Hyperplane
Amoebas. In Advances in Mathematics 151, year 2000, pages 45− 70

18


