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This document features two probability distributions on random sets and two
areas of mathematics where they both feature as limit distributions in similar
ways.

1. In the �rst part, these two probability distributions are described.

2. In the second part, one of the two areas of mathematics is introduced.

3. In the third part, the other area is introduced.

Part I. The Airy ensembles

1 Point processes.

Let Σ be the smallest σ-algebra on the set P(R) of subsets of R such that for

all K ⊂ R compact, fK :
P(R) → J0,+∞K
F 7→ card (F ∩K)

is measurable.

A point process on R is a probability measure µ on the σ-algebra Σ such
that µ {F ⊂ R : ∀K ⊂ R compact, card (F ∩K) < +∞} = 1

Theorem 1.1. A point process µ of canonical random variable F is fully de-

termined by the family of numbers indexed by �nite sets of compacts:

rK1,...,Kn = E (card {(x1, . . . , xn) ∈ Fn ∩K1 × · · · ×Kn : ∀i 6= j ∈ J1, nK, xi 6= xj}) .

Let λ be the Lebesgue measure on R.
Let n ∈ N. If rK1,...,Kn =

∫
(x1,...,xn)∈K1×···×Kn fn(x1, . . . , xn)λ(d x1) . . . λ(d xn),

then fn is called its n-point correlation function. The sequence of n-point cor-
relation functions, if it exists, de�ne the point process.

A determinantal point process on R of kernel K : R2 7→ R is a point process
such that its n-point correlation function ρ(n) is

ρ(n)(x1, . . . xn) = det [K(xi, xj)](i,j)∈J1,nK2
.

See [16] for a survey about determinantal point processes.

A pfa�an point process on R of kernel K : R2 7→ M(2, 2), where M(m,n) is the
set of matrices of size (m,n), is a point process such that its n-point correlation
function ρ(n) is

ρ(n)(x1, . . . xn) =
√

det [K(xi, xj)](i,j)∈J1,nK2
.

([K(xi, xj)](i,j)∈J1,nK2
∈ M(2, 2) and is a block matrix whose blocks are the

(K(xi, xj))(i,j)∈J1,nK2)
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2 The Airy function

Formula 2.1. The Airy function is the function :

Ai (x) =
1

π
lim

a→+∞

∫ a

0

cos(
t3

3
+ xt)d t

Some classical properties of this function are listed in the section 10.4 of [18].
It is, up to a multiplicative constant, the unique solution of the equation :

d2f

dx2
(x)− xf(x) = 0

which tends to zero at +∞.

Formula 2.2. The Airy kernel is the function

A (x, y) =


Ai (x) Ai ′(y)−Ai ′(x) Ai (y)

x− y
if x 6= y(

Ai ′(x)
)2 −Ai ′′(x) Ai (x) if x = y

3 The 1-Airy ensemble

Formula 3.1. Let µ(1) be the pfa�an point process on R whose kernel is equal
to :

K1,1(x, y) = A (x, y) + 1
2 Ai (x)

∫ y
−∞Ai (t)d t

K2,2(x, y) = A (x, y) + 1
2 Ai (x)

∫ y
−∞Ai (t)d t

K1,2(x, y) = − 1
2 Ai (x) Ai (y)− ∂

∂y A (x, y)

K2,1(x, y) =
∫ +∞
0

∫ +∞
x+u

Ai (v)d vAi (x+ u)d u− 1
2 sign(x− y) + 1

2

∫ x
y

Ai (u)d u

+ 1
2

∫ +∞
x

Ai (u)d u
∫ y
−∞Ai (v)d v

.

(from [17])

Theorem 3.2. With probability 1, the random set corresponding to µ(1) has a

�nite maximum in R.

This result can be proven by using Theorems 4a and 4e of [16] and the
properties of the Airy function.

Thanks to that theorem, we can put the points of the random set in decreas-
ing order: λ1 > λ2 > . . . .

The 1-Airy ensemble is then de�ned as the set of these λn for n ∈ N.

4 The 2-Airy ensemble

Let µ(2) be the determinantal point process on R whose kernel is equal to the
Airy kernel.
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Theorem 4.1. With probability 1, the random set corresponding to µ(2) has a

�nite maximum in R.

This result can be proven by using Theorems 4a and 4e of [16] and the
properties of the Airy function.

Thanks to that theorem, we can put the points of the random set in decreas-
ing order: λ1 > λ2 > . . . .

The 2-Airy ensemble is then de�ned as the set of these λn for n ∈ N.

Part II. Young diagrams and β-Plancherel

measure

Combinatorial objects called Young diagrams and Young tableaux were intro-
duced by Alfred Young (1873-1940) in 1900, and were subsequently studied
by Frobenius in [5] and [6]. Their use for studying increasing and decreasing
subsequences of permutations is more recent. An algorithm found in 1961 in
[14] results in a simple relationship between the output (a Young Tableau) and
the longest increasing subsequence of the input (a sequence of distinct entries).
The algorithm is usually called the Robinson-Schensted because of [12], but the
algorithm outlined in Robinson's article is di�erent from the one used in Schen-
sted's article. This algorithm was then completed in 1970 in [9], who expanded
the output making the algorithm injective. This algorithm naturally induces
a probability measure on Young diagrams, which has been called "Plancherel
measure" in [20] in 1977 from Michel Plancherel (1885-1967). This probability
measure can be expressed simply in terms of a well-known variable called the
dimension of a Young tableau, which has uses in representation theory (see for
example [7]).

For a survey on Young diagrams and Young tableaux, see [13].

5 De�nitions

A k-increasing sequence is the union of k increasing sequences. It can also
be de�ned as a sequence with no decreasing subsequence of length k + 1.

A Young diagram is a �nite non-increasing sequence of natural numbers (J1,+∞J).
For example, (7, 7, 4, 2, 2, 1). Its size is the sum of the elements of the �nite

sequence. The size of the example is 7 + 7 + 4 + 2 + 2 + 1 = 23.
It is usually represented as an empty table whose row lengths are the ele-

ments of the �nite sequence. The example would be drawn as:
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A standard Young tableau is a Young diagram D �lled with all the elements
of J1, size DK where all the rows and columns are increasing. For example,

1 2 7 11 13 18 22

3 4 15 16 17 21 23

5 6 19 20

8 9

10 14

12

The dimension of a Young diagram is the number of standard tableaux of
the same shape. The dimension of the example of Young diagram is 1249248.

The β-Plancherel measure of size n is the probability measureMβ
(n) such that

for all Young diagrams D, Mβ
(n)(D) = (dimD)2

Kβ
n

, where Kβ is a normalization

constant which ensures that Mβ
(n) is a probability measure.

For β = 1, 2, the Plancherel measure has some nice properties:

Theorem 5.1.

• The length of the longest increasing subsequence of a uniform random

involution on J1, nK has the same distribution as the length of the �rst row

of a random Young diagram generated under the 1-Plancherel measure.

• The lengths of the longest i-increasing subsequences and j-decreasing sub-

sequences for i, j = 1, . . . , k of a uniform random involution on J1, nK have
the same joint distribution as the sum of the lengths of respectively the i
�rst rows and the j �rst columns of a random Young diagram generated

under the 1-Plancherel measure.

Theorem 5.2.

• The length of the longest increasing subsequence of a uniform random per-

mutation on J1, nK has the same distribution as the length of the �rst row

of a random Young diagram generated under the 2-Plancherel measure.

• The lengths of the longest i-increasing subsequences and j-decreasing sub-

sequences for i, j = 1, . . . , k of a uniform random permutation on J1, nK
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have the same joint distribution as the sum of the lengths of respectively the

i �rst rows and the j �rst columns of a random Young diagram generated

under the 2-Plancherel measure.

The latter theorem is a direct consequence of the theorem proved in [8] and
the construction in [9]. The former theorem also uses a known property of
Knuth's construction, see for example [2].

6 Asymptotic results

Theorem 6.1. Let k ∈ N. For n ∈ N, let un1 , un2 be the lengths of the 2 �rst

rows of a random Young diagram generated under the 1-Plancherel measure.

Let vn1 , v
n
2 be such that ∀i ∈ J1, 2K, uni = 2

√
n+ vni n

1
6 .

Then (vn1 , v
n
2 ) converges in distribution to the 2 greatest numbers of the 1-

Airy ensemble.

This result was proven in [2]. It implies the following:

Corollary 6.2. Let k ∈ N. For n ∈ N, let (lni )i∈J1,kK be respectively the

lengths of the longest i-increasing subsequences of a uniform random involution

on J1, nK.
Then (

(
lni√
n
− 2
)
n1/3)i∈J1,kK converges in distribution to (

∑i
j=1 λj)i∈J1,kK

where (λj)i∈J1,kK are distributed according to the 1-Airy ensemble.

Theorem 6.3. Let k ∈ N. For n ∈ N, let un1 , . . . , unk be the lengths of the k �rst

rows of a random Young diagram generated under the 2-Plancherel measure.

Let vn1 , . . . , v
n
k be such that ∀i ∈ J1, kK, uni = 2

√
n+ vni n

1
6 .

Then (vn1 , . . . , v
n
k ) converges in distribution to the k greatest points of the

2-Airy ensemble.

This result was �rst proven in [11], and then, in a more detailed way, in [3].
It implies the following:

Corollary 6.4. Let k ∈ N. For n ∈ N, let (lni )i∈J1,kK be respectively the lengths

of the longest i-increasing subsequences of a uniform random permutation on

J1, nK.
Then (

(
lni√
n
− 2
)
n1/3)i∈J1,kK converges in distribution to (

∑i
j=1 λj)i∈J1,kK

where (λj)i∈J1,kK are distributed according to the 2-Airy ensemble.

Part III. Random matrices

Random matrices were �rst studied by Hsu and Wishart in the thirties, for
example in [23]. Interest for this �eld grew because of the work of Wigner in
the �fties who studied their eigenvalues in connection with nuclear physics, for
example in [21] and [22]. In the nineties, explicit limit results were found, for
example in [4] and [19].

For a survey of the �eld, see [10] or [1].
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7 Gaussian Orthogonal Ensemble

Let (ξi,j)(i,j)∈N2 be real independent Gaussian random variables of mean 0 and
variance 1.

The distribution of a random matrix M of size n× n such that

Mi,j =


√

2ξi,i if i = j

ξi,j if i < j

ξj,i if i > j

is called the Gaussian Orthogonal Ensemble. It is called "Orthogonal" because
it is invariant under conjugation by an orthogonal matrix. This is, up to a
multiplication by a constant, the only distribution on real symmetric matrices
which satis�es these two properties:

1. invariance by conjugation by an orthogonal matrix.

2. independence of the entries on or below the diagonal.

The joint probability density of its eigenvalues is 1

Z
(1)
n

∏n
k=1 e

− 1
4λ

2
k
∏
i<j |λj − λi|,

with Z(1)
n a normalization constant. It was �rst found in [21].

8 Gaussian Unitary Ensemble

Let (ξi,j)(i,j)∈N2 be real independent Gaussian random variables of mean 0 and
variance 1.

The distribution of random matrix M of size n× n such that

Mi,j =


ξi,i if i = j
ξi,j − iξj,i√

2
if i < j

ξj,i + iξi,j√
2

if i > j

is called the Gaussian Unitary Ensemble. It is called "Unitary" because it is
invariant under conjugation by an unitary matrix. This is, up to a multiplication
by a constant, the only distribution on Hermitian matrices which satis�es these
two properties:

1. invariance by conjugation by an unitary matrix.

2. independence of the entries on or below the diagonal.

The joint probability density of its eigenvalues is 1

Z
(2)
n

∏n
k=1 e

− 1
2λ

2
k
∏
i<j |λj − λi|

2,

with Z(2)
n a normalization constant. It was �rst found in [22].
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9 Asymptotic results

Theorem 9.1. Let k ∈ N. For n ∈ N, let λn1 , . . . , λnk be the k greatest eigenval-

ues of a random matrix from the Gaussian Orthogonal Ensemble.

Let vn1 , . . . , v
n
k be such that ∀i ∈ J1, kK, λni = 2

√
n+ vni n

1
6 .

Then (vn1 , . . . , v
n
k ) converges in distribution to the k greatest points of the

1-Airy ensemble.

This theorem was �rst proven, in another form, in [19].

Theorem 9.2. Let k ∈ N. For n ∈ N, let λn1 , . . . , λnk be the k greatest eigenval-

ues of a random matrix from the Gaussian Unitary Ensemble.

Let vn1 , . . . , v
n
k be such that ∀i ∈ J1, kK, λni = 2

√
n+ vni n

1
6 .

Then (vn1 , . . . , v
n
k ) converges in distribution to the k greatest points of the

2-Airy ensemble.

This theorem was �rst proven, in another form, in [4].
In [15], very similar results featuring the 1-Airy and 2-Airy ensembles are

shown for a larger class of random matrix ensembles.
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