ALGEBRE-06/08

Documents interdits. Il n'est pas necessaire de finir le sujet pour avoir une tres bonne note. La question I.l est plus difficile.

T

Un anneau R sera toujours suppose commutatif et unitaire. Soit $\Sigma \subset R$ un sous semi-groupe multiplicatif, i.e., on a $1 \in \Sigma$ et $xy \in \Sigma$ pour tous $x,y \in \Sigma$. Si M est un R-module on pose

$$M[\Sigma^{-1}] = \{(m, s) \in M \times \Sigma\} / \sim$$

ou $(m,s) \sim (m',s')$ si et seulement si il y a un element $t \in \Sigma$ tel que t(s'm-sm')=0. On note m/s la classe d'equivalence du couple (m,s). On munit $M[\Sigma^{-1}]$ de la structure de R-module telle que m/s+m'/s'=(s'm+sm')/ss' et t(m/s)=(tm)/s. Soit i_M le morphisme $M \to M[\Sigma^{-1}]$, $m \mapsto m/1$. On note ideal(R) l'ensemble des ideaux de R, max(R) celui des ideaux maximaux, et spec(R) celui des ideaux premiers. Un R-module P est plat si pour tout morphisme injectif de R-modules $f: M \to N$ l'application $id_P \otimes f: P \otimes_R M \to P \otimes_R N$ est encore injective. Un anneau est local si il contient un unique ideal maximal.

- **I.a.** Démontrer que $R[\Sigma^{-1}]$ est un anneau, que $M[\Sigma^{-1}]$ est un $R[\Sigma^{-1}]$ -module, et que tout morphisme de R-modules $f:M\to N$ induit un morphisme de $R[\Sigma^{-1}]$ -modules $f[\Sigma^{-1}]:M[\Sigma^{-1}]\to N[\Sigma^{-1}]$. Démontrer que si $f:R\to R'$ est un morphisme d'anneaux tel que f(s) est inversible pour tout $s\in \Sigma$, il existe un unique morphisme $g:R[\Sigma^{-1}]\to R'$ tel que $g\circ i_R=f$.
- **I.b.** Démontrer qu'un $R[S^{-1}]$ -module est la meme chose qu'un R-module sur lequel les elements de Σ agissent par des automorphismes.
- **I.c.** Demontrer que si $m \in M$ alors $i_M(m) = 0$ si et seulement si il existe $t \in \Sigma$ tel que tm = 0. Demontrer que si M est un R-module de type fini on a $M[\Sigma^{-1}] = 0$ si et seulement si il existe $t \in \Sigma$ tel que tm = 0 pour tout $m \in M$.
- **I.d.** Demontrer que l'application $R[\Sigma^{-1}] \otimes_R M \to M[\Sigma^{-1}], (r/s) \otimes m \mapsto (rm)/s$ est un isomorphisme de $R[\Sigma^{-1}]$ -modules.
- **I.e.** Demontrer que si $\mathfrak{p} \in spec(R)$ alors $R \mathfrak{p}$ est un sous semi-groupe multiplicatif. Dans ce cas on ecrit $M_{\mathfrak{p}} = M[(R \mathfrak{p})^{-1}]$. Demontrer que $R_{\mathfrak{p}}$ est un anneau local. Deduire du lemme de Zorn que si $m \in M$ alors m = 0 si et seulement si m s'envoie sur 0 dans $M_{\mathfrak{m}}$ pour tout $\mathfrak{m} \in max(R)$. Demontrer que M = 0 si et seulement si $M_{\mathfrak{m}} = 0$ pour tout $\mathfrak{m} \in max(R)$.
- **I.f.** Soit P un R-module plat. Demontrer que si $R \to S$ est un morphisme d'anneaux, alors $S \otimes_R P$ est un S-module plat. Demontrer que si $f : M \to N$ est un morphisme de R-modules alors $\operatorname{Ker}(\operatorname{id}_P \otimes f) = P \otimes_R \operatorname{Ker}(f)$ et $\operatorname{Coker}(\operatorname{id}_P \otimes f) = P \otimes_R \operatorname{Coker}(f)$.

- **I.g.** Démontrer que $R[\Sigma^{-1}]$ est un R-module plat. En deduire que $\operatorname{Ker}(f)[\Sigma^{-1}] = \operatorname{Ker}(f[\Sigma^{-1}])$, $\operatorname{Coker}(f)[\Sigma^{-1}] = \operatorname{Coker}(f[\Sigma^{-1}])$, et que f est injectif, surjectif si et seulement si $f_{\mathfrak{m}}$ l'est pour tout $\mathfrak{m} \in \max(R)$.
- **I.h.** Demontrer que si $M_1, M_2, ...M_r$ sont des sous-modules d'un R-module M alors $(\bigcap_i M_i)[\Sigma^{-1}] = \bigcap_i (M_i[\Sigma^{-1}])$ (nb : $\bigcap_i M_i$ est le noyau de l'application evidente $M \to \bigoplus_i (M/M_i)$). Demontrer que si $I \in ideal(R)$, $\mathfrak{p} \in spec(R)$ alors $(R/I)_{\mathfrak{p}} = 0$ si et seulement si $I \not\subset \mathfrak{p}$. En deduire le Lemme Chinois, i.e., si $I_1, I_2, ...I_r \in ideal(R)$ sont tels que $I_i + I_j = R$ pour tous $i \neq j$ alors $R/(\bigcap_i I_i) \simeq \bigoplus_i (R/I_i)$ (nb : si $\mathfrak{m} \in max(R)$ alors il existe au plus un i tel que $I_i \subset \mathfrak{m}$. En deduire que $(R/(\bigcap_i I_i))_{\mathfrak{m}} \subset \bigoplus_i (R/I_i)_{\mathfrak{m}}$).
- **I.i.** Donner un exemple de \mathbb{Z} -module non plat. Soit $R=\mathbb{C}[x]$. Le R-module $R[y]/(y^2-x)$ est-il plat ? Le R-module R[y]/(xy-1) est-il plat ? Le R-module R[y]/(xy) est-il plat ?
- **I.j.** Demontrer qu'un R-module M est plat si et seulement si $M_{\mathfrak{m}}$ est un $R_{\mathfrak{m}}$ -module plat pour tout $\mathfrak{m} \in max(R)$. En deduire que si M est localement libre, i.e., si $M_{\mathfrak{m}}$ est un $R_{\mathfrak{m}}$ -module libre pour tout $\mathfrak{m} \in max(R)$, alors M est plat.
- **I.k.** Soit P un R-module plat et $a_1, a, \ldots a_r \in R$. Soit $f: R^r \to R$ l'application $(b_i) \mapsto \sum_i a_i b_i$, et $(x_i) \in P^r$ un element tel que $\sum_{i=1}^r a_i x_i = 0$. Demontrer que $f \otimes \operatorname{id}_P$ est une application $P^r \to P$ envoyant (x_i) sur 0. Deduire de I.f qu'il existe des elements $b_{ij} \in R$, $y_j \in P$, $i = 1, 2, \ldots r$, $j = 1, 2, \ldots s$ tels que $\sum_i a_i b_{ij} = 0$ pour tout j et $x_i = \sum_j b_{ij} y_j$ pour tout i.
- **I.l.** Soit M un R-module de type fini, et $x_1, x_2, \ldots x_r \in M$. Supposons que $\max(R) = \{\mathfrak{m}\}$. Soit $\bar{R} = R/\mathfrak{m}, \ \bar{M} = M/\mathfrak{m}M, \ \text{et } \bar{x}_i \ \text{l'image de } x_i \ \text{dans } \bar{M}.$ Supposons que $\bar{x}_1, \bar{x}_2, \ldots \bar{x}_n$ est une \bar{R} -base de \bar{M} . Demontrer que $x_1, x_2, \ldots x_n$ engendrent le R-module M. Demontrer qu'ils forment une R-base de M (nb : raisonner par recurrence en utilisant I.k). En deduire que, pour tout anneau R, le module M est localement libre si et seulement si il est plat.