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Abstract

The Teichmüller theory has been initiated in the late 19th - early 20th century by Bernhard
Riemann itself, who knew that 6g�6 real parameters were needed to describe the space of complex
structures on the compact topological surface Sg of genus g, modulo di↵eomorphisms of Sg. Oswald
Teichmüller (1913-1943) introduced quasi-conformal mappings in the study of Riemann surfaces.
In the late seventies, Thurston defined a geometric compactification of the Teichmüller space of a
surface known as laminations to study the mapping class group of the latter. It led to the definition
of shear coordinates on the Teichmüller space of a topological surface S(g,s) of genus g and with
s holes. Fock and Goncharov published a paper [FG06] describing a algebraic-geometric approach
to higher Teichmüller theory, showing that it is possible to define a G-Teichmüller space for any
topological surface S(g,s) and any split reductive algebraic group G over Q, with trivial center or
simply connected. These two authors also showed that Teichmüller and laminations spaces of a
surface are dual in some way ([FG05]), and that lamination spaces are tropicalisation of Teichmüller
spaces. Fock and Chekov also quantised the classical Teichmüller space of a topological surface S
with holes ([CF99]). In 2013, Bouschbacher constructed shear coordinates on a super-version of
the Teichmüller space, or equivalently SpO(2|1)(R)-Teichmüller space ([Bou13]).

Meanwhile, the development of string theory and quantum gravity since the eighties has incon-
testably given new motivations for those theories of Teichmüller and moduli spaces of topological
surfaces.

This paper is divided in three parts. In the first one, we review the definitions of the basic
objects of the study, and give some description of the mapping class group of a surface. Then,
we define the Teichmüller and moduli spaces of a regular surface, and explain the construction
of shear coordinates on the Teichmüller space of a hyperbolic regular surface with at least one
hole. Eventually, we try to introduce two physical theories in which the classification of complex
structures on a topological surface is essential: perturbative string theory on the one hand, and
quantum gravity in 2 + 1-dimensions on the other.
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1 Regular surfaces with holes and ideal triangulations

In this section we recall the basic definitions needed in the theory of Teichmüller spaces. One starts
with regular surfaces, which can in fact be generalised to ciliated surfaces (see [FG05]). The construc-
tion of shear coordinates on the Teichmüller space of a hyperbolic regular surface S with at least one
hole depends on the choice of a triangulation of S, hence we will define and quickly study triangu-
lations of such surfaces. Any triangulation of S is strongly dependent on the topology of the latter.
We eventually define the mapping class group of a regular surface S, and give a description of the
modular groupoid of S in terms of generators and relations.

1.1 Real hyperbolic surfaces with holes

Definition 1. A topological oriented surface S is said to be regular if it is homeomorphic to:

Ŝ �
s[

i=1

Di

where Ŝ is a topological oriented compact surface and where the Di ⇢ S are closed disks which are
pairwise disjoint. The boundary of S is a disjoint union of s circles. Each boundary component is
called a hole.

Remark 1. Topologically, a regular surface is completely described by the genus ĝ of Ŝ and the number
s of its holes.

Proposition 1.1. The Euler characteristic of any regular surface is given by:

�(S) = 2� 2ĝ � s

Definition 2. If �(S) < 0, S is said to be hyperbolic.
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1.2 Ideal triangulations and topological constraints

Definition 3. A triangulation of a regular surface with at least one hole S is a maximal family of
isotopy classes of curves whose ends are contracted holes in S.

Any triangulation of S induces a cellular decomposition of S, hence constraints of the topology of
S on the possible triangulations. We have the following result:

Proposition 1.2. Let S be a regular surface with at least one hole and let � be any triangulation of
S. Let V (�), E(�) and F (�) be respectively the set of vertices, edges and faces of �. Then:

• V (�) = s

• E(�) = 6g � 6 + 3s

• F (�) = 4g � 4 + 2s

Remark 2. The number of non-equivalent triangulations of a given regular hyperbolic surface with at
least one hole is infinite (even if the topology of S fixes the cardinality of the sets of vertices, edges,
and faces of any triangulation).

However, there is a important result proven by Penner, asserting that it is always possible to find
a path from one triangulation to another consisting of a finite sequence of elementary moves called
flips.

Definition 4. Let � be a triangulation of a ciliated surface, and let ↵ be any edge of �. The flip of
↵ refers to to the modification of � depicted in figure 1.

v1

v4

v2

↵ v3 v1

v4

v2

↵0 v3

Figure 1: Flip of the internal edge ↵.

Theorem 1.3 ([Pen87]). Two triangulations of S can always be linked by a finite sequence of flips.

1.3 The mapping class group of a topological oriented surface

Recall that two topological smooth surfaces are homeomorphic if and only if they are di↵eomorphic.

Definition 5. Let S be an oriented regular surface, and let Di↵(S) be the group of di↵eomorphisms
of any smooth surface homeomorphic to S. Let Di↵0(S) be the connected component of identity in
Di↵(S). The mapping class group D(S) (or modular group) of S if defined as:

D(S) = Di↵(S)/Di↵0(S)

Equivalently, D(S) is the group of homotopy classes of di↵eomorphisms of S.

The description of the mapping class group itself is rather di�cult. It’s much easier to describe
the modular groupoid of S (a category which is closely related to D(S)) since in can be done in terms
of generators and relations.
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Definition 6. Let S be a regular surface and let �(S) be the set of isotopy classes of marked triangu-
lations of S. By ”marking” of � 2 �(S) we mean a numeration of its edges. The marking prevents the
coincidences which can arise from the potentially non-trivial symmetries of the graphs. The mapping
class group D(S) of S acts freely on �(S). Let:

|�|(S) = �(S)/D(S)

be the set of combinatorial types of marked triangulations of S.

Definition 7. The modular groupoid of S is the category defined by:

• Ob = |�|(S)

• Hom(|�|, |�1|) is the set of equivalence classes of couples (�,�1) where � and �1 are triangula-
tions of S with respective combinatorial type |�| and |�1|, and such that (�,�1) and (�0,�0

1) are
equivalent if there exists g 2 D(S) such that (�,�1) = (g · �0, g · �0

1). Let |�,�1| be the element
of Hom(|�|, |�1|) corresponding to the equivalence class of the couple (�,�1).

Remark 3. This category is a groupoid in the sense that every morphism is invertible and that there
exists an arrow between any two objects. It implies that for all |�|, |�0| 2 Ob, the set Hom(|�|, |�|) is
a group and that Hom(|�|, |�|) ' Hom(|�0|, |�0|) in the category of groups.

Let � be a triangulation of S and let ↵ be an edge of �. Let �↵ be the triangulation obtained by
the flip of ↵. We still call the morphism |�,�↵| a flip. One has the following proposition:

Proposition 1.4. • (The square of a flip is identity) Let ↵ be an edge of �. Then:

|�↵,�| � |�,�↵| = id�,�

• (Flips in disjoint edges commute) Let ↵ and � be two edges of � sharing no vertex. Then:

|�↵,�↵� | � |�,�↵| = |�� ,�↵� | � |�,�� |

• (Flips satisfy the pentagon relation) Let ↵ and � be two edges of � having a vertex in common.
Then:

|�↵,�| � |��↵,�↵| � |�↵� ,��↵| � |�� ,�↵� | � |�,�� | = id�,�

2 Teichmüller spaces

This section is devoted to the definition of the Teichmüller space T (S) and of the moduli space M(S)
of a regular surface S, and to the construction of shear coordinates on the Teichmüller X -space T x(S)
of a regular hyperbolic surface with at least one hole S. Eventually, we investigate some properties of
shear coordinates and of Teichmüller spaces, and some links between T (S) and T x(S).

2.1 Definition of Teichmüller and moduli spaces

Definition 8. Let S be a regular surface.

• The Teichmüller space of S denoted by T (S) is the set of complex structures on S modulo
Di↵0(S).

• The moduli space of S denoted by M(S) is the set of complex structures on S modulo Di↵(S).
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Hence one has the following relation:

M(S) = T (S)/D(S)

Proposition 2.1. Let S be a regular hyperbolic surface with at least one hole. We have a one-to-one
correspondence between:

• The Teichmüller space T (S)

• The set of hyperbolic riemannian metrics on S with geodesic boundary or hyperbolic cusps,
modulo Di↵0(S).

• The set of discrete injective group morphisms:

⇡(S) ! PSL2(R)

modulo overall conjugation by PSL2(R).

Proof. Riemann’s uniformisation theorem states that the only simply connected Riemann surfaces are
either conformally equivalent to the sphere P1(C), the plane C or the Poincaré half-plane H. The
requirement that S is hyperbolic implies that its universal cover (which is endowed with a complex
structure as soon as S is) is conformally equivalent to H. Now since H has a canonical hyperbolic
metric (i.e a metric of constant curvature �1), this metric descends to a hyperbolic metric on S.
Eventually, since H is the universal cover of S, S is isomorphic to a quotient of H by a discrete
subgroup � of its automorphisms group. Recall that the automorphisms group of H is isomorphic to
PSL2(R) acting as: ✓

a b
c d

◆
· z =

az + b

cz + d

for all z 2 H. � is canonically isomorphic to ⇡1(S), and the proposition follows. Any discrete subgroup
of PSL2(R) which is finitely generated is called a Fuchsian group.

Remark 4. Even if an annulus and a punctured disk are topologically equivalent, the are not biholo-
morphic. If S is endowed with a complex structure, one has to distinguish:

• the holes which are the boundary components of S whose neighbourhood is conformally equivalent
to an annulus.

• the punctures which are the boundary components of S whose neighbourhood is conformally
equivalent to a punctured disk.

We have a one-to-one correspondence between the complex structures on S modulo Di↵0(S) and the
hyperbolic structures on S modulo Di↵0(S) in the sense that every hole of the complex structure
corresponds to a geodesic boundary for the hyperbolic structure, and that every puncture corresponds
to a hyperbolic cusp.

Let’s define a slightly di↵erent version of the Teichmüller space of S:

Definition 9. Let S be a regular hyperbolic surface with at least one hole. The Teichmüller X -space
of S denoted by T x(S) is the set of all complex structures on S modulo Di↵0(S), together with an
orientation of all holes but the punctures.
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2.2 Construction of shear coordinates on T x
(S)

Let S be a regular hyperbolic surface with at least one hole. The complete construction of coordinates
on T x(S) is done in two steps: first, one has to assign a tuple of real numbers to any point in T x(S), and
then show that any tuple of coordinates indeed corresponds to a point in T x(S). The reconstruction
step (the latter one) is at the same time intuitive and technical, hence we will refer to [FG05] for a
complete description of this reconstruction, and will only develop the construction of coordinates from
a hyperbolic structure on S. Let’s recall an important property of riemannian hyperbolic manifolds
first:

Proposition 2.2. Let M be a riemannian closed hyperbolic manifold with constant negative curvature.
Then every non-trivial free homotopy class of closed curves on S contains exactly one geodesic.

Let � be a triangulation of S, and suppose that S is endowed with a complex structure (or equiv-
alently, with a hyperbolic metric with geodesic boundary or hyperbolic cusps). Choose an orientation
for all holes of S but the punctures.

• Every edge of the triangulation connecting two punctures can be made geodesic in a canonical
way.

• For an edge connecting a puncture with a hole, choose an arbitrary point of the geodesic boundary
component corresponding to the hole (preserving the isotopy class of the triangulation) and
consider the geodesic connecting the puncture with that point. Move that point in the direction
specified by the orientation of the hole. The desired ray is the limiting one of this process.

• Any edge connecting two holes can undergo the same procedure for each of its ends.

Eventually, one has a triangulation of S which is in the isotopy class of �, and such that its edges
are geodesic and of infinite hyperbolic length. Thus the triangles it defines are standard, in the sense
that they are isometric to a triangle in H with vertices lying on @H ' RP1 and with geodesic edges.
Moreover, one has the following result:

Proposition 2.3. Any two standard hyperbolic triangles in H are isometric.

Proof. Let (z1, z2, z3) be a triple of points in RP1 such that the natural orientation of the triple
coincides with the standard one on RP1 (one says that it is positively oriented). There exists a unique
matrix in PSL2(R) = Aut(H) such that the image of the triple (z1, z2, z3) is the triple (1,�1, 0).

The fact that the matrix used is the proof is unique implies that:

Proposition 2.4. Let (z1, z2, z3, z4) be a quadruple of points in RP1 such that (z1, z2, z3) and (z3, z4, z1)
are positively oriented. Let Conf>4 (RP

1) be the set of orbits of such quadruples under the diagonal ac-
tion of PSL2(R):

M · (z1, z2, z3, z4) = (M · z1,M · z2,M · z3,M · z4)

for all M 2 PSL2(R). Then:
Conf>4 (RP

1) ' R⇤
+

Proof. Let M be the unique matrix sending (z1, z2, z3) to (1,�1, 0). Since matrices in PSL2(R) are
invertible, the image of z4 is a real number di↵erent from 0 and �1. Moreover, since PSL2(R) preserves
the orientation of triples in RP1, z4 is strictly positive.
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Remark 5. One can parametrise the set Conf>4 (RP
1) by the opposite of the cross-ratio of the quadruple

(z1, z2, z3, z4) which is given by:

�(z1, z2, z3, z4) =
det(e1, e2) det(e3, e4)

det(e2, e3) det(e4, e1)

for any (e1, e2, e3, e4) in R4 representing (z1, z2, z3, z4).

Now consider the lift �̃ of � in H specified by the hyperbolic structure. The vertices of �̃ are on
the boundary of H since the edges of � are of infinite length. Consider a quadrilateral in �̃ formed by
two adjacent triangles of vertices (z1, z2, z3) and (z3, z4, z1), and let x = ��(z1, z2, z3, z4). The image
of this quadrilateral by the projection map:

⇡ : H ! S

is again a quadrilateral formed by two adjacent triangles. Now observe that in fact any of its lifts to
�̃ has the same value of x. Hence one can assigns a value xi to each edge ei of �.

This construction together with the reconstruction step gives:

Theorem 2.5. Let � be a triangulation of a regular hyperbolic surface with at least one hole. The
data of a strictly positive real number for each edge of � is a parametrisation of T x(S). These numbers
are called shear coordinates associated to �.

Hence T x(S) can be endowed with a structure of real smooth manifold of dimension 6g � 6 + 3s.
In fact:

T x(S) ' R6g�6+3s

and is in particular topologically trivial.

2.3 Some properties of Teichmüller spaces

In the remaining of this section S refers to a hyperbolic regular surface with at least one hole.

Change of coordinates under a flip The construction above gives a set of coordinates on T x(S)
for each triangulation � of S. These shear coordinates of course depend on �, but since one knows
that any two triangulations of S are always linked by a finite sequence of flips, one is able to compute
changes of coordinates as soon as one knows how the coordinates change under a flip. A simple
calculation shows:

Proposition 2.6. Let � be a triangulation of S and let T1, T2 be two triangles of � which are adjacent
along exactly one edge. Then the change of coordinates under the flip of their common edge is given
in the following figure, with all edges keeping the same coordinate:

x

x4x3

x1x2

x�1

x4
(1+x�1)x3(1 + x)

x1(1 + x)
x2

(1+x�1)

This formula indicates the cluster structure of T x(S).
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Link between T x(S) and T (S)

Proposition 2.7. Let � be a triangulation of S, and let x = (xi)i2E(�) be a point in T x(S). Consider
the surface S together with its boundary components corresponding to holes. In the free homotopy
class of closed curves homotopic to any hole h there is a unique geodesic which is the hole itself. The
hyperbolic length of the latter is given by:

lh =
Y

i2H
xi

where the sum runs over the set H of all edges which are incident to h. Moreover from [FG05] one
has that:

• If lh > 1, the orientation of h coincides with the one induced by the orientation of S.

• If lh < 1, the orientation of h does not coincide with the one induced by the orientation of S.

• If lh = 1, the hole is in fact a puncture.

Proposition 2.8. T x(S) is a ramified cover of T (S) of degree 2s, where s is the number of boundary
components of S. The covering map is the map which forgets the orientation of holes. Moreover, the
branching points of index k are the complex structures on S for which exactly k boundary components
are not holes but punctures. Thus T (S) has a structure of manifold with corners of dimension (6g �
6 + 3s), that is, is locally modelled on:

[0,1[k⇥]�1,1[6g�6+3s�k

Proof. Let x 2 T (S) and h any hole of S. Choose an orientation for all holes of S but h. There are
exactly two points in T x(S) above x with prescribed orientations, each of them corresponding to one
of the two possible orientations of h.

2.4 Weil-Peterson form on Teichmüller spaces

Definition 10. Let � be a triangulation of S, and (x↵)↵2E(�) the set of shear coordinates associated
to �. The ✏-matrix associated to � is a (#E(�)⇥#E(�))-skew-symmetric matrix given by:

✏↵� =
X

i2F (�)

< ↵, i,� >

where ↵,� 2 E(�) and where < ↵, i,� > equals 1 (resp. �1) if ↵ and � are sides of the triangle i and
↵ is in the clockwise (resp. counterclockwise) direction from �, otherwise it equals 0.

Definition 11. Let M be a smooth manifold. A Poisson bracket {., .} on M is a smooth bilinear map:

{., .} : C1(M)⇥ C1(M) ! C1(M)

satisfying for all f, g, h 2 C1(M):

1. {f, g} = �{g, f} (skew-symmetry)

2. {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (Jacobi identity)

3. {fg, h} = f{g, h}+ g{f, h} (Leibniz’s rule)

7



Definition 12. The map

{., .} : C1(T x(S))⇥ C1(T x(S)) ! C1(T x(S))

given by:

{f, g} =
X

↵,�2E(�)

✏↵�x
↵x�

@f

@x↵
@g

@x�

is a Poisson bracket on T x(S) called the Weil-Peterson form. Interestingly, it does not depend on the
triangulation.

Remark 6. Even if T (S) is a manifold with corners and not a smooth manifold, the Weil-Peterson
form on T x(S) induces a well-defined Poisson bracket on T (S) for the following reason. The neigh-
bourhood of a corner is di↵eomorphic to [0,+1[k⇥]�1,+1[n�k. Let (y1, ..., yk, yk+1, ..., yn) be a set
of coordinates consistent with this decomposition. Then one can see that {yi, f} = 0 for all i 2 [|1, k|]
and all f 2 C1(T x(S)), hence the Poisson bracket on T (S) is well defined.

One can quantise the Poisson bracket on the classical Teichmüller space (see [CF99]). It gives a
lot of information about the possible representations of the mapping class group of a regular surface.

3 Interactions with physics

In this last section we are going to give two examples of physical theories in which Teichmüller and
moduli spaces of topological surfaces are essential. The first one is perturbative string theory, in which
one has to integrate over the moduli space of the world-sheet surface in order to take into account all
possible ”paths” from an initial string configuration to a final one. Every path has a weight given by
e�S where S is the action functional of the theory (with an euclidean theory). We recall the definitions
of quantum field theories and study some formulas describing amplitudes of scattering processes in
perturbative bosonic string theory. Then following [Wit89], we give some characteristic features of
general relativity in 2+1 dimensions, which classical phase space should be defined as the Teichmüller
space of its boundary, which may be quantised, leading to quantum gravity in 2 + 1-dimensions.

3.1 Moduli spaces in amplitudes calculations of perturbative string theory

Definition 13. A d-dimensional quantum field theory (QFT) is the data of:

• A d-dimensional smooth manifold M .

• A set of objects over M , for example the set of sections of a vector bundle over M , or the set of
maps:

�↵ : M ! N

for some target manifold N (sigma-model), or the set of smooth riemannian metrics on M
(quantum gravity).

• The choice of an action functional S[�↵, ...] on the space of fields. In QFTs one has to integrate
over the space of fields against some measure on it weighted by e�S. This integration is called
path integration, and depicts the quantum nature of the theory.

A conformal field theory is a QFT which is invariant under conformal transformations of the base
manifold M .

Bosonic string theory is a 2-dimensional field theory in which the base manifold M is called the
world-sheet. Naively, fields in bosonic string theory split in two sets:
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• the set of matter fields �↵, which can be though of as the coordinates of an embedding M ! N .
N is called target space (and can be though of as the space-time).

• the set of smooth metrics g on M , since the introduction of those as fields allows the use of a
linear action (the Polyakov action) instead of the more intuitive but more complicated to handle
Nambu-Goto action.

Since we want to study scattering amplitudes, incoming and outgoing string states has to be
specified. In the world-sheet theory, they correspond to local vertex operators Vj(k) where k 2 T⇤N
is the target momentum and j the internal state. For example, an n-particle scattering amplitude in
the closed oriented bosonic string theory is given by:

Sj1...jn(k1, ..., kn) =
1X

g=0

Z
[d� dg]

Vdi↵⇥Weyl
exp(�Sm � �(2� 2g))

nY

i=1

Z

Mg

d2�ig(�i)
1/2Vj(ki,�i)

where the first integral denotes path integration, and the second one is the standard integration over
the topological compact oriented surface of genus g. Sm denotes the action for matter fields, and the
action of the global theory is modified by a factor which is proportional to the Euler characteristic
�(Mg) = 2� 2g of Mg.

Remark 7. Once again, the replacement of the Nambu-Goto action by the Polyakov action can ony
be made at the price of supplementary dynamics fields, namely the smooths metrics on Mg. However,
di↵eomorphisms of Mg and Weyl transformation of the metrics correspond to transformation of the
fields corresponding to the same physical content, hence the term Vdi↵⇥Weyl in the action. It stands
for the volume of the gauge group. In other words, one has to divide by this volume to avoid the
over-counting due to the gauge freedom of this theory. This volume is of course infinite, but there is
a procedure called the Fadeev-Popov gauge fixing, which replaces this term by a path integral over new
anti-commuting fields called the ghosts.

The Fadeev-Popov procedure leads to the following expression for Sj1...jn(k1, ..., kn):

Sj1...jn(k1, ..., kn) =
1X

g=0

Z

F

dµt

nR

Z
[d� db dc] exp(�Sm � Sg � �(2� 2g))A[t,�, b, c]

where A is some functional of the fields, and where F is the moduli space of complex structures on
Mg as well as of the tuple of insertion points on Mg. To put it in a nutshell, over-counting due to
gauge freedom is replaced by another conformal field theory together with an integral in a moduli space.

Hence in perturbative string theory integration over moduli spaces arise in the path integral as the
way to take into account all the di↵erent possible ways to go from a given asymptotic initial string
configuration to a given final asymptotic string configuration.

3.2 Quantum gravity in dimension 2 + 1

In a cornerstone paper of 1988 [Wit89], Witten showed that the Hilbert space of wave functions of
quantum gravity in 2+1 space-time dimensions can be seen as the space of functions on the Teichmüller
space of the boundary of the space-time. More precisely, one looks at flat space-times of the form:

M = ⌃⇥ R

where ⌃ is a genus g Riemann surface representing space, and where R represents time. Let X be
the 2 + 1 Minkowski space with coordinates t, x, y and metric ds2 = �(dt)2 + (dx)2 + (dy)2. The
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(2 + 1)-dimensional Lorentz group is the group SO(2, 1), which is isomorphic to SL2(R). Moreover,
the hypersurface H 0 defined by:

t2 � x2 � y2 = 1

is isometric to the hyperbolic Poincaré half-plane H. Hence any Fuchsian group � ⇢ SL2(R) can be
seen as a subgroup of SO(2, 1) acting on H 0, and the quotient H 0/� is a Riemann surface as well.
Now one can consider the action of � on the whole future light-cone which is defined as the subset in
X such that t > 0 and t2 � x2 � y2 > 1. Since the metric on X is flat, the quotient X/� is flat as
well, and each hypersurface defined by:

t2 � x2 � y2 = ⌧

and quotiented by � is a Riemann surface isomorphic to H 0/� if ⌧ > 0. In that description ⌧
plays the role of time, hence one has a description of an expanding universe with a singularity at
⌧ = 0. Equivalently, the quotient of the whole past light-cone under the action of � give rise to a
shrinking universe with a final singularity. The discussion in [Wit89] explains the reasons why one
should consider the Teichmüller space of X/� as the classical phase space of general relativity in 2+1
dimensions.
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