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1 Introduction and notations
As a well-known fact, a vector field X ∈ Γ(TM) non-vanishing at a point

x0 can be represented as ∂
∂s1

for some coordinate chart (U, φ = (s1, s2, ..., sn))
near that point, which means that X can be sent on a locally constant vector
field through some diffeomorphism. However, there is not such a good local
representation around singular points. The aim of this presentation is to
show a relatively good local result formulated in [2], and to show its concrete
applications.

Since the problem is local, we may well consider vector fields defined on
a neighbourhood of x0 = 0 ∈ Rn and vanishing at 0. We denote this set by
X . Note that X is preserved by the Lie bracket, so (X , [ ]) is a Lie algebra.
We also define G as the group of local diffeomorphisms of Rn that fix 0. We
shall later study the action of G on X .

We will frequently use the natural identification T Rn ≈ Rn+n without
mentioning it. Under this identification, we can also see X ∈ X as a function
X : U 3 0 → Rn. For any function φ : U 3 0 → Rn, we denote [φ]k

the up to k-th Taylor development of φ at 0 and [φ]l the l-th homogenous
term of its Taylor development at 0. If Y is a subalgebra of X , we denote
Yk := {[Y ]k, Y ∈ Y} and Yk := {[Y ]k, Y ∈ Y}. In the following text, we
always consider subalgebras Y that satisfy an additional condition:

∀k ∈ N, Yk ⊆ Y ,

and we call them graded subalgebras as a reminder.
Finally, for X ∈ X , as A = [X]1 = [X]1 is the linear part of X at 0, we

see it as a matrix ofM(n,R).

1



2 Statement of the main Theorem
Recall the Jordan-Dunford decomposition of matrix: for any A ∈ M(n,R),
∃!As ∈ M(n,R), An ∈ M(n,R) such that A = As + An where As is diago-
nalisable, An is nilpotent, and [As, An] = 0 .

Theorem 1. Let Y be a graded subalgebra of X , X ∈ Y a vector field with
A = [X]1. We consider a matrix B which satisfies one of the two conditions:

• B = As.

• B ∈ Y1 and B is adjoint to A under some inner product over Rn.

Then there exists a sequence Yi ∈ Yi, i > 2, such that for any k > 2,
[(ϕ1

Y2+...+Yk
)∗X − A]k commutes with B, where ϕtY2+...+Yk is the flow of

Y2 + ...+ Yk at time t.

Remark 1. We shall see that the field (φ1
Y2+...+Yk

)∗X is a member of Y.

The vector field (ϕ1
Y2+...+Yk

)∗X is called the normal form of X. We will
see that its linear part is still A, but the next terms in its Taylor development
have an additional property given by the commutation with B. In the best
cases, all the monomial terms of order 2 to k are zero, which means that
X, once pushed forward by the diffeomorphism ϕ1

Y2+...+Yk
, is very close to its

linear part. Then the dynamics of the flow of X can be approached by the
one of A. In the worst cases, e.g. if B = 0, the theorem gives no information
at all.

3 Proof of the main theorem
We grade the ring R[x1, x2, ..., xn] by degree, i.e.

R[x1, x2, ..., xn] =
⊕
k>0

Ek,

where Ek is the space of homogenous polynomials of degree k. We define
Ek := E1 ⊕ ... ⊕ Ek the vector space of polynomials P of degree lower than
k such that P (0) = 0.
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The main idea in this proof is to associate both vector fields X ∈ X and
diffeomorphisms φ ∈ G with endomorphisms of Ek, X̂ and φ̃, which express
their behaviour around 0 at order k. We therefore define two morphisms of
vector spaces: ̂ : X −→ End(Ek)

X 7−→ (P ∈ Ek 7→ [X · P ]k) ,

and ˜ : G −→ End(Ek)
φ 7−→ (P ∈ Ek 7→ [P ◦ φ]k) .

3.1 Analysis of the kernels

If [X]k = 0, X ∈ X , then

[XP ]k =

[
n∑
i=1

X i∂iP

]k
=

n∑
i=1

[
X i∂iP

]k
=

n∑
i=1

[
[X i]k∂iP

]k
=
[
[X]kP

]k
= 0.

In the same way, if [φ]k = 0, φ ∈ G, then

[P ◦ φ]k(x) =
[
P ◦ ([φ]k(x) +O(|x|k+1))

]k
=
[
P ([φ]k(x)) +O(|x|k+1)

]k
=
[
P ◦ [φ]k

]k
(x) = 0,

hence [P ◦ φ]k = 0. Moreover, when P = id, X̂(id) = [X]k and φ̃(id) = [φ]k.
Thus we have Ker̂= {X ∈ X , [X]k = 0} and Ker ˜= {φ ∈ G, [φ]k = 0}.
We then conclude that the image of ̂and ˜are determined by the k-th order
development of their preimages.

3.2 Algebraic properties of ̂and ˜
Proposition 2. We have:

1. ∀φ, ψ ∈ G (φ ◦ ψ)̃ = ψ̃ ◦ φ̃

2. ∀φ ∈ G,∀X ∈ X , φ∗X ∈ X and (φ∗X )̂ = φ̃−1 ◦ X̂ ◦ φ̃

3. [X, Y ] ̂= X̂ ◦ Ŷ − Ŷ ◦ X̂
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Proof. 1. In fact,

(φ ◦ ψ)(x) = [φ]k(ψ(x)) +O(|ψ(x)|k+1)

= [φ]k([ψ]k(x) +O(|x|k+1)) +O(|x|k+1)

= [φ]k ◦ [ψ]k(x) +O(|x|k+1),

hence for all P in Ek,

(φ◦ψ)̃(P ) = [P ◦ [φ◦ψ]k]k = [P ◦ [φ]k ◦ [ψ]k]k = [[P ◦ [φ]k]k ◦ [ψ]k]k = ψ̃(φ̃(P )).

2. Take P ∈ Ek, we have (φ∗X)P = X(P ◦ φ) ◦ φ−1, so

[(φ∗X)P ]k = φ̃−1
(

[X(P ◦ φ)]k
)

= φ̃−1

(
n∑
i=1

[
X i∂i(P ◦ φ)

]k)

= φ̃−1

(
n∑
i=1

[
X iLi

(
[P ◦ φ]k+1

)]k)
,

where Li : xj11 . . . x
ji
i . . . x

jn
n 7−→ ji x

j1
1 . . . x

ji−1
i . . . xjnn . Since ∀i,X i(0) = 0,

[(φ∗X)P ]k = φ̃−1

(
n∑
i=1

([
X i∂i[P ◦ φ]k

]k
+
[
X i∂i[P ◦ φ]k+1

]k))
= φ̃−1

([
X[P ◦ φ]k

]k)
= φ̃−1 ◦ X̂ ◦ φ̃(P ).

3. By the same argument as in 2, as X(0) = 0,

X̂Y (P ) = [X(Y P )]k = [X[Y P ]k+1]k = [X[Y P ]k]k + [X[Y P ]k+1]
k

= [X[Y P ]k]k = X̂ ◦ Ŷ (P ).

3.3 Image of the flow of a vector field

For X ∈ X , we now consider its flow ϕX : D ⊆ R × Rn −→ Rn. Since
ϕX(t, 0) = 0 is defined for all t ∈ R, we have ϕ1

X = ϕX(1, ·) is defined on a
neighbourhood of 0, hence ϕ1

X ∈ G.
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Proposition 3. We have ϕ̃1
X = exp(X̂).

Proof. Note thatEnd(Ek) is of finite dimension (with any norm onEnd(Ek)),
thus the ODE α′(t) = α(t)◦X̂ with initial condition α(0) = 1Ek has a unique
solution. The solution is exactly α(t) = exp(tX̂).

We can also note that ∂t(P ◦ ϕX) = (XP ) ◦ ϕX . We consider the Taylor
developments of ∂t(P ◦ ϕX) and (P ◦ ϕX) at 0 with respect to x for each t:

∂t(P ◦ ϕX)(t, x) =
∑
|ν|6k

1

ν!
θν(t)xν +O(|x|k+1)

and
(P ◦ ϕX)(t, x) =

∑
|ν|6k

1

ν!
βν(t)xν +O(|x|k+1),

where ν ∈ Nn are multi-indices, and ν! =
∏n

i=1 νi! .
Then (βν)′(t) = θν(t), for βν(t) = ∂ν(P ◦ ϕX)(t, 0) and

θν(t) = ∂ν(∂t(P ◦ ϕX))(t, 0) = ∂t(∂ν(P ◦ ϕX))(t, 0) =
d

dt
βν(t)

Hence we have ∂tϕ̃tX(P ) = ϕ̃tX ◦ X̂(P ), and ϕ0
X(P ) = P , so ϕ̃tX = exp(tX̂).

3.4 Conjugated operators

We define two more operators. For V ∈ End(Ek), if V is invertible, we define

AdV : End(Ek) −→ End(Ek)
M 7−→ V −1 ◦M ◦ V .

and for any L ∈ End(Ek),

adL : End(Ek) −→ End(Ek)
M 7−→ [M,L] = M ◦ L− L ◦M .

Note thatAdV ∈ GL(End(Ek)) ⊆ End(End(Ek)), and that adL ∈ End(End(Ek)).

Proposition 4. ∀L ∈ End(Ek), AdexpL = exp(adL).

Proof. Let α(t) = Adexp(tL), then

α′(t)M = −L ◦ (α(t)M) + (α(t)M) ◦ L = (adL ◦ α(t))M.

Thus α(t) = exp(adtL), so AdexpL = exp(adL).
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3.5 Proof of the theorem

The commutative statement of the k-th development of vector fields with
the field B is now well characterised by the commutativity of their image
under ̂ by the third assumption of proposition 2. We’ll now prove the
theorem by induction, with the help of ̂ and ˜ . Suppose we already have
Yi ∈ Yi, 2 6 i 6 k − 1, such that [(ϕ1

Z)∗X − A]k−1 commutes with B and
(φ1

Z)∗X ∈ Y , where Z =
∑

26i6k−1 Yi.
By the second assumption of proposition 2 and propositions 3 and 4, we

have (
(ϕ1

Z)∗X
)̂

= (̃ϕ1
Z)−1 ◦ X̂ ◦ ϕ̃1

X = exp(−Ẑ) ◦ X̂ ◦ exp(Ẑ)

= Adexp Ẑ(X̂) = exp(adẐ)X̂

Indeed, ∀Y ∈ Yk, [Z, Y ] ∈ Yk so adẐ(Ŷ ) = [Ŷ , Ẑ] = [Y, Z] ,̂ and from
the kernel of ̂ , we know that (Yk )̂ = Ŷ ⊆ End(Ek). Then adẐ preserves
Ŷ ⊆ End(Ek), and so does exp(adẐ) = Adexp Ẑ .

By the induction hypotheses and the preservation argument for dimension
k − 1, we have ((φ1

Z)∗X )̂ = Adexp Ẑ(X̂) = Â+ N̂ + R̂k, where N ∈ Yk−1 has
no linear term and commutes with B, and Rk ∈ Yk. For all Yk ∈ Yk,
note that Z consists of monomials with degree at least 2, which leads to
Ẑ ◦ Ŷk = Ŷk ◦ Ẑ = 0. Hence we have exp(Ẑ + Ŷk) = exp(Ẑ) ◦ exp(Ŷk). We
then have equations:

exp(−Ẑ − Ŷk) ◦ X̂ ◦ exp(Ẑ + Ŷk)

= exp(−Ŷk) ◦ (Â+ N̂ + R̂k) ◦ exp(Ŷk)

= (id− Ŷk) ◦ (Â+ N̂ + R̂k) ◦ (id + Ŷk), since Ŷk ◦ Ŷk = 0

= Â+ N̂ + R̂k + Â ◦ Ŷk − Ŷk ◦ Â.

We already proved that (φ1
Z+Yk

)∗X is a normal form of order k if and only if[(
(φ1

Z+Yk
)∗X

)̂
− Â, B̂

]
= 0. By the computation above, it’s equivalent to

adB̂

(
R̂k − adÂ(Ŷk)

)
= 0.

The following proposition implies adB̂ ◦ adÂ(Ŷk) = adB̂(Ŷk), hence the equa-
tion has a solution Yk ∈ Yk, which finishes the proof.
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Proposition 5. Ŷk = (Ŷk ∩ ker(adB̂)) + adÂ(Ŷk).

Proof. We give a proof only in the case where A is diagonalisable and B = A;
the general case is quite more difficult. For this case, note that Â = B̂ is
diagonalisable. For simplicity, we omit the hats in the rest of the proof.

In an eigenbasis of A (of eigenvalues (λi)), we take M = (mij) ∈ End(V )
such that [A,M ] ∈ ker(adB) = ker(adA). This condition, written in coordi-
nates, gives

∀i, j, 0 = [[M,A], A]ij = (λj − λi)2mij,

which implies (λj − λi)mij = 0 = [M,A]ij. Hence, we have

ker(adA) ∩ im(adA) = 0.

Moreover, dim(ker(adA))+dim(im(adA)) = dim(End(V )). Thus we arrived
to the equation.

Remark 2. When B is adjoint of A for the inner product <,>, the same
proof applies : if [[M,A], B] = 0,

0 =< [[M,A], B],M >=< [M,A]B > − < B[M,A],M >

=< [M,A],MA > − < [M,A], AM >= ||[M,A]||2

so [M,A] = 0 and ker(adA) ∩ im(adA) = 0.

4 Link with the Poincaré-Dulac theorem
In this section, we show that the main theorem includes the following one,
exposed in [1] :

Theorem 6. (Poincaré-Dulac) Let X ′ = {X ∈ Γ(TCn), holomorphic, such
that X(0) = 0}, G ′ the group of local diffeomorphisms of Cn that fix 0,
X ∈ X ′, A = [X]1 its linear part, λ1, . . . , λn the complex eigenvalues of
A, (e1, . . . en) the eigenbasis of A in Cn, and k > 2. Then

∃φ ∈ G ′, ∃(αm,s) ∈ CR, φ∗X(x) = Ax+
∑

(m,s)∈R

αm,s x
m es +O(|x|k+1) ,

whereR = {(m, s) ∈ Nn×J1, nK, λm = λs and 2 6 |m| 6 k} and xm =
n∏
i=1

xmii .
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The last expression is the normal form of X. The monomials of the form
xm es, with (m, s) in R, are called resonant terms. The dynamics of the
flow strongly depends on R, as we shall see in further examples. Thus this
theorem tells which terms can be removed without changing the behaviour
of ϕX .

Remark 3. The main theorem applies in Rn, but this one is only valid for
holomorphic vector fields in Cn. Thus, in the proof, we identify Cn with R2n

through an isomorphism Φ.
In fact, the main theorem shows the similarity between Poincaré-Dulac

and Poincaré-Birkhoff normal form theorems by reformulating both of them
in a commmon context.

Proof. We just apply the main theorem in the case B = As.
We set X = {X ∈ Γ(TR2n), X(0) = 0} and Y = Φ∗(X ′). As the Lie

bracket of holomorphic vector fields is an holomorphic vector field, Y is a
sub-algebra of X . We also have [Φ∗X]1 = Φ∗[X]1 = Φ∗A, and Φ∗B is the
diagonalisable part of Φ∗A, so we can apply the main theorem.

We get φ = Φ∗(ϕ1
Y2+···+Yk) ∈ G

′ such that [Φ∗(φ∗X −A)]k commutes with
Φ∗(B), which is equivalent to the commutation of [φ∗X − A]k and B.

We write the Taylor development of φ∗X:

∃(αm,s) ∈ CNn×J1,nK, φ∗X(x) = Ax+
∑
(m,s)

26|m|6k

αm,s x
m es +O(|x|k+1) .

As B(x) =
∑n

s=1 λs xs es, we compute :

0 =
[
[φ∗X − A]k, B

]
(x)

=
∑
(m,s)

26|m|6k

αm,sB(x)m es −B

 ∑
(m,s)

26|m|6k

αm,s x
m es

+O(|x|k+1)

=
∑
(m,s)

26|m|6k

αm,s λ
m xm es −

∑
(m,s)

26|m|6k

αm,s x
m λs es +O(|x|k+1)

=
∑
(m,s)

26|m|6k

αm,s (λm − λs)xm es +O(|x|k+1).
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The family (xm es)16|m|6k,16s6n is a base of Ek, so all the terms of the sum
are zero. If (m, s) ∈ R, as λm − λs 6= 0, we conclude that αm,s = 0, which
gives us the expected result.

5 A direct proof of Poincaré-Dulac theorem
As the main theorem is quite abstract and more complex than Poincaré-
Dulac theorem, we give an elementary proof of the latest in the case of
a diagonalisable linear part A = B. This proof shows how to choose the
morphism φ. We once again use an induction on k. The case k = 1 is trivial.
Let k > 2 such that the theorem holds for k − 1. We know that

∃φ ∈ G ′, ∃(αm,s) ∈ CR, φ∗X(x) = Ax+
∑

(m,s)∈R

αm,s x
m es + v(x) +O(|x|k+1) ,

with v a homogeneous polynomial of degree k containing no resonant term.
We want to find another a homogeneous polynomial h of degree k such that
the change of variables y = x− h(x) leads to

φ∗X(y) = Ay +
∑

(m,s)∈R

αm,s y
m es +O(|y|k+1) .

We compute

φ∗X(y) = φ∗X(x− h(x)) = φ∗X(x)− dx(φ∗X)(h(x)) +O(|x|2k)

= Ax+
∑

(m,s)∈R

αm,s x
m es + v(x)− ∂xhAx+O(|x|k+1)

= Ay + Ah(x) +
∑

(m,s)∈R

αm,s y
m es + v(x)− ∂xhAx+O(|x|k+1).

Thus we get the good result if and only if v(x) = ∂xhAx−Ah(x) =: LAh(x).
The operator LA is linear, so we can decompose

v(x) =
∑

(m,s)/∈R
|m|=k

αm,s x
m es
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and look for a solution of each equation LAh(x) = xm es. But

LA(xm es) =
n∑
i=1

∂ix
m esAxi − Axm es

=
n∑
i=1

mi
xm

xi
es xi − λs xm es = (λm − λs)xm es.

The λm − λs are different from zero for (m, s) /∈ R, so we just have to take

h(x) =
∑

(m,s)/∈R
|m|=k

αm,s
λm − λs

xm es.

Finally, the change of variables ψ(x) = y = x−h(x) is a local diffeomorphism,
and ψ∗φ∗X is the normal form of X at order k, which concludes the proof.

Remark 4. Note that the last computations are the same in the two proofs :
indeed, LA(h) is equal to the bracket of h with B in the case B = As.

6 Examples
In this section, we just study a few examples to understand the link between
the previous theorems and the dynamics of the flow.

6.1 A system with only one resonance

Let p, q > 2 integers, c ∈ R\{0}, andX : (x, y) 7→ (x, py+cxq) a holomorphic

vector field of C2. Its linear part is A =

(
1 0
0 p

)
. The dynamical systems

associated to A and X are respectively
d

dt
x = x

d

dt
y = py

and


d

dt
x = x

d

dt
y = py + cxq

These systems can be solved explicitly. The first one has solutions of the
form x(t) = x0 e

t, y(t) = y0 e
p t, which gives a trajectory y(x) = y0

(
x
x0

)p
.
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Figure 1: The trajectories of ϕA in the case p = 2, with c = 1. They all converge
at 0, and three trajectories (including the one staying at 0) can be joined to form
the C∞ colored curbs.

For the second one, the solution depends on the values of p and q.

• If p = q, we have x(t) = x0 e
t, and y(t) = (y0 + c xp0 t) e

p t,
so y(x) = y0

(
x
x0

)p
+ c xp log( x

x0
).

• If p 6= q, we have x(t) = x0 e
t, and y(t) =

(
y0 − c xq0

q−p

)
ep t +

c xq0
q−p e

q t,

so y(x) =
(
y0 − c xq0

q−p

) (
x
x0

)p
+ c

q−p x
q.

Here, as λ1 = 1 and λ2 = p, the only resonance is R = {(m, s)} =
{((p, 0), 2)}. The resonant term xp ey is non-zero only in the case p = q.
Thus Poincaré-Dulac theorem states that X is locally isomorphic to A at
order k for all k > 2 whenever p 6= q. Indeed, the holomorphic application

φ : C2 −→ C2

(x, y) 7−→
(
x, y + c

q−p x
q
)

is a local diffeomorphism, and φ∗A = X.
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Figure 2: The trajectories of ϕX
for p = q = 2. They are not C2 at 0.

Figure 3: The trajectories of ϕX for
p = 2 and q = 3. They form C∞ curbs.

At contrary, in the case p = q, we can find a Cq−1-diffeomorphism

φ : C2 −→ C2

(x, y) 7−→ (x, y + c xp log x)

but there is no Cq-diffeomorphism sending ϕA on ϕX . Indeed, we can join
3 trajectories of ϕA (the ones passing at (x0, y0), (0, 0) and (−x0, (−1)p y0)

respectively) to make the C∞-curb
{(
x, y0

(
x
x0

)p)}
, but that’s not possible

with ϕX because the function y(x) written above is not Cp at 0. We then
use the proposition below :

Proposition 7. With the same notations as before, let φ ∈ GY and X, Y ∈ Y
such that φ∗X = Y . If the trajectories of ϕX can be joined to form curbs Ck

at 0, then the trajectories of ϕY can be joined to form curbs Ck at 0 too.

Remark 5. As the trajectories are solutions to d
dt
x(t) = Y (x(t)), the trajec-

tories are C∞ at any regular point.

Proof. Let c :]− ε, ε[ 7→ Rn a curb following trajectories of ϕX , i.e. such that
∀θ ∈]− ε, ε[, d

dθ
c(θ) is colinear to X(c(θ)). We assume that c(0) = 0 and c is

Ck at 0. Then φ ◦ c follows trajectories of Y because

∀θ ∈]− ε, ε[, d

dθ
φ ◦ c(θ) = dφc(θ)

d

dθ
c(θ)

is colinear to Y (c(θ)) = φ∗X(c(θ)) = dφc(θ)X(c(θ)).
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Remark 6. The proposition remains true in Cn with holomorphic vector fields,
using the same argument as in Poincaré-Dulac theorem.

6.2 Harmonic oscillator

We now study a harmonic oscillator with a non-linear term, of the form
d

dt
x = y

d

dt
y = −x+ c xa yb

We know that the solutions of the linear system are of the form x(t) =
c1 e

i t + c2 e
−it, y(t) = c1 e

i t − c2 e
−it, hence |x|2 + |y|2 = 2(|c1|2 + |c2|2) is

constant, so the trajectories are circles.

Here, A =

(
0 1
−1 0

)
, so λ1 = i and λ2 = −i. Hence

R =
⋃
k>0

{((k + 1, k), 1) , ((k, k + 1), 2)} .

Consequently, the system above is resonant if and only if b = a + 1. When
multiplying the second equation by y, we get

y ẏ = −x ẋ+ c xa yb+1 ,

so
1

2

d

dt

(
|x|2 + |y|2

)
= x ẋ+ y ẏ = c xa yb+1.

If a is even and b = a + 1, xa ẋb+1 = (x ẋ)a ẋ2 > 0 and this term is different
from zero (except at x = 0 or y = 0), so the radius r =

√
|x|2 + |y|2 depends

monotonously on time at a finite order, increasing if <(c) > 0 and decreasing
if <(c) < 0, and the trajectories are spirals.

On the other hand, when b 6= a + 1 the Poincaré-Dulac theorem implies
that the trajectories remain close to cycles at any order k, as they are Ck

diffeomorph to the circles of the linear system at order k.
To make it more clear, define D(x, y) = |x(2π)−x(0)|2+|y(2π)−y(0)|2 to

measure the evolution of the coordinates after a time 2π. In the linear case,
ϕA is 2π-periodic, so D(x, y) = 0. With a non-linear term such that b 6= a+1,

13



using Poincaré-Dulac theorem, ∀k, D(x, y) = o(rk). Finally, when b = a+ 1,
as the variations of r2 are of order a+ b+ 1 = 2a+ 2, D(x, y) = Θ(ra+1).

We now understand better the choice of the word resonance: a monomial
term is resonant when he corresponds to a perturbation of the linear system
that can affect the properties of the dynamics around the origin.

6.3 Coupled oscillators

We now study a system composed of two harmonic oscillators coupled through
their position : 

ẋ1 = ω1 y1 + c x2

ẏ1 = ω1 x1

ẋ2 = ω2 y2 + c x1

ẏ2 = ω2 x2

with ω1 > ω2 > 0. Of course, each oscillator has its own resonances, as in
the previous example. What we want to know is whether they are non-trivial
resonances caused by the interaction between the oscillators. Let’s compute
the eigenvalues of A:

det(A− uI) = det


−u ω1 c 0
−ω1 −u 0 0
c 0 −u ω2

0 0 −ω2 −u


= (u2 + ω2

1)(u2 + ω2
2)− c2 u2

= u4 + (ω2
1 + ω2

2 − c2)u2 + ω2
1 ω

2
2.

For c sufficiently small, the eigenvalues are

λ1,2 = i

(
ω2
1 + ω2

2 − c2 ±
√

(ω2
1 + ω2

2 − c2)2 − 4ω2
1ω

2
2

2

) 1
2

and their complex conjugates. The non-trivial resonances are the ones of the
form a λ1 + b λ2 = 0, with (a, b) ∈ N2 \ {(0, 0)}. The function f(c) = λ1

λ2
(c)

is continuous, monotonic, defined on [0,
√
ω2
1 + ω2

2], and reaches ω2
1

ω2
2
at 0 and

1 at
√
ω2
1 + ω2

2, so f reaches rational values on an infinite countable set of
values of c.
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As a conclusion, non-trivial resonant terms exist only for specific values
of c, ω1 and ω2. We can see the eigenvalues as modified frequences, because
λ1 −→c→0 ω1, and λ2 −→c→0 ω2. The resonances appear whenever the ratio
of these frequences is rationnal.

7 Generalisation to a family of vector fields
It’s very natural to consider the regularity of the normal forms of a family
of vector fields. That’s to say if we have a family of vector fields Xλ singular
at 0 parameterised by λ ∈ Λ, and depends on λ with some regularity, then
we want to know if there’s some family (Y k

λ ) of normal forms of the Xλ with
the same regularity on λ. We’re going to formalise the problem and give it
an affirmative answer.

Definition 1. Assume Λ is a Banach space, we say the family of vector fields
Xλ depends on λ Cr regularly, if the map

Λ× U −→ Rn

(λ, x) 7−→ Xλ(x)

is Cr smooth as a map from an open subset of the product Banach space
Λ× Rn to Rn. Here U 3 0 is an open set of Rn and we regard Xλ ∈ Γ(TU)
as a map Xλ : U → Rn by the natural identification TRn ≈ Rn+n mentioned
in the beginning.

The answer to the problem is stated here.

Theorem 8. Let Λ be a Banach space, Xλ a Cr family of vector fields,
A ∈ Y1 the linear part of X0 at 0, and we choose B as in the main the-
orem. Then, there exists a Cr family of vector fields Y k

λ ∈ Yk, such that
Y k
0 has no linear term, and there exists an open set V ⊆ Λ, such that
∀λ ∈ V, [[(φ1

Y kλ
)∗Xλ − A]k, B] = 0.

Proof. Similarly to the proof of the main theorem, we prove it by induction
on k. Suppose that we have built Cr vector fields Y k−1

λ , k > 2. We then, by
the same computation, get the equation:

adB̂(R̂λ)− adB̂ ◦ adÂλ(Ŷλ) = 0,
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where Rλ and Aλ are the homogenous term of degree k and the linear term
of (φ1

Y k−1
λ

)∗Xλ respectively.
The induction hypotheses implies that Rλ and Aλ are Cr families. By propo-
sition 5, we have adB̂ ◦ adÂ : Ŷk −→ adB̂(Ŷk) is surjective. We may choose a
K ⊆ Ŷk as the complementary of its kernal, thus

adB̂ ◦ adÂ : K −→ adB̂(Ŷk)

is an isomorphism. By the regularity of Aλ, ∃V ⊆ Λ open set, such that
∀λ ∈ V, adB̂ ◦ adÂλ : K −→ adB̂(Ŷk) is an isomorphism. We denote

θλ = (adB̂ ◦ adÂλ)−1 : adB̂(Ŷk) −→ K,

then θλ is Cr on λ. Take Yλ = −θλ ◦ adB̂(Rλ), which is a Cr family of vector
fields and solves the equation.
We finally need to set the initial condition, i.e. to show the existence of a Cr

family of vector fields Lλ ∈ Y1, such that L0 = 0 and

∀λ ∈ V, [exp(−L̂λ)Âλ exp(L̂λ)− Â, B̂] = 0.

Suppose K ⊆ Ŷ1 a complementary of ker(adB̂ ◦ adÂ). Consider the map

F : K × Λ −→ adB̂(Ŷ1)

(L, λ) 7−→ adB̂(exp(−L̂)Âλ exp(L̂)− Â) .

We have ∂LF (0, 0) = adB̂ ◦ adÂ, which is an isomorphism from K ≈ T0K to
adB(Ŷ1) ≈ T0(adB(Ŷ1)). Then by the implicit function theorem, we have a
Cr family of linear maps L̂λ which lifts back to a Cr family of vector fields
Lλ.
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