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Abstract

How does the brain store information over short time scales? What
are the neural computations underlying short-term memory? To tackle
this issue, we will first give a brief description of the different models for
neural networks, the basic "hardware” that the brain uses. Then, we will
give a short account of the different approach that people have used to
study short-term memory in neuroscience, both theoretical and experi-
mental. Finally, starting from some recent work on a principled top down
approach to design networks capable of tracking a variable efficiently, we
will sketch an approach to designing and learning neural networks imple-
menting working memory.

1 Neural networks

At a first, basic, cartoon-like description, the key computational hardware of
the brain is a neural network: a group of cells, called neurons, connected by
synapses. When a neuron receives a sufficient amount of external current, it pro-
duces a short and stereotyped depolarisation, called action potential, or spike.
Such electrical signal will then travel through all the synapses starting from
their neuron and will change (positively or negatively, depending on the type
of synapse) the membrane voltage of the postsynaptic neurons. These basic
neurophysiological facts led McCulloch and Pitts (see [14]) to propose a very
simple threshold-linear dynamics of the neuronal state, namely:

x;(t) = sgn Z Wija;(t) — b; (1)

J

where x; is the state of neuron j (1 if the neuron is active, 0 otherwise), whereas
W;j is the strength of the connection from neuron j to neuron i (it can be
positive or negative) and b; is some sort of threshold denoting the amount of
excitation neuron i needs in order to spike. In the follow up, we will use a very
similar model, where the quantity of interest is not this abstract ”activity” of
the neuron, but rather the firing rate of the neuron (that is to say, the frequency
at which it emits spikes). Still there are two key differences:



e The firing rates are not a discrete quantity, they do not have to be 0 or 1
but can vary continuously.

e This rate model is a linear dynamical system and is therefore much easyer
to treat analytically.

The neural network equation describing this model is:
Fi(t) =7 | D Wi (8) + 1i(t) — uri(t) (2)
J

meaning that the change in the firing rate of neuron i is proportional to the
excitation he has received from some other neurons in the network, namely
> Wijrj(t), or from outside: [;(t), minus the term yir;(t), often referred to the
leak, corresponding to the fact that, in the absence of external stimulus, neural
activity tend to decay back to 0.

A key difference between the brain and standard computers is the ability to
self-organise: synapses evolve through time, on a time-scale much slower than
the network dynamics, thus changing both the structure and the function of the
network. In 1949, the psychologist Donald Hebb proposed a model for synap-
tic adaptation in neural networks, often abbreviated as Cells that fire together,
wire together. He suggested that the synaptic strength between two neurons
adapts to the firing-rate correlation of its associated pre- and postsynaptic neu-
rons (see [4]). This so-called Hebbian learning and its numerous adaptations
are vastly influential in neural network research until today. However, what
would be the computational purpose of such plasticity rule is far from clear: in
what follows, we will explain the link between Hebbian-like plasticity rules and
working memory.

2 Working memory

In our everyday life we continuously store (and retrieve) information for short
time intervals: this ability is called working memory. When we speak, for
example, we normally remember how a sentence started. Working memory can
be studied in tasks in which a subject, generally an animal, needs to remember
an item for a couple of seconds. In particular, in [17], Romo recorded neural
activity in macaque prefrontal cortex in a delayed discrimination task (see figure
1).

Many brain circuits are known to maintain information over short periods
of time in the firing of their neurons [13]. Such “persistent activity” is likely to
arise through reverberation of activity due to recurrent synapses. While many
recurrent network models have been designed that remain active after transient
stimulation, such as hand-designed attractor networks [19, 12] or randomly gen-
erated reservoir networks [8, 11], how neural networks can learn to remain active
is less well understood.
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Figure 1: The monkey receives two stimulations at different times (indicated by the
bumps in activity). This plot shows sustained firing rates in the delay period, mono-
tonical in the first stimulation: the animal is remembering the value of the first input
to compare it with the second, then forgets about it.

The problem of learning to remember the input history has mostly been ad-
dressed in supervised learning of recurrent networks. The classical approaches
are based on backpropagation through time [20, 5]. However, apart from con-
vergence issues, backpropagation through time is not a feasible method for bi-
ological systems. More recent work has drawn attention to random recurrent
neural networks, which already provide a reservoir of time constants that al-
low to store and readout memories [8, 11]. Several studies have focused on the
question of how to optimize such networks to the task at hand (see [10] for a re-
view), however, the generality of the underlying learning rules is often not fully
understood, since many rules are not based on analytical results or convergence
proofs.

The unsupervised learning of short-term memory systems, on the other hand,
is largely unchartered territory. While there have been several “bottom-up”
studies that use biologically realistic learning rules and simulations (see e.g.
[9]), we are not aware of any analytical results based on local learning rules.

Here we report substantial progress in following through a normative, “top-
down” approach that results in a recurrent neural network with local synaptic
plasticity. This network learns how to efficiently remember an input and its
history. The learning rules are largely Hebbian or covariance-based, but separate
recurrent and feedforward inputs. Our approach generalizes analogous work
in the setting of efficient coding of an instantaneous signal, as developed in



15, 18, 21, 3, 1].

3 The autoencoder

We start by recapitulating the autoencoder network shown in Fig. 2a. The au-
toencoder transforms a K-dimensional input signal, x, into a set of N firing
rates, r, while obeying two constraints. First, the input signal should be recon-
structable from the output firing rates. A common assumption is that the input
can be recovered through a linear decoder, D, so that

x ~ % = Dr. (3)

Second, the output firing rates, r, should provide an optimal or efficient repre-
sentation of the input signals. This optimality can be measured by defining a
cost C(r) for the representation r. For simplicity, we will in the following assume
that the costs are quadratic (L2), although linear (L1) costs in the firing rates
could easily be accounted for as well. We note that autoencoder networks are
sometimes assumed to reduce the dimensionality of the input (undercomplete
case, N < K) and sometimes assumed to increase the dimensionality (overcom-
plete case, N > K). Our results apply to both cases.

The optimal set of firing rates for a given input signal can then be found by
minimizing the loss function,

1 2 M2
L= L =D+ & e, @)

with respect to the firing rates r. Here, the first term is the error between the
reconstructed input signal, X = Dr, and the actual stimulus, x, while the second
term corresponds to the “cost” of the signal representation. The minimization
can be carried out via gradient descent, resulting in the differential equation

po 9L —ur+D'x - D'Dr. (5)
Or

This differential equation can be interpreted as a neural network with a ‘leak’,
—pr, feedforward connections, F = D and recurrent connections, & = D' D.
The derivation of neural networks from quadratic loss functions was first intro-
duced by Hopfield [6, 7], and the link to the autoencoder was pointed out in [18].
Here, we have chosen a quadratic cost term which results in a linear differential
equation. Depending on the precise nature of the cost term, one can also obtain
non-linear differential equations, such as the Cowan-Wilson equations [18, 7].
Here, we will first focus on linear networks, in which case ‘firing rates’ can be
both positive and negative. Further below, we will also show how our results can
be generalized to networks with positive firing rates and to networks in which

neurons spike.
In the case of arbitrarily small costs, the network can be understood as
implementing predictive coding [16]. The predicted input signal, D"x = D Dr,
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Figure 2: Autoencoders. (a) Feedforward network. The input signal x is multiplied with the
feedforward weights F. The network generates output firing rates r. (b) Recurrent network.
The left panel shows how the reconstructed input signal x = Dr is fed back and subtracted
from the original input signal x. The right panel shows that this subtraction can also be
performed through recurrent connections FD. For the optimal network, we set F = DT . (c)
Recurrent network with delayed feedback. Here, the output firing rates are fed back with a
delay. This delayed feedback acts as just another input signal, and is thereby re-used, thus
generating short-term memory.

is subtracted from the actual input signal, Dx, see Fig. 2b. Predictive coding
here enforces a cancellation or ‘balance’ between the feedforward and recurrent
synaptic inputs. If we assume that the actual input acts excitatory, for instance,
then the predicted input is mediated through recurrent lateral inhibition. Recent
work has shown that this cancellation can be mediated by the detailed balance
of currents in spiking networks [2, 1], a result that deserves further investigation.

4 Unsupervised learning of the autoencoder with
local learning rules

The transformation of the input signal, x, into the output firing rate, r, is largely
governed by the decoder, D, as can be seen in Eq. (5). When the inputs are
drawn from a particular distribution, p(x), such as the distribution of natural
images or natural sounds, some decoders will lead to a smaller average loss and
better performance. The average loss is given by

() = ¢ (b= Drl* 4 el (6)

where the angular brackets denote an average over many signal presentations. In
practice, x will generally be centered and whitened. While it is straightforward
to minimize this average loss with respect to the decoder, D, biological networks
face a different problem.! A general recurrent neural network is governed by
the firing rate dynamics

r=—ur+Fx — Qr, (7)

and has therefore no access to the decoder, D, but only to to its feedforward
weights, F, and its recurrent weights, 2. Furthermore, any change in F and €2

INote that minimization of the average loss with respect to D requires either a hard or a
soft normalization constraint on D.



must solely relie on information that is locally available to each synapse.
We will assume that matrix € is initially chosen such that the dynamical
system is stable, in which case its equilibrium state is given by

Fx = Qr + pr. (8)

If the dynamics of the input signal x are slow compared to the firing rate dynam-
ics of the autoencoder, the network will generally operate close to equilibrium.
We will assume that this is the case, and show that this assumption helps us to
bridge from these firing rate networks to spiking networks further below.

A priori, it is not clear how to change the feedforward weights, F', or the
recurrent weights, €2, since neither appears in the average loss function, Eq. (6).
We might be inclined to solve Eq. (8) for r and plug the result into Eq. (6).
However, we then have to operate on matrix inverses, the resulting gradients
imply heavily non-local synaptic operations, and we would still need to somehow
eliminate the decoder, D, from the picture.

Here, we follow a different approach. We note that the optimal target net-
work in the previous section implements a form of predictive coding. We there-
fore suggest a two-step approach to the learning problem. First, we fix the
feedforward weights and we set up learning rules for the recurrent weights such
that the network moves into a regime where the inputs, Fx, are predicted or
‘balanced’ by the recurrent weights, r, see Fig. 2b. In this case, 2 = FD, and
this will be our first target for learning. Second, once €2 is learnt, we change
the feedforward weights F to decrease the average loss even further. We then
return to step 1 and iterate.

Since F' is assumed constant in step 1, we can reach the target @ = FD
by investigating how the decoder D needs to change. The respective learning
equation for D can then be translated into a learning equation for €2, which
will directly link the learning of € to the minimization of the loss function,
Eq. (6). One thing to keep in mind, however, is that any change in £ will cause
a compensatory change in r such that Eq. (8) remains fulfilled. These changes
are related through the equation

Qr+ (Q+ )i =0 (9)

which is obtained by taking the derivative of Eq. (8) and remembering that
x changes on much slower time scales, and can therefore be considered a con-
stant. In consequence, we have to consider the combined change of the recurrent
weights, €2, and the equilibrium firing rate, r, in order to reduce the average
loss.

Let us assume a small change of D in the direction AD = exr", which is
equivalent to simply decreasing x in the first term of Eq. (6). Such a small
change can be translated into the following learning rule for D,

D = e(xr' —aD), (10)

where € is sufficiently small to make the learning slow compared to the dynamics
of the input signals x = x(t). The ‘weight decay’ term, —aD, acts as a soft



normalization or regularizer on D. In turn, to have the recurrent weights €2
move towards FD, we multiply with F from the left to obtain the learning rule?

Q= e(Fxr’ —aQ). (11)
Importantly, this learning rule is completely local: it only rests on information
that is available to each synapse, namely the presynaptic firing rates, r, and the
postsynaptic input signal, Fx.

Finally, we show that this learning rule decreases the loss function. As
noted above, any change of {2 causes a change in the equilibrium firing rate, see
Eq. (9). By plugging the learning rule for € into Eq. (9), and by remembering
that Fx = Qr + ur, we obtain

i = —¢|r]’r + ea(Q + puI) ' Qr. (12)

Given that the second term on the right-hand-side is small against the first
term, we conclude that, to first order, the firing rates decay in the direction of
r. In turn, the temporal derivative of the loss function,

d(L .

% = <(—Dr —Dri) (x —Dr) + ,ui'Tr> (13)
= (= ellrl2(x = Dr)T (x = Dr) — peefr|[*), (14)

is always negative so that the learning rule for €2 decreases the error. Note that
the proof here rests on the parallelism of the learning of D and €. The decoder,
D, however, is merely a hypothetical quantity that does not have a physical
counterpart in the network.

In step 2, we assume that the recurrent weights have reached their target,
Q) = FD, and we learn the feedforward weights. For that we notice that in the
absolute minimum, as shown in the previous section, the feedforward weights
become F = DT. Hence, the target for the feedforward weights should be the
transpose of the decoder. Over long time intervals, the expected decoder is
simply D = (xr")/a, since that is the fixed point of the decoder learning rule,
Eq. (10). Hence, we suggest to learn the feedforward weights on a yet slower
time scale 8 < €, according to

F = B(rx| — \F), (15)

where AF is once more a soft normalization factor. The fixed point of the
learning rule is then F = DT. We emphasize that this learning rule is also
local, based solely on the presynaptic input signal and postsynaptic firing rates.

In summary, we note that the autoencoder operates on four separate time
scales. On a very fast, almost instaneous time scale, the firing rates run into
equilibrium for a given input signal, Eq. (8). On a slower time scale, the input
signal, x, changes. On a yet slower time scale, the recurrent weights, 2, are
learnt, and their learning therefore uses many input signal values. On the final
and slowest time scale, the feedforward weights, F, are optimized.

2Note that the fixed point of the decoder learning rule is D = (xr')/a. Hence, the fixed
point of the recurrent learning is Q2 = FD.



5 The autoencoder with memory

We are finally in a position to solve the problem we started out with, how to
build a recurrent network that efficiently represents not just its present input,
but also its past inputs. The objective function used so far, however, completely
neglects the input history: even if the dimensionality of the input is much smaller
than the number of neurons available to code it, the network will not try to use
the extra ‘space’ available to remember the input history.

5.1 An objective function for short-term memory

Ideally, we would want to be able to read out both the present input and the
past inputs, such that x;_, ~ D,r;, where n is an elementary time step, and
D,, are appropriately chosen readouts. We will in the following assume that
there is a matrix M such that D,M = D,,; for all n. In other words, the
input history should be accessible via X;_, = D,r = DgM"r;. Then the cost
function we would like to minimize is a straightforward generalization of Eq. (4),

1
L =3 37" i — DM |2 4+ 2 (16)
n=0
where we have set D = Dy.

Unfortunately, the direct minimization of this objective is impossible, since
the network has no access to the past inputs x;_,, for n > 1. Rather, information
about past inputs will have to be retrieved from the network activity itself. We
can enforce that by replacing the past input signal at time ¢, with its estimate
in the previous time step, which we will denote by a prime. In other words,
instead of asking that x;_, ~ X;_,, we ask that f(it_l)_(n_l) /A Xi_p, SO that
the estimates of the input (and its history) are properly propagated through the
network. Given the iterative character of the respective errors, ||§<’(t71)7(n71) —

Xi—n| = [|DM" !(r;_; — Mr,)||, we can define a loss function for one time step
only,
1
L= 3 llxe = Drel* + 2 flremy = Mol + 5 el ()

Here, the first term enforces that the instantaneous input signal is properly
encoded, while the second term ensures that the network is remembering past
information. The last term is a cost term that makes the system more stable
and efficient.

Note that a network which minimizes this loss function is maximizing its
information content, even if the number of neurons, N, far exceeds the input
dimension K, so that N > K. As becomes clear from inspecting the loss
function, the network is trying to code an N + K dimensional signal with only
N neurons. Consequently, just as in the undercomplete autoencoder, all of its
information capacity will be used.



5.2 Dynamics and learning

Conceptually, the loss function in Eq. (17) is identical to Eq. (4): we only need
to vertically stack the feedforward input and the delayed recurrent input into a
single high-dimensional vector x’ = (x; ; yr;—1). Similarly, we can horizontally
combine the decoder D and the ‘time travel’ matrix M into a single decoder
matrix D’ = (D yM). The above loss function then reduces to

L=|x;—D'r|* + e, (18)

and all of our derivations, including the learning rules, can be directy applied
to this system. Note that the ‘input’ to the network now combines the actual
input signal, x;, and the delayed recurrent input, r;_;. Consequently, this
extended input is neither white nor centered, and we will need to work with
the generalized dynamics and generalized learning rules derived in the previous
section.

The network dynamics will initially follow the differential equation 3

V =Fx; + Q% — Qr, — LTy (19)
r=V— (V). (20)

Compared to our previous network, we now have effectively three inputs into the
network, the feedforward inputs with weight F, a delayed recurrent input with
weight Q% and a fast recurrent input with weight Q7, see Fig. 2c. Consequently,
there are also three learning rules: those for the fast recurrent weights, which
follow the learning of €2 above, and those for the feedforward and delayed recur-
rent weights, which follow the learning of F above. The optimal connectivities
can be derived from the loss function and are

F=D' (21)
Ql=mM" (22)
Q' =D'D+M'M. (23)

The learning rules follow from those in in the previous section and amount to
Q= e(Fx;r] — Q) 24

F = 5((rt — Fx,g)xtT — aF). 25

Qd = B((ry — Qryq)r)_| — aQ?). 26

)
)
)
27)

(
(
(
(
6 Discussion

These results show a strong link between balancing and efficient coding: if neu-
rons can compensate both external feedforward and delayed recurrent excitation

3We are now dealing with a delay-differential equation, which may be obscured by our
notation. In practice, the term r;_; would be replaced by a term of the form r(r — 7), where
7 is the actual value of the ‘time step’.



with lateral inhibition, then, to some extent, they must be coding the temporal
trajectory of the stimulus (to compensate for something, you must be coding it
and if synapses are linear, so must be the decoder). This result can easily be
learnt through synaptic plasticity of the lateral connections, using postsynaptic
voltage or related quantities and is the most important part of the learning pro-
cess. Performance can be further improved optimising feedforward connections
(as well as the ”time travel” matrix) to the input statistics, but that does not
play as big a role, especially with gaussian uncorrelated input.

As much as this results may appear promising, many things are still left
to do, in particular it would be very interesting to bring this whole formalism
closer to biology. In this respect, two obvious improvements come to mind:

e Translate these results in more biophysically plausible networks, such as
spiking networks of leaky integrate and fire neurons (it may be interesting
to use the equivalence established in [1]).

e Generalise this framework to a setting in which not all the information
has the same relevance: it would then be easier to check the model pre-
dictions with electrophysiological recordings in animal performing tasks,
as they tend to remember particularly well those stimuli that they need
to determine behaviour.
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