IDENTIFIABILITY CRITERIA IN SPARSE REGRESSION

MICHAEL EICKENBERG, SUPERVISOR: GABRIEL PEYRE

ABSTRACT. The lasso functional is introduced in the context of solving noisy ill-posed linear inverse problems.
Some properties of its solutions are exhibited. Signal dependent recovery and identifiability criteria are
introduced which guarantee the correct identification of the sign (Fuchs identifiability criterion) and the
support (Tropp exact recovery criterion) of the solution vector. A bound on Iz error on the estimation
of the solution and the prediction of measurements due to Grasmair is introduced and placed in context.
An application of the Fuchs identifiability criterion to super-resolution in magnetoencephalographic (MEG)
measurements is elaborated on an idealized example. This work is a review of these well-established criteria,
placed in a uniform notation and setting. The last point is original and a preliminary tentative towards
finding a bound on resolution in a realistic MEG setting. Everything presented should be accessible to a
first year master student of mathematics.
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1. INTRODUCTION

The presence of sparsity in a high-dimensional setting can often dramatically reduce the complexity of a
problem and can be treated with dedicated algorithms yielding tractable performance, where a dense setting
may be hopeless. Here we study inverse problems of the type

Find or approximate z° given y = ®z° + w,

where ® € R*VN is a matrix and we know that 20 € RY is sparse, i.e. that |supp(z°)] << N, where the
support is the set of non-zero coordinates, and w € R? is a noise vector and N is potentially very large. This
inverse problem crops up in many different settings from signal processing to statistics and machine learning,
but its employment bears a lot of similarities.
Solving it is not straightforward. Denote by ||z||3 := | supp(z)| the so-called lo-pseudonorm of z. Several
ways of enforcing sparsity in the solution of the linear inverse problem come to mind: One can move around
1
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in low-dimensional subspaces spanned by columns of ®:
argmin,, ||z||J subject to &z = y.
In order to obtain an approximate sparse solution we can pose a constraint, i.e. solve for k € N
argmin,, ||y — @[3 subject to ||z||§ < k.
or we can penalize the use of a large support by solving for A > 0
argmin, [ly — x5 + Allz|g.

As it turns out, these problems are combinatorial in nature and extremely hard (NP) to solve exactly as soon
as dimensionality increases [26]. The watershed between tractable and intractable optimization problems is
very often the presence of convexity in the problem [2]. In certain cases a problem can be converified, yielding
a new problem that is easy to optimize, sometimes at the cost of possibly not finding the optimal solution for
the initial problem. In our situation, a way to convexify the [y pseudonorm is to replace it by the ”closest”
convex norm, the /;-norm (one can imagine this as a transition ||z||b,0 % 1). The sudden tractability of this
problem with the advent of better methods for convex optimization has led to a very wide use of [; relaxed
methods to obtain sparse solutions.

1.1. Ubiquity of the linear inverse problem with sparsity assumption. In signal processing sparsity
is cardinal to representing a signal in a concise way as a linear combination of atoms where the set of atoms
spans the signal space in a potentially highly overcomplete manner. Consider the following general setup: A
signal vector Z € RY is represented as a linear combination of vectors well adapted to describe this type of
signal Z = Wz, where ¥ € RPN Now allow some noisy, potentially incomplete measurements of the signal
Z, by writing y = 22 + w = EVz + w = ¢z + w for E € RL*F and RO*N 5 ¢ = =0,

In a first setting consider a sparse signal Z € RY (a spike train) that is measured by a low-pass convolution
E. In this situation ¥ = Id (the signal is sparse in the canonical basis) and ® = =, i.e. Z = z and Zx = hxx for
some other discrete function h, e.g. a Gaussian bell shape or any other function with high Fourier energy in
the low frequencies and potentially zero energy in the high frequencies. In many applications it is of essence
to determine as well as possible the locations and amplitudes of the spikes in x given the measurements
y = Zx +w = hxx+ w. This problem is called sparse spike deconvolution. An li-regularization approach is
documented in geophysics as early as 1981 [23] and 1986 [31]. Donoho uses it in 1990 [9]. Deconvolution is at
the basis of superresolution, a topic which will be briefly introduced later, in order to explain our application.

Next we consider for a moment a complete, but potentially noisy measurement of the signal, i.e. = = Id
and ® = U. In this case, given y = ®x or y = ®x + w we would like to find a ”good” representation of y as
a linear combination of columns of ®. What is a ”good” representation? If ® is an orthogonal basis, such
as for example one of the many wavelet bases in the literature (see the book by Stéphane Mallat [24] for
an excellent overview and reference), then there is not much choice for the representation. A thresholding
operation can be used to reduce noise [24]. However, some types of signals are not well represented in bases.
For a given signal class C C R®, this is to be understood in the sense that while the representation of
typical signals z € C' in a basis may need all the basis vectors for a full description, the same signals may be
representable in a possibly only slightly larger linear system with very few non-zero coefficients. In order to
elucidate this, consider the following extreme example. Let N > 0 and e; = (0,...,0,1,0,...,007, 1 <i < N
be the cartesian unit vectors and f; = \/% ch\[:_ol ¢ %" the Fourier vectors. A vector e; has full support
in the basis of the f; and vice versa. Now imagine a signal space in which a typical signal y consists of
a superposition of few sinusoids f; with some spikes e;, such that y = Zf\il a;e; + Z;vzl b, f; with very
few coefficients a;,b; # 0, e.g. T = e1 + fi. This vector has full support in the cartesian basis and in the
Fourier basis due to the mixing, but would be very concisely represented in a concatenation of the two bases.
Indeed, Donoho and Huo studied the problem of representing signals in pairs of bases and found that under
certain incoherence conditions on the two bases @1, ®s, a signal y that has a sparse representation in the
concatenation ® = [y, Ps] can be recovered by I; methods. The result is refined by Elad and Bruckstein
[13] and Feuer and Nemirovsky [15]. Later it is generalized to general matrices ® by Donoho and Elad [8]
and Gribonval and Nielsen [21]. They give a guarantee that if the solution is ”very sparse” it corresponds to
the solution of the corresponding [y problem.

In compressed sensing the emphasis is placed on the incompleteness of the measurement =. For example,
if W is the identity and x = T is a sparse signal, then for = drawn from a certain random matrix ensemble,
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such as the Gaussian ensemble or the ensemble of partial Fourier coefficients, one can reconstruct with very
high probability the signal by solving a simple linear program. See the seminal works [5], [3], [35] for details.
They make use of a restricted isometry property in the measurement matrix, which means that all subsets of
a certain number of columns in the matrix must be close to orthogonal. For a given matrix the verification
of this property is combinatorial, but certain random matrix ensembles can be shown to verify this property
with high probability.

The common denominator of the inverse problems mentioned so far is that they can all be satisfactorily
solved by finding

argmin, ||z||; subject to ®x =y,

in the noiseless case and with

argmin,, ||z||; subject to ||®z — y||3 < €2,

in the case of a noisy measurement with noise w € R?, ||w|2 < e. The first optimization is called Basis
Pursuit [6] and the second is called Basis pursuit denoising.

Typically in statistics the matrix ® € R?*N is a data matrix following an associated statistical data
distribution and representing QQ observed data vectors of dimension N. z° is then a weight vector suited to
linearly explain an effect y with the data ®: y = ®x°. Often only few of the regressor columns of ® explain
the observation y - this is especially the case if one is in the process of searching a model for y and the data
matrix contains potentially unrelated (uncorrelated or even statistically independent) columns. In 1996,
Tibshirani introduced the LASSO (least absolute shrinkage and selection operator) [32] which shrinks many
small coefficients in the weight vector to zero, leaving only coefficients large enough in absolute value, thus
yielding a sparse vector. It is obtained by solving for a parameter p > 0 the convex optimization problem

min ||y — ®z||3 subject to ||z} < .
x

In the context of statistics the size of the data matrix is permitted to vary according to the number of samples
which generally come from a distribution. It may also be corrupted with noise. It is thus of interest to study
stability results when the amount of data (lines) tends to infinity and potentially also the amount of features
(columns). This results in consistency results ([41], [39] and others) and oracle inequalities ([42] and others).
These results are outside the scope of this work.

In the context of machine learning, searching for and enforcing sparsity can largely be seen as a means
to an end if we permit a machine learning algorithm to be defined as a mechanism that ideally makes a
good prediction of an effect given new data. For a training data matrix ® and a training target y, a linear
predictor will attempt to find a weight vector & that will be used for predicting an unseen target given new
data. For a new data matrix and observation (®’,4’) drawn from the same distribution as (®,y) a linear
predictor generates a prediction ¢ = ®'%. Its performance is evaluated by comparing 3’ with ¥’ and not
by comparing a potential underlying sparse ground truth x°, which reflects the exact relation between data
and observation, with the estimate #. However, given the sometimes very high dimensional data vectors
that occur in a machine learning setting, enforcing sparsity is useful when prior knowledge exists that the
weight vector & should be sparse. This happens in supervised learning where one tries to predict an effect
from a big data matrix with only very few relevant features. Ng shows in [27] that for logistic regression
l1-regularization can asymptotically deal with exponentially many irrelevant features with respect to the
number of relevant features and shows that for rotationally symmetric regularization such as ls can deal with
only a linear relation between irrelevant and relevant features in the worst case.

To sum up this introduction, we note that the unconstrained Lagrangian formulations of the basis pursuit
denoising and the LASSO problems are equivalent to solving for a certain A > 0 the following problem

argmin, ||y — @[3 + Allz|:.

Studying the optimality conditions and recovery conditions of this functional is thus informative to all of the
fields mentioned thus far.

For completeness let us mention here that the [1-operator can be exchanged in different ways to obtain
different forms of sparsity adapted to the signal. This work has presented the so-called synthesis setting.
The corresponding analysis setting employs a dictionary D € RV*F and the method penalizes using || D*z||,
instead of ||z|;. In this way one can for example penalize total variation of the signal [30]. In general the
analysis setting is not equivalent to the synthesis setting, but for special matrices D (full rank, invertible)
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the models are equivalent [14, 25]. Also, variables can be grouped together using a so-called I3 — ls norm
>_geg l|lzgll2, where the elements of G are sets that disjointly tile {1... N'}. This is useful if there exists prior
knowledge that both variables should either be identically zero or active together [40].

1.2. Recovery criteria. In the introduction, two criteria guaranteeing recovery properties have already
been mentioned. Donoho’s coherence and the restricted isometry property. The latter concerns mostly
random matrices and is out of the scope of this work. The former is a measure of coherence of the columns
of the matrix. For a matrix ® with unit norm columns it is defined by p(®) := max;-; [(®;, ;)| where ®; is

the i-th column of ®. If a vector 2° € RY satisfies ||2°||) < 3 (1 + ﬁ) then ¥ is the solution of the basis

pursuit [§]
argmin,, ||z, subject to ®x = ®z°.

If we set M (z) := % then Donoho’s criterion is fulfilled if and only if M (2°) < 1. In practise, as
soon as two columns of the0 matrix ® are rather correlated, this criterion has very little use. Even if signals of
most supports are well recovered, the criterion cannot indicate this. From this we deduce an interest in signal
dependent criteria, since the matrix ® may perform very differently on signals of different support. In this
work we present three of these criteria. The criterion of Tropp [34] called the ezact recovery principle (ERC)
depends on the support of the signal vector I := supp(2?). If ERC(I) < 1 the support of a basis pursuit
denoising is included in I for arbitrary noise levels. The identifiability criterion IC according to Fuchs depends
on the sign of the entries of the signal z°, making it even more specific and sharper. If IC(sign(2°)) < 1
then the sign of the solution is recovered by a basis pursuit denoising even if the measurement is perturbed
by a small noise. We present a converse that makes sign recovery impossible if IC(sign(z")) > 1 provided
we have a sufficient bound on the noise. The last criterion in this line that we present has been dubbed
IC(sign(x?)). If it is strictly less than 1 it guarantees a bound on the Iy error ||2° — Z||2, where & is the
solution of a basis pursuit denoising. The true support is not necessarily discovered.

In this document we will detail the definitions of these signal dependent criteria and give sketches of the
proofs that underlie them. Since they rely heavily on the optimality conditions of the lasso functional, these
conditions shall be given in form of an introductory section.

1.3. Superresolution. The concept of superresolution is important in a number of signal processing settings.
In general it can be described as the attempt to extract signal information at a resolution that is finer than
the original acquisition resolution. In imaging this can amount to extracting or changing sub-pixel features,
usually given several images of a same scene or a video sequence [29], but it is also possible on a single image,
see [17]. The aperture shape of an acquisition device such as a camera poses fundamental limits on precision
as well as the pixel size in imaging. In microscopy and astronomy there are fundamental physical limits to
acquisition precision such as the diffraction limit, where objects become impossible to resolve because they
are to small with respect to the wavelength employed. However, sometimes it is possible to surpass this limit
if some signal properties are known. Candeés and Fernandez-Granda describe in a recent publication [4] how
this may be formalized mathematically. If z(¢1,¢2) is an object to be measured, the measurement amounts
to a low pass filtering with a point spread function h(t1,t2)

y(t1,t2) = (h*z)(t1,t2),

where the transfer function h is of compact support. This means that the high frequencies of the object x
are completely lost. According to Candes it is the job of superresolution to eztrapolate the missing spectrum.
This is in contrast to for example compressed sensing using random Fourier coefficients, where the missing
part of the spectrum must be interpolated. The case of spike deconvolution mentioned earlier is included in
this context. Candes and Granda prove a surprising theorem in a continuous setting which is stated here
informally as a reference for motivating the next section.

Let T be the [0,1]-circle with 0 ~ 1. For points t; € T and a; € C define a signed atomic measure
z =), a;0,. Define Fx(k) := fol e 2mikty(dt) = 3, a;e 2™ %k € Z,|k| < fe,n = 2f. + 1. These are the
the n Fourier coefficients under the cutoff frequency f.. Further define for T C T a collection of points, the
minimum separation A(T) := inf;zper |t — t'|, where the distance is seen as the shortest on the circle.

Their Theorem goes as follows. Denote by || - |7y the total variation of a signed measure. Let f. > 128,
n=2f.+1and y=F,x. T = {t} is the support of z and A(T) > 2/f,, then

argmin,

Z||rv subject to F,& =y
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recovers = ezactly. In other words, we can infer the exact, continuous positions and amplitudes of any spike
train that is minimally separated from a finite number of Fourier coefficients.

The idea of this type of superresolution is enticing for the recovery of MEG currents. It will be discussed
as possible future work in the Outlook. Next we explain magnetoencephalography.

1.4. Magnetoencephalography. Magnetoencephalography or MEG is a non-invasive measurement tech-
nique for electrical currents in the brain through the magnetic field they induce in their surrounding. These
currents and magnetic fields are very small and are thus captured using superconducting quantum interfer-
ence devices (SQUIDs) placed around the outside of the head [7], making noise treatment a very important
aspect of the acquisition.

In the magnetostatic regime the Maxwell equations dictate that the magnetic field quantities measured in
the detectors are linear functions of the current density present in the brain. For discretized source locations
and an activation vector z° € RY we can thus write a linear forward model B = ®z° + w where B is the
measured magnetic field vector. The design ® is also called the gain matriz. We present an example of
how this matrix can be obtained from the simplified case of sources and detectors in vacuum by using the

Biot-Savart formula .
B(R) = @/ Fx BT g
A Jea” IR 73

The general methods used to retrieve source positions from the measurements B are dipole fitting and
minimum norm estimates of currents. Dipole fitting is a non-linear procedure attempting to fit a forward
model by optimizing the location and orientation/intensity of a previously fixed number of current dipoles in
the brain. Minimum norm estimate methods use a lasso-type problem to solve a regularized inverse problem
under the assumption that the total sum of current flow is minimal [22]. Norms more elaborate than l; are
used in order to satisfy prior knowledge that a source may stay active over a longer period [18]. It is even
possible to create norms that favor transient signals in localized time-frequency bands [19].

In this section we analyze a stylized MEG setting where sources are placed on the z-axis in 3D space,
all pointing in one direction along this axis. The MEG magnetic field is measured on a cylinder which is
concentric around the sources, or, equivalently, on a line parallel to the z-axis. We analyze the behaviour
of IC in a two sources setting and study the regions where it is violated by evaluating (I>j<I>?+ sign(2°) in a
continuous setting, the limit of infinite measurements on the cylinder. We suppose that taking this limit can
only add information and numerically we find this to be true. Yet even in the limit case we find that IC can
never be less than 1 if the discretization on the source grid is chosen too finely with respect to the distance
R > 0 at which we are measuring. In order to study this phenomenon closely, we establish a continuous
function 1 : R — R such that for a given source discretization grid (z;);, IC evaluates to max; |n(z;)|. Using
this function, we can establish a quantity dependent on the distance of the detectors R > 0 (which we shall
dub imaging scale) and the distance between the two sources d > 0 (the minimum source separation), which
we call the minimum sampling distance A(d, R) > 0. If we discretize at a step greater or equal to A(d, R),
IC holds in the two-source setting. We observe numerically that A(d, R) > 0 for all d, R > 0 and can value
400 if d is too small with respect to R, leading to instability in support recovery for any discretization grid.

2. SOME PROPERTIES OF THE LASSO FUNCTIONAL

2.1. Notation and preliminaries. In the following we will note € R™ an N-dimensional real vector, for

a real number a its absolute value is denoted by |a| := max{a, —a}. The sign of a real number a € R is
defined by
. +1 ifa>0
& if
sgmwz{gﬁ ;afg ={ -1 ifa<o0 ,
nHa= 0 ifa=0

and the sign of a vector x € R¥ is defined by (sign(z)); := sign(x;). The support of a vector is defined by
supp(z) = {i|lz; # 0} € {1...N}. Foraset I C {1...N} we denote I¢ its complementary in {1...N}.
The notation ®; for a matrix ® is shorthand for the matrix consisting of the columns of ® indexed in [
(in ascending order). For i € {1... N}, ®; represents the ith column of the matrix ®. Let V; := span ®;.

The l;-norm of a vector z is defined by ||z||; := Zi\; |z;|, the l3-norm is noted ||z||2 := \/Zf\; |z;]? and

the maximum or lo-norm is ||z||s := max; |z;|. For a matrix ® € R*N the adjoint matrix is denoted
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®* ¢ RV*Q, The Moore-Penrose pseudoinverse is written ®* and if ®*® is invertible it can be written
Ot = (&*®)"1d*, or if PP* is invertible we have &+ = (&*(®®*)~!)*. For a convex function f : RY — R
and z € domf, the subgradient is defined by df(z) := {a|f(y) > f(x) + a*(y — z) for all y € RN}, Let Il
represent the projection operator on a convex C' C RM.

2.2. Properties of the lasso functional.
Definition 2.1 (The lasso functional). Let ® € RN ¢ € R? A\ > 0 and € RY. Then the lasso
functional is defined as
Lay(a) = 51190~ yl + Al
The problem of finding its minimum in z is called the lasso problem and shall be denoted Py (y).

Lemma 2.2 (Optimality condition). Any minimizer & € RN of Ly, must verify 0 € OLy (&), where
OLy (%) is the subderivative of Ly, in &. This is a necessary and sufficient condition. It amounts to

O (y — ¢2) = My,
where v € 9| - ||1(Z). Denote by I the support of . Then, noting that ®& = P&y, this condition can be
expressed as
(I)?(y—q)].f]) = /\Sign(i’])7
;o(y— (I)I.ff[) S [—)\,)\]

Proposition 2.3 (Existence and uniqueness of minimizers). Let ® € R2*N  y € RQ and A\ > 0. Then we
have the following results:

a) the set of solutions to Py(y) is non-empty, convex and compact.
b) Let & be a solution to Py(y) and K = {k|®}(y — ®Z) = £A}. Then, if Ok is injective, the solution is
unique and can be written as
&=®fy — NP5 Pr) ' sign (ix).
This result can be found in [16, 33, 28] and many others.

Remark 2.4. The solution to the lasso problem is not always unique. Let

o~ (41 1) o-(1)

Then for 0 < A < 1, 53 = (1 — A)(0,0,2)7 and s} = (1 — \)(1,1,0)” are minimizers of the lasso functional.
This motivates the following proposition:

N 0| =

Proposition 2.5 (Characterization of minimizers). Let ® € R*N ¢ € R? and X > 0. Further let
& € argmin, Ly (z), K = K(2) := {k|®}(y — ®2) = £A} and v := (%) :== 1 @*(y — ®Z). For any (possibly
other) minimizer & € argmin Ly , we have the following results

(1) There exists b € ker @ such that & = & + b.

(2) We have 7]y = |31, 7(3) = 4(2) and K(7) = K().

(8) Forb € ker @, & := &+b is a solution to P\(y) if and only if bxc = 0 and for allk € K, v, (Zx+br) > 0

(4) There exists a minimizer T of Ly, with support I :=supp & such that ®; is injective. This immedi-

ately entails the existence of a solution such that |I| < min (Q, N).

This is a collection of results mentioned in the following literature [16, 33, 28], among many others.

The solution z, if unique, can be studied as a function of y, A\. Except for a certain transition space,
essentially characterizable by K (&) # supp(Z) and an injectivity property, the solution & is locally affine in
Y, A

Definition 2.6 (Transition space). Let I C {1... N} such that ®; injective. Define for j & T
Hrj={(y,\) e RY x R%,
and ®5(y — ®rxy) = £A}.

Jz; € R! such that ®5(y — ®rz7) = Asign(zg) ,
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Define the transition space as

H = U U Hrj.

Ie{1...N} J¢I
®; injective ®;&span(Pr)
Theorem 2.7 (Variation of the solution with y and X). For (y,\) € H, let & be a minimizer of Ly, and
I := supp(Z) its support. We suppose @y injective. Then there exists a neighbourhood U of (y,\) and a
function @ : U — RN such that for all (§,\) € U, (§,\) is a minimizer of Ly, with support I and we have
o(y,\) = &. We have
Ay, N1 =@F  Ox0(5, A1 = —(®7®1) ' sign(ip),
and
8?390(377 )‘)IC = 65\90(@’ )\)[c =0.

This theorem can be found in [11]. Another proof can be formulated as the adaptation of the same
statement for the group lasso by Vaiter et al. in [37]. The proof uses the implicit function theorem. Outside
the transition space the sign function (and the corresponding generalized sign function for groups) are smooth
with Jacobi determinant non zero. Other proofs have been put forward in Osborne et al. [28] and [36] and
elsewhere.

Remark 2.8 (Homotopy Algorithm). The piecewise linearity of the lasso solution as a function of A can
be exploited to create efficient solver algorithms that have been dubbed homotopy method [28, 10] and
LARS lasso (from least angle regression, see [12]). The algorithm keeps track of the signal support and
iteratively finds the transition points where a new variable is added to the support or leaves the support. Let
® € RY*N and y € RQ. The algorithm starts with the zero solution and its corresponding maximal penalty
Amax = [|[®*Y|lco. The first index 1 < i < N entering the support is i = argmax; |®}y|. Using the given
support I one determines the locally constant y7(\) = 1 (®(y—®;27)) = sign(2;). The next transition point
is linearly extrapolated using the local parametrization of the solution ;(\) = ®Fy — \(®5®;)* sign(v;) by
determining for which A a coefficient ¢ in is equal to zero Z;(\) = 0 or a variable j € C enters the support
by verifying ®%(y — ®72(\)) = £

3. IDENTIFIABILITY CRITERIA FOR SPARSE SOLUTIONS OF UNDERDETERMINED LINEAR SYSTEMS

In the following we will expose several criteria permitting recovery of sparse vectors transformed by
underdetermined linear measurements corrupted with noise.

3.1. The Fuchs identifiability criterion (IC). The identifiability criterion due to Fuchs [16] is a criterion
based on the matrix ® and sign of the signal to be recovered. It is thus identical for two signals having
the same sign. The criterion is derived directly from the optimality conditions (2.2) and the proof uses the
criterion in order to verify the optimality conditions. If IC' < 1 and the noise vector w € R? is sufficiently
bounded in the I sense.

Definition 3.1 (The identifiability criterion (IC) due to Fuchs [16]). Let ® € R9*N 29 ¢ RY a signal with
support I := supp(x°) and set dy := <I>?+ sign(x°). Define
IC(sign(z’)) := max (D, do)| = [[PFedollos = @ @7 sign(a?)]|o

Proposition 3.2 (Sign recovery using IC). Suppose that IC(sign(z°)) < 1 and that ®; has full rank. Then
there exist two constants cyr, ¢y such that if

[[wll2 ¢r
0 <
miner 27| er
and if
erflwlla < A < & min |z;],

el

then the unique solution to the lasso problem verifies

Fr=a] +fw — \(®7®;) " sign(z),

and we have equality of the signs
sign(#) = sign(z?).
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This is a formulation adapted from [38] to the sparse synthesis case. In words: if the smallest non-zero

entry of ¥ is large enough compared to the noise, then solving Py (y) for a well chosen A > 0 yields a solution
# that has the same sign as zV.
Sketch of proof. We ”guess” the solution #; := 20+ ®Fw — A(®3®;) " !sign(2?) and Z;¢ = 0. This is inspired
by the optimality condition. One begins by finding a criterion for exact sign recovery. It is based on the
fact that a,b € R have the same sign if |a| > |a — b|. Proving ||# — 2%||oc < min;es 29| is thus a sufficient
condition for sign recovery and is done using operator inequalities. Given the equality of signs we can check
the optimality condition on Z. If we manage to strictly bound ||®;(y — ®Z)||coc by A we have shown that Z
is the unique solution to the lasso problem. This is done using the fact that IC' < 1. The two preceding
conditions constitute an upper and a lower bound for A respectively. A third step must be undertaken to
show that there exists an interval of possible A that verifies both bounds.

The first condition furnishes an Iy bound of the order O(|lw||2) on the estimation error if A is chosen
proportional to ||w]|z. O

There exists a converse statement to (3.2), making this criterion in some sense tight.

Proposition 3.3 (Impossibility to recover sign if IC > 1). Let ® € RN and 2° € RN of support I :=
supp(2?), with 1C(sign(2®)) > 1. Let w € R? a noise vector and y = ®2° + w. If %H@?CHVIJ_H)HOO <
IC(sign(z®)) — 1 then for no choice of A > 0 the solution & of Py\(y) verifies sign() = sign(x°).

Sketch of proof. The proofis based on the following contradiction. Suppose we have sign equality. This entails
support equality. Let I := supp(#) = supp(2®). Then by the optimality conditions on # we must have \ >
[@%c (Pra+w—Prir)|oo = [|[®5c (Id =@, PF )w+AP] sign(z0))||o > AIC(sign(z?)) — [7cy (W] O

3.2. The exact recovery principle (ERC) of Tropp. The next criterion we present is independent of
signal sign, but dependent on signal support. It is called ezxact recovery criterion and is due to Tropp [34].
Its main idea is that if the criterion is verified, the support of the solution to Py(y) will be included in the
support of z¥ for a sufficiently large A > 0. Note that the recovered support may be strictly included in the
original one. This can include the zero solution and can be restricted to only the zero solution if the noise
level ||w]||2 is too high.

Definition 3.4 (The exact recovery criterion according to Tropp). Let ® € RO*N and 20 € RN a sparse
signal with I := supp(2®). Define

ERC(T) := |0} 7 o c.

Proposition 3.5 (Support recovery using ERC). Let ® € RN 20 ¢ RN g sparse signal with I := supp(z?)

and w € RQ a noise vector. Then, if ®; has full rank and if X\ > E%Cipﬂ‘(?;, we have supp(&) C 1.

Sketch of proof. One projects the original lasso problem onto the image of ®; by multiplying with ® 1@?. The
solution is extended by zeros to N dimensions. Then the optimality conditions are checked outside I using
ERC, inside I we distinguish the support of the projected solution from the cosupport, i.e. as mentioned
above, the support of the solution & may be strictly included in the support of the original signal z°. On
both we check the optimality conditions. By injectivity of ®; the solution is unique. O

Proposition 3.6 (Error bound using ERC). Suppose that ERC(I) < 1. Then the following error bound
holds:

08— 2112 < N@7®0) 2z (VITIA+ @ ll22 w2 )

3.3. An error bound due to Grasmair. The following criterion differs a lot in the assertion that it makes
and the approach it takes to prove it. It can be seen as a proof that if IC' < 1 holds, one not only has sign
robustness to small noise, but also an Iy bound on the error of the estimate for arbitrary noise (i.e. ||2° — 2|2
is bounded for arbitrary noise). However, the result that is stated is actually more general since the criterion
does not directly rely on IC. Instead it works with arbitrary dual certificates n, provided that they verify the
two conditions 1 € Im ®*. and 7 € 9| - ||1(2°). The specific certificate for IC, 1 := ®;c 3" signa® verifies
both these properties, but may not be the only one. There may be others smaller in norm, yielding a weaker
criterion. The following proposition is adapted from the work of Grasmair et al. [20]
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Proposition 3.7 (I3 error bound due to Grasmair [20]). Let 2° € RN with support I := supp(x°). Suppose
that there exists 1 € Im ®% N || - ||1(z°) with |n|l < 1. Further let d(z°) € @jcfl({n}), suppose that @
has full rank and that ||w||2 <e. Let o := % Then for & lasso solution we have

[®2 —yll2 < cre,

and
12— 2|2 < coe,
with
a = l1+ald@"ls,
2
L+ [ @] ll22[®re 2,2 l[d(z°)]]2
C2 = ||‘1)+H2,2(1+C1)+ : 214+ a—=
! (1 = Inlo) 2

Remark 3.8. If IC(sign(2°)) < 1 holds, we can apply (3.7) with 7 := ®*®} sign(a?).
We give a definition of the smallest possible certificate in maximum norm that can be used for (3.7)

Definition 3.9 (ICp). Let ® € R*N and 2° € RV a signal with support I := suppz®. Let dy :=
7" sign (z°) We define

ICo(sign(2®)) = min ||do + u/|so

u€ker &7
Corollary 3.10 (Error bound with ICq). Let ® € R*N and 2° € RN with support I := supp(z). Then if
ICo(sign(x?)) < 1 we have the Iy error bounds of (5.7).

4. BRAIN IMAGING WITH MAGNETOENCEPHALOGRAPHY : A SUPER-RESOLUTION PROBLEM

4.1. Obtaining the design matrix. For this subsection we will briefly resort to typical notation in physics
in order to derive the design we will be working on.

Derived directly from the Maxwell equations, the Biot-Savart formula returns the magnetic field at a given
location R € R? due to a current density 7: R? — R3

Assuming a finite number of strongly localized point sources, they may be modeled by a distribution of
Diracs. Let 7, € R?,1 < n < N be the locations of these point sources and 7,, € R? the finite integral point
densities located at 7,. The total current density can then be written as j{7) = 22[:1 Indr, (7). In MEG, a
number of ) > 0 detectors, localized at ﬁq € R? can measure the magnetic field in a fixed direction 51 S
The currents that are measured are assumed to be originating from the surface of the brain, the cerebral
cortex. This surface has a wavy structure with so-called gyri (ridges) and sulci (troughs) and can be modeled
by a 2D mesh grid 7, € R3. For a given mesh grid, point sources 7, € R? are assumed to be placed on its
vertices 7, € R®. Since most of the measured current flows normal to this surface, it is possible to impose
the current direction on the model, by fixing 7, € S? and letting 7, := j,,7/,.

Definition 4.1 (Biot-Savart with fixed current and detector orientations). Let N > 0 and 7,,1 <n < N
be a mesh grid of possible source locations and #, € R3 their fixed current orientations. Let @ > 0 and
]-:fq, 1 < ¢ < @ be the detector positions and En € R3 its measuring orientations. Then, for a number of point
currents ;n = jnUn, the magnetic field measured by detector ¢ reads

_Z]n n )_:]Xﬁn .
IR - nll3

Let @4, := <H1§ —Tn § > Then we can write

B = j.

Remark 4.2. In SI units there is a factor £2 in front of the integral, which we will ignore for the sake of
notational simplicity.
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4.2. Continuous measurements for IC. We propose a first test for superresolution capacities of the MEG
measurements by studying the signal sign recovery properties in the case that there are only two locations
with non-zero current by using IC.

An important quantity is the

Definition 4.3 (Covariance of measurements due to the sources). Let ® € R@*YN be the design matrix.
Then let

C:=o*® e RNV
Further let K,L C {1...N}. Then denote by Ck 1 the matrix (Cii)(x,)ex 1 (indices ordered as in N)

Lemma 4.4 (IC from covariance matrix). Let ® € R*N ¢ design and z° € RN a signal with support
I := supp(2°) and suppose ®; injective. Let C := ®*® the covariance matriz. We can then write

1C(sign(2°)) = [[no]l oo
with
Ny = C[c’[C;} sign(z?).
For a finite source support |I| < oo, this notation provides the possibility to pass to an infinite number
of measurements since C;; = (®;, ®;) is nothing but a scalar product and can be replaced by a continuous

counterpart if available. We thus propose to study the situation where the magnetic field is known everywhere
on a 2D surface, e.g. an entire sphere engulfing the head, containing all the sources.

Definition 4.5 (Scalar product). Let S C R3 be a smooth 2D surface, parametrized by  C R? using a
smooth mapping R : 2 — S. For two fixed sources, characterized by locations 7, 7; € R3 and 7}, 75, and
R € R3 write the magnetic field according to Biot-Savart as E(ﬁ, 7,7) =T X E=T _ Then let

IR—FII3"
. OR()| iz v s
Ciyi= [ |\ZR o B(R(w). 7.3, B 7 57)
O X
OR(z)| _ | 0R (=) SR || - . . . .
where | =5~ | = || 75~ X 5.-l2 is the area of the surface element. This is the continuous approximation to
1 T2

the covariance matrix C;; by assuming an infinite number of measurement points on a certain surface around
the sources.

4.3. Sources on 1D line, measurements on concentric cylinder. We now propose to study the ex-
tremely simplified setting where sources are placed on a line and oriented in identical directions, parallel to
the line. The measurements of the magnetic field are taken on a concentric cylinder of radius R > 0. To fix
ideas, imagine the sources placed on the z-axis, at 7; = (0,0, z;)7. The continuous measurement locations
are parametrized by [0,27) x R 3 (¢, h) — (Rcos ¢, Rsin ¢, h).

Remark 4.6. We propose to study this setting for its high symmetry. In fact, in this case the magnetic field
is always tangential to the cylinder and will be of equal magnitude at a given height at all points on the
circumference. Measuring on a cylinder is thus equivalent to measuring on a line that is contained in the
cylinder which is parallel to the z-axis.

This leads to Cj; for the cylinder only depending on the distance d = z; — z; of the sources, making the
magnetic field measurement is a convolution of the source signal. Since it only depends on the absolute value
of the distance between sources, the convolution kernel is symmetric. Our problem can thus be seen in a
classic noisy deconvolution setting.

However, note that this function is not 1-homogeneous in R. Although R in some sense describes the
imaging scale, doubling the distance between Diracs will not necessarily be enough for deconvolution at 2R.

Proposition 4.7 (C_’ij for line and cylinder). Let z;,z; € R be two locations of sources on the z-axis and
R > 0 the radius of the measurement cylinder. Then we have

Cl = cl(zi — z)),

cR(d) = ER5/ ! 5 dw,
371' R 2 2
\/<w2 + R2 — (g) ) + R2q2

where
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FIGURE 1. R = 0.5: distance values of [.5, .75, 1., 1.25, 1.5, 2., 5., 10.]. Left: 7 as a function
of position for different distances between diracs. Middle: zoom in on the peaks at the
origin. The smeared parts are due to numerical inexactness due to the sampling method.
Right: log plot of discretization step A necessary to guarantee n < 1

which is the scalar product of the normalized magnetic fields measured on S, induced by sources in z;, z;.

Lemma 4.8 (IC for two Diracs). Let 2° be a signal of support I := supp(z°) and support cardinality |I| = 2.
Let I = {iy,iz} and s; := sign(z%). Then for s; = (+1,+1)T we have IC(s;) = ||n]|oc with

Cij +Cij . _ e
= ——— 71"
7 1+ Chs, yJ
For sy = (+1,—1)T we have IC(s1) = |0« with
Cij=Cij . _ ;0
nj = ,jel.
T 1= Ciy,

With the observation in lemmas (4.4) and (4.8) that IC only depends on the entries of the covariance
matrix, we can define a function n : R — R that represents the n-vector from the preceding proposition in
every real point.

Definition 4.9 (Continuous n-vector for IC on positive sign). Let R > 0 and 21,22 € R. Then, for z € R
define, using the function ¢: R — R from (4.4)

nF(2) = Bz —21) + Bz — 22)

14 el (21 — 29)

Remark 4.10. One observes that this function is an interpolator which uses ¢ as a kernel. This can be

generalized to several Diracs using the definition of IC in the continuous setting and yields a rational function

in different evaluations of the function c¢%.

Figure 1 shows the values ) can take for different distances between sources. The behaviour of this function
immediately poses constraints on the allowed discretization grid on which one may place the sources. If one
discretizes too finely, then already in the two-delta case with sources for example in z;,, 2;,, there will exist a
grid point z; such that n(z;) > 1. This violates IC and under a certain bound on the noise will lead to false
source identification when using the lasso. We formalize this in the

Numerical observation 4.11. Let R > 0 and 21,22 € R, 21 < zo. Then for nR defined as in (4.9) we have
the following observation: There exists 6 > 0 such that n(z1 +6) = n(z2 — ) > 1.

This observation rules out super-resolution with exact signal sign recovery at arbitrary discretizations. A
minimum distance between potential sources is required in order to guarantee sign recovery in the 2-delta
case. This is not uncommon, since we can imagine many convolution kernels that may produce the same
effect. We can define

Definition 4.12 (Minimum discretization step). Let R > 0 and d > 0. Let z; = 0 and z2 = d. Then define

B 00 if min{§ > 0|n%(0) =1} >d
A(d, R) := { min{d > 0|n%(5) = 1} otherwise
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Given and imaging resolution R > 0 and a minimum source distance d > 0, any source space discretization

under A(d, R) will lead to violation of IC and thus the impossibility of correct support and sign recovery
for two Diracs. The function is depicted in Figure 1 on the right. The white region depicts A(d, R) = 400
indicating recovery failure due to a too small source separation. The lower border line to recovery failure and
the iso-colour-lines vary superlinearly with R, showing a severe degradation in resolution with increasing R.
This indicates the necessity of placing the detectors as close as possible to the sources.

5. CONCLUSIONS AND OUTLOOK

We have presented some classical results on sign and support dependent recovery criteria due to Fuchs,

Tropp and Grasmair. Based on the tightness of the IC criterion for sign stability in a low-noise setting, we
set out to study an idealized setting of MEG measurement, imposing high symmetry by placing sources on a
straight line and measuring on a cylinder of circumference R > 0. Taking the limit of infinite measurements
on this cylinder we find ourselves in the setting of spike deconvolution. Using Fuchs IC we assess the sign
recovery properties as a function of imaging scale R > 0 and minimum source separation d > 0 and find a
minimum discretization step A(d, R) > 0, which is always strictly positive, under which sign recovery of two
Diracs necessarily fails.

In real life, however, we do not have infinite measurement power on a surface surrounding the head. Indeed,

simulations show a degradation in recovery capacity, significantly enlarging the minimum source separation
with respect to the continuous setting. With a finite or discrete number of measurements the translation
invariance in source position is also disturbed. Even if we did have infinite measurements, given the structure
of the brain surface, we would not be working in a convolution setting with a constant convolution kernel.
In several aspects, we are dealing with a more difficult problem. Several questions emerge.

1.

Can we create a source grid adapted to the brain surface that under realistic situations permits stable
recovery of the signal sign? Answering this question takes more than analysing two Diracs on toy data.
A realistic forward model is needed based on the given non-vacuum setting along with an estimate of the
noise. The possible source locations grid must then be very well chosen, since it should ideally correspond
in a best possible manner to actual source locations. The minimum source separation may potentially be
high.

. Can we do a similar theoretical analysis on sources of variable orientation? The setting with free orientation
analog to the one described above would entail the use of a sign dependent criterion for stable recovery
using the group lasso [40], since coordinate orientations need to be treated together. As briefly mentioned
above, the group lasso uses a different penalty, grouping several coefficients together: Let G be a disjoint
collection of subsets of {1... N} such that their union is {1... N}. Then the penalty reads > g ||z
The variables in a group g € G are activated or set to 0 together. The notion of a discrete sign must
be abandoned and replaced by the generalized sign H;ﬁ Although an equivalent to ERC exists in the
group setting (see [1], where it is used to prove consistency), the generalized-sign-dependent criterion is a
subject of current research.

Can we create a setting in which the theory of super-resolution of Candes and Granda may be applied
to this problem? If so, this would entail the possibility of localizing sources based only on a minimum
distance criterion.

In connection with the preceding question: can we place detectors in a more optimal way than is presently
done? This question can be addressed using simulations with IC or with a super-resolution theory.

Is the prior information that sources are sparse, which we implicitly impose, correct enough? Would other
signal priors compatible with the superresolution theory, for example a more general analysis prior as
explained in [14, 25] be better adapted?
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