
Mathematics of Data Science 2017

Part 1 – Maximum Entropy

In the following, we denote (a, b) ∈ Rn+×Rm+ with
∑n

i=1 ai =
∑m

j=1 bj = 1. We define the entropy

of P ∈ Rn×m+ as

H(P ) = −
∑
i,j

Pi,j log(Pi,j), (1)

with the convention 0 log(0) = 0.

1) Show that −H is a strictly convex function.

2) We denote a⊗ b = (aibj)i,j . Compute H(a⊗ b).
3) Solve the following optimization problem

min
P∈Rn×m

+

−H(P ) ; ∀i, (P1m)i =
∑
j

Pi,j = ai,∀j, (P>1n)i =
∑
i

Pi,j = bj

 .

4) For a ∈ Rn+,∗ (strictly positive) and r ∈ Rn+, we define the Kulback-Leibler divergence between
the two vectors (the same expression holds also for matrices, where the sum is on (i, j) instead
of just i) as

KL(r|a)
def.
=
∑
i

log

(
ri
ai

)
ri − ri + ai. (2)

Show that the function KL(·|a) is convex and compute its minimizer. Deduce that KL is
“distance-like”, i.e. that KL(r|a) > 0 and KL(r|a) = 0 if and only if r = a. Show that, if
P is such that

P1m = (
∑
j

Pi,j)i = a and P>1n = (
∑
i

Pi,j)j = b

then one has
KL(P |a⊗ b) = KL(P |a′ ⊗ b′) + KL(a′ ⊗ b′|a⊗ b).

Part 2 – Hadamard-Walsh Transform

We denote G = (Z/2Z)p, which is a group with n
def.
= 2p elements. An element x ∈ G is written

as x = (xi)
p
i=1 with xi ∈ {0, 1} and is equivalently represented as 0 6 x < n where the xi is the

binary writing of x in base 2. We denote R[G] the vector space of functions f : G → R, endowed

with the canonical inner product 〈f, g〉 def.
=
∑

x∈G f(x)g(x).

1) For ω ∈ G, we denote ψω(x)
def.
= (−1)

∑p
i=1 xiωi . Show that (ψω)ω∈G is an orthogonal basis of

C[G].

2) We denote f̂(ω)
def.
= 〈f, ψω〉 the Hadamard-Walsh transform of f . We denote f0, f1 : (Z/2Z)p−1 →

R defined as

f0(x1, . . . , xp−1)
def.
= f(x1, . . . , xp−1, 0) and f1(x1, . . . , xp−1)

def.
= f(x1, . . . , xp−1, 1).

Find a relation between f̂ and (f̂0, f̂1). Write in pseudo-code a fast recursive algorithm to
compute f̂ from f . What it is the number of operations of this algorithm ?

3) Detail a fast algorithm to compute the inverse Walsh transform, i.e. which computes f from f̂ .
What it is the number of operations of this algorithm ?
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4) Given (f, g) ∈ R[G], how would you define the convolution of f and g ? Show that f̂ ? g = f̂ � ĝ
where � is the pointwise multiplication of vectors.

Part 3 – Haar Wavelets

The goal of this exercise is to detail the construction of an orthogonal basis of L2([0, 1]), which
was introduced by Alfred Haar in 1909, and is the first example of Wavelet basis.

For j ∈ N, one defines the space Vj ⊂ L2([0, 1]) of fonctions which are constant on each interval
Ij,k, defined for k ∈ {0, . . . , 2j − 1} as

∀ k ∈ {0, . . . , 2j − 1}, Ij,k
def.
=

{
[ k
2j
, k+1

2j
[ si k < 2j − 1,

[1− 1
2j
, 1] si k = 2j − 1.

. (3)

One also defines the functions

∀x ∈ R, ϕ(x)
def.
=

{
1 si x ∈ [0, 1[,
0 sinon.

and ψ(x)
def.
=


1 si x ∈ [0, 1/2[,
−1 si x ∈ [1/2, 1[,
0 sinon.

Their versions dilated by 1/2j and translated at position k/2j are defined, for j ∈ N, as

∀ k ∈ {0, . . . , 2j − 1}, ψj,k(x)
def.
= 2j/2ψ

(
2jx− k

)
, and ϕj,k(x)

def.
= 2j/2ϕ

(
2jx− k

)
. (4)

1) Show that there exists a space Wj ⊂ L2([0, 1]) such that

∀j > 0, Vj+1 = Vj ⊕⊥Wj ,

where one denotes U = V ⊕⊥W if U = V ⊕W (the sub-spaces are in direct sums) and V⊥W
(the sub-spaces are orthogonal). What is the dimension of Wj ?

2) The function (ψj,k)j,k are called “Haar wavelets”.

a) Draw the graphs of the functions ψ0,0, ψ1,0 are ψ2,2.

b) Show that

Bϕj
def.
=
{
ϕj,k ; k ∈ {0, . . . , 2j − 1}

}
et Bψj

def.
=
{
ψj,k ; k ∈ {0, . . . , 2j − 1}

}
are ortho-bases of respectively Vj and Wj .

c) For j0 ∈ N, show that

{ϕ} ∪
⋃
j<j0

Bψj

is an ortho-basis of Vj0 .

d) Show that the projection of f ∈ L2([0, 1]) on Vj converges to zero as j → +∞. One can
start by the case of a continuous function f .

e) Show that

{ϕ} ∪
⋃
j∈N
Bψj

is an hilbertian basis of L2([0, 1]).

3) For f ∈ L2([0, 1]), and j ∈ N, one denotes

∀ k ∈ {0, . . . , 2j − 1}, aj,k
def.
= 〈f, ϕj,k〉 and dj,k

def.
= 〈f, ψj,k〉,

which defines two vectors aj
def.
= (aj,k)

2j−1
k=0 ∈ R2j and dj

def.
= (dj,k)

2j−1
k=0 ∈ R2j . We suppose in this

question that f ∈ Vj0 for j0 ∈ N and denote n
def.
= 2j0 .
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a) What is the value of dj for j > j0 ?

b) How to compute aj0 as a function of (f(k/n))n−1k=0 ?

c) Write, for all j ∈ N and k ∈ {0, . . . , 2j − 1}, (aj,k, dj,k) as a function of (aj+1,2k, aj+1,2k+1).
One can start by writing the function ϕj,k et ψj,k as linear combinations of the functions
ϕj+1,2k and ϕj+1,2k+1.

d) Describe an algorithm which computes the whole set of coefficients

{dj}j0−1j=0 ∪ {a0}

starting from aj0 as input data.

e) What is the number of operations (additions and multiplications) involved in this algo-
rithms ?

f) Show that the transformation

Hj0 : aj0 ∈ Rn 7−→ {dj}j0−1j=0 ∪ {a0}

defines an orthogonal linear map. It is called the discrete Haar transform.

g) What is the number of operations (additions and multiplications) necessary to compute the
dot product Ha between an arbitrary matrix H ∈ Rn×n and an arbitrary vector a ∈ Rn ?
Compare this to the complexity involved in the computation of Hj0(a0).

4) Discussion : contrast the Haar transform with the Walsh transform described in Part 2. You
can for instance describe how they behave on simple vectors, compare the structure of their
algorithms, the type of group action involved, etc.

Part 4 – Group Lasso

For some matrix A ∈ Rp×n and vector y ∈ Rp, we recall that the lasso problem reads

min
x∈Rn

1

2
||Ax− y||2 + λ||x||1 where ||x||1

def.
=

n∑
i=1

|xi|. (5)

We consider a partition {1, . . . , n} = ∪Kk=1Bk where B = {Bk}k is a set of non-intersecting groups
of index. The associated group-`1 norm is

||x||B
def.
=

K∑
k=1

||xBk
||

where ||u|| =
√∑

j u
2
j is the Euclidean norm and xB = (xi)i∈B ∈ R|B| selects the entries of x indexed

by B. The group Lasso problem reads

min
x∈Rn

1

2
||Ax− y||2 + λ||x||B. (6)

1) Explain why (5) is a special case of (6). Show that (6) is a convex problem which has at least
a solution.

2) We recall that the proximal operator of a convex function f is

∀x ∈ Rn, Proxf (x)
def.
= argmin

x′∈Rn

1

2
||x− x′||2 + f(x′).

Compute, for τ > 0, Proxτ ||·||2 and Proxτ ||·||. Compute Proxτ ||·||B .
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3) Recall the iterative thresholding algorithm to minimize (5). Adapt it to minimize (6).

4) Explain intuitively why the solution of (6) is expected to have a “group sparse” property (you
should give a precise meaning to this naming).

Part 5 – Unbalanced Optimal Transport

Given two input vectors (a, b) ∈ Rn+,∗ × Rm+,∗ (we impose here that these vector are strictly
positive). We recall that the discrete entropy-regularized optimal transport problem is defined as

min
P∈Rn×m

+

{
〈C, P 〉 − εH(P ) ; P1m = a, P>1n = b

}
, (7)

for some cost matrix C ∈ Rn×m, where the entropy H is defined in (1).
We define an “unbalanced” optimal transport problem, for ρ > 0, as

Pρ = min
P∈Rn×m

+

〈C, P 〉 − εH(P ) + ρKL(P1m|a) + ρKL(P>1n|b) (8)

where KL(r|a) is the Kulback-Leibler divergence defined in (2).

1) What happens in (7) when
∑

i ai 6=
∑

j bj ? What happens in (8) ?

2) Shows that (8) has a unique minimizer Pρ, which converges, as ρ→ +∞ to the unique minimizer
of (7).

3) Compute the Legendre-Fenchel transform KL∗(·|a) of the function KL(·|a), defined as

KL∗(u|a) = max
r∈Rn

〈u, r〉 −KL(r|a).

In the following, we admit that (KL∗)∗ = KL.

4) Using the previous computation, by exchanging a min and a max, show that one has the following
dual problem

Pρ = max
(f,g)∈Rn×Rm

− Φ(f)−Ψ(g)− ε
∑
i,j

exp

(
−Ci,j + fi + gj

ε

)
, (9)

for some convex functions Φ,Ψ to be determined. How does one compute the solution Pρ of (8)
from the optimal (f, g) ?

5) For a fixed g (resp. f), compute the solution of (9) when performing the minimization only with
respect to f (resp. g). Deduce an iterative minimization algorithm which performs a minimiza-
tion with respect to f and g alternatively. Explain why, when ρ→ +∞, one retrieves Sinkhorn’s
algorithm.
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