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1 Introduction

Mirror symmetry is a phenomenon first observed by physicists studying
string theory in the mid-1980s. It is a relationship between Calabi–Yau
(CY) varieties. The original ideas of mirror symmetry were physical and
not stated in a mathematically precise way. Mathematicians are working to
develop a mathematical understanding of the relationship based on physi-
cists’ intuition. There are various formulations of mirror symmetry.

The Landau–Ginzberg (LG) model appears naturally when considering
the defining equations of Calabi–Yau hypersurfaces or complete intersec-
tions. Physicists conjectured that there should be a correspondence between
the CY geometry and the LG model in the early 1990s. However, the math-
ematical formulations could not be made precise until the development of
the Fan–Jarvis–Ruan–Witten (FJRW) theory in 2007. After that, a great
deal of progress has been made.

In this article, I will first give a simple statement of mirror symmetry,
then try to explain the notion of the Landau–Ginzburg/Calabi–Yau cor-
respondence with the help of this statement. I will also introduce recent
progress in this field, and I will talk about the project of my Ph.D thesis at
the end.
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2 A statement of mirror symmetry and a classic
example

We start from a simple mathematical statement of mirror symmetry, due
to Berglund and Hübsch [1]. It establishes a cohomological identity and
we refer to it as cohomological mirror symmetry. A special case of this
statement is an example which inspired the whole phenomenon of mirror
symmetry.

We are going to construct a pair of objects [XW /G̃] and [XW∨/G̃∨]
with isomorphic cohomology groups after a 90-degree rotation of the Hodge
diamond.

Consider a polynomial

W (x1, x2, . . . , xN ) =

N∑
i=1

N∏
j=1

x
mij
j ,

where the matrix
M = {mij},

is invertible. Let
M−1 = {mij}

and take integers wi and d such that

wj
d

=
N∑
i=1

mji,

where gcd(w1, . . . , wN , d) = 1. Then W is a weighted homogeneous polyno-
mial of degree d and weights w1, . . . , wN . We define the set

XW := {W = 0} ⊆ P(w1, . . . , wN ).

Here P(w1, . . . , wN ) is the weighted projective space defined by

CN/C∗, where λ · (x1, . . . , xN ) = (λw1x1, . . . , λ
wNxN ).

We need the non-degenerate condition

W =
∂W

∂xj
= · · · = ∂W

∂xN
= 0⇐⇒ x1 = · · · = xN = 0,

and the condition
N∑
j=1

wj = d,

or equivalently,
N∑

i,j=1

mij = 1
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to make it a Calabi–Yau orbifold, i.e. ωXW ' OXW .
We transpose M . Let

W∨(x1, x2, . . . , xN ) =

N∑
i=1

N∏
j=1

x
mji
j .

Then W∨ is still non-degenerate (see [11, p. 5]) and

XW∨ := {W∨ = 0} ⊆ P(w∨1 , . . . , w
∨
N )

is still of CY type. Define the automorphism group

Aut(W ) := {diag(α1, . . . , αN ) : W (α1x1, . . . , αNxN ) = W (x1, . . . , xN )} ,

and its subgroup
SLW := Aut(W ) ∩ SL(n,C).

Because of the CY condition we have

diag
(
e
w1
d

2πi, . . . , e
wN
d

2πi
)
∈ SLW .

Define
JW :=

〈
diag

(
e
w1
d

2πi, . . . , e
wN
d

2πi
)〉
⊆ SLW .

If G is a subgroup of Aut(W ), the injection

i : G ↪→ Aut(W )

induces a surjection
i∗ : Aut(W )∗ � G∗,

where, for any group H, the group H∗ denotes Hom(H,C∗).
There is a pairing Aut(W )×Aut(W∨)→ C∗:

(
diag

(
ea12πi, . . . , eaN2πi

)
, diag

(
eb12πi, . . . , ebN2πi

))
7→ exp

2πi

N∑
i,j=1

mijajbi

 .

(1)
We can check it is non-degenerate and get

Aut(W )∗ = Aut(W∨).

We can then define
G∨ := ker(i∗) ⊆ Aut(W∨).

From pair (1) we see
J∨W = SLW∨
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and
SL∨W = JW∨ .

By the contravariant relation, if

JW ⊆ G ⊆ SLW ,

then
JW∨ ⊆ G∨ ⊆ SLW∨ .

Now we have constructed two quotient varieties XW /G and XW∨/G
∨.

They are singular in general, but have orbifold structures, i.e. locally look
like Cn quotient by a finite group. So we consider the Chen–Ruan orbifold
cohomology groups.

Definition 2.1. Let [X/G] be a complex orbifold. We define the Chen–
Ruan orbifold cohomology groups

Hd
orb([X/G],C) :=

⊕
g∈G

Hd−2ag(Xg/G,C)

and the Chen–Ruan orbifold Dolbeault cohomology groups

Hp,q
orb([X/G],C) :=

⊕
g∈G

Hp−ag ,q−ag(Xg/G,C),

where Xg is the set of points fixed by g in X, and the number ag is defined as
follows: take x ∈ Xg, then the tangent map induced by g makes g an element

of GL(TxX). Write it as a diagonal matrix diag
(
e
α1
d

2πi, . . . , e
αN
d

2πi
)

where
αi
d ∈ [0, 1). We define

ag :=

N∑
i=1

αi
d
.

Remark 2.2. Definition 2.1 is a simplified version. In fact, it only makes
sense when G is alelian, the set of elements g ∈ G such that Xg is non-
empty is finite, and each Xg is connected. The cases which we will consider
satisfy all of these conditions.

Remark 2.3. The Chen–Ruan orbifold cohomology of X is isomorphic to
the ordinary cohomology of the crepant resolution X̃ of X when X̃ exists.
A resolution is crepant if it does not affect the canonical class. So if X is
Calabi–Yau, then so is X̃.

Now we can state our theorem.

Theorem 2.4. Under all above conditions, we have

Hp,q
orb([XW /G̃],C) ∼= HN−2−p,q

orb ([XW∨/G̃∨],C),

where
G̃ = G/JW , G̃∨ = G∨/JW∨ .
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Remark 2.5. We quotient by the action of G̃ and G̃∨ instead of G and G∨,
in order to make the action faithful.

Example 2.6. We consider the special case where

W = x5
1 + x5

2 + x5
3 + x5

4 + x5
5

and
G = JW = 〈e

2πi
5 〉 = µ5.

Then XW is a quintic three-fold in P4 and G̃ acts trivially on it. On the
other side, W∨ = W and XW∨/G̃∨ is singular but has a crepant resolution
Y . Their Hodge diamonds are as follows

hp,q(Y ) = 1
0 0

0 101 0
1 1 1 1

0 101 0
0 0

1

hp,q(XW ) = 1
0 0

0 1 0
1 101 101 1.

0 1 0
0 0

1

3 The Landau–Ginzburg/Calabi–Yau correspondence

Theorem 2.4 was proved in [4] via the following isomorphisms

Hp,q
orb([XW /G̃],C) HN−2−p,q

orb ([XW∨/G̃∨],C)∥∥∥ ∥∥∥
[HW,G]p,q [HW∨,G∨ ]N−2−p,q

(2)

The vertical relation in (2) is the so-called Landau–Ginzburg/Calabi –Yau
(LG/CY) correspondence. The upper row is called Calabi–Yau side, because
it provides information about a Calabi–Yau hypersurface in the weighted
projective space. The object in the lower row is defined below. It provides
information about the Landau–Ginzburg model (CN ,W,G), where W is a
G-invariant function on CN .

Definition 3.1. We define

HW,G :=
⊕
g∈G

(JacWg)
G.

Here Wg is W restricted to CNg , and CNg is the subspace of CN which is fixed
by g; Jac f is the Jacobian ring of a polynomial f = f(x1, . . . , xk), defined
as

Jac f := C[x1, . . . , xk]

/〈
∂f

∂x1
, . . . ,

∂f

∂xk

〉
.
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Denote the dimension of CNg byNg. g = diag(d1, . . . , dN ) acts on
∏Ng
j=1 x

mj−1
j ∈

JacWg by multiplication by
∏N
j=1 d

mj
j .

For
∏Ng
j=1 x

mj−1
j ∈ JacWg ⊂ HW,G, we define its bidegree as

(p, q) =

Ng −
Ng∑
j=1

mjwj
d

,

Ng∑
j=1

mjwj
d

+ (ag, ag)−

 N∑
j=1

wj
d
,
N∑
j=1

wj
d

 . (3)

Remark 3.2. The horizontal relation in (2) is the Krawitz LG-to-LG mirror
symmetry theorem (see [11]). We can see from the definition that things on
the LG side is are easier to calculate than on the CY side.

The story doesn’t end here. In fact, there are correspondences between
LG and CY sides which contain much more information. Now we restrict
ourself to the case G = JW = µd.

The Gromov–Witten (GW) theory is about counting the number of sur-
faces satisfying some conditions in a given variety. The space Horb(XW ,C)
serves as the state space of the GW theory of XW . For a fixed genus g, the
Gromov–Witten invariants

〈τa1(ϕh1), . . . , τan−1(ϕhn−1), τan(ϕhn)〉GW
g,n,δ

are numbers which depend on the classes ϕhi ∈ Horb(XW ,C), the integers
ai ≥ 0, and the class δ ∈ H2(XW ,Z).

On the other side, Fan–Jarvis–Ruan [8] [10] [9] developed a theory for
the LG model, which is called the Fan–Jarvis–Ruan–Witten (FJRW) theory.
The state space of the FJRW theory for (CN ,W,µd) is HW,µd . There are
also FJRW invariants

〈τa1(φm1), . . . , τan−1(φmn−1), τan(φmn)〉FJRW
g,n

where φmi ∈ HW,µd .
In genus g = 0, and when W is a quintic, there are I functions IGW

and IFJRW which contain all the information about the invariants in both
theories. The function I(z, x) is a H((z−1))-valued function, where H is the
state space in both theories. Chiodo–Ruan showed in [3] that there exists a
C[z, z−1] linear transformation U from HFJRW to HGW which maps IFJRW to
the analytic continuation of IGW. This provides a correspondence between
the GW theory of XW and the FJRW theory of (CN ,W,µ5).

Remark 3.3. In [3], they were working on restricted theories and HGW and
HFJRW are subspaces of Horb(XW ,C) and HW,µd .

4 Relationship with the Orlov equivalence

Chiodo–Iritani–Ruan extended above correspondence to a general weighted
homogeneous polynomial W in [2]. Moreover, they described a relationship
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between this correspondence and the Orlov equivalence. To understand
Orlov equivalence, we should know about matrix factorizations.

Definition 4.1. A graded matrix factorization of a polynomial W is a
collection (Ei, δi)i∈Z of finitely generated graded free modules Ei over the
polynomial ring and degree-zero homomorphisms δi ∈ Homgr-R(Ei, Ei+1)
such that the sequence

. . .
δ−1 // E0 δ0 // E1 δ1 // E2 δ2 // E3 δ3 // . . .

is 2-periodic up to the shift of grading

Ei+1 = E(d), δ(i+ 1) = δi(d),

and such that for all i, we have

δ(i+ 1) ◦ δ(i) = W · idEi : Ei → Ei(d).

Remark 4.2. The reason why it is called matrix factorization of W is(
0 δ1

δ0 0

)2

= W · idE0⊕E1 .

The category MFgr
µd

(W ) is a category whose objects are graded matrix
factorizations of W , and morphisms between two matrix factorizations can
be represented by usual morphisms between complexes. The lower index µd
stands for µd-equivariant. It is automatically satisfied.

Under the Calabi–Yau condition, Orlov [13] constructed equivalences of
categories

Φl : MFgr
µd

(W )→ Db(XW ),

indexed by an integer l, where Db(XW ) is the derived category of coherent
sheaves on XW .

The Chern characters of graded matrix factorization take value in HFJRW,
and the Chern characters take value in HGW. The relationship between the
LG/CY correspondence and the Orlov equivalence can be roughly described
by the commutative diagram

MFgr
µd

(W )

ch

��

Φl // Db(XW )

ch

��
HFJRW Ul

// HGW .

Remark 4.3. The lower index l in Ul comes from taking analytic continuation
alone different paths.
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5 The Geometric Invariant Theory point of view

The LG/CY correspondence can be seen as a result of variations of stability
conditions in Geometric Invariant Theory (GIT). We recall the following.

Definition 5.1. Let L be a line bundle on a complex variety X with pro-
jection π : L→ X, and let G be a reductive algebraic group with an action
σ on X. A G-linearisation of L is an extension of the action σ on X to an
action σ on L such that the diagram

G× L

id×π
��

σ // L

π
��

G×X σ
// X

commutes, and G acts linearly on each fiber. We write Lχ for the line bundle
with a G-linearisation χ.

Definition 5.2. Let Lχ be a G-linearized line bundle on X. We define

1. The set of semistable points Xss
G (Lχ): a point x ∈ X is said to be

semistable if there exists a section s ∈ H0(X,L⊗nχ ) for some n > 0,
such that s(x) 6= 0, and s is G-invariant.

2. The set of stable points Xs
G(Lχ): a point x ∈ X is said to be stable if

it is semistable and the stabilizer Gx is finite.

3. The set of unstable points Xus
G (Lχ): a point x ∈ X is said to be

unstable if it is not semistable.

Definition 5.3. The GIT quotient [X//χG] is defined to be the orbifold

[X//χG] = [Xss
G (Lχ)/G].

We focus on the case where the base space is a finite-dimensional vector
space V ∼= Cn and G = (C∗)k. Since V is contractible, the line bundle L on
V is always the trivial bundle OV , whose total space is V × C. Then the
G-linearisation can be determined by a character θ : G→ C∗, such that

g · (x, l) = (g.x, θ(g)l).

Example 5.4. Consider the G = C∗ action on the vector space V = CNx ×
Cp:

(x1, . . . , xN , p) 7→ (λw1x1, . . . , λ
wNxN , λ

−dp), λ ∈ G

satisfying the CY condition
N∑
i=1

wi = d.
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Positive phase. We take the character θ1 : G→ C∗ defined by

θ1(λ) = λk, k > 0.

Then
V ss
G (Lθ1) = (CN\{0})× C

and
[V//θ1C

∗] = [(CN\{0})× C/C∗],

which is the line bundle O(−d) over P(w).

Negative phase. Now we take the character θ2 : G→ C∗ defined by

θ2(λ) = λ−k, k > 0.

In this case
V ss
G (Lθ2) = CN × C∗

and
[V//θ2C

∗] = [CN × C∗/C∗] = [CN/µd].

An easy computation shows that

H∗orb([V//θ1C
∗],C) = H∗orb([V//θ2C

∗],C).

Remark 5.5. In my mémoire de M2, I computed several examples, including
one with k = 2, N = 7, to show that under the CY condition, different
linearisations give different GIT quotient, but they have isomorphic Chen–
Ruan cohomology groups.

Example 5.4 is a system without potential function. We will add a
potential function on it. Let W (x) be a weighted homogeneous polynomial

with weights w and degree d, then W̃ (x, p) := pW (x) is a C∗-invariant
function on CNx ×Cp. In the positive phase, we have the line bundle O(−d)

over P(w) with the induced function W̃ , this corresponds to the CY side
in section 3. In the negative phase, we have the quotient [CN/µd] with the

induced function W̃ , this corresponds to the LG model in section 3.
Corti–Coates–Iritani–Tseng [6] gave a correspondence between the two

sides without the potential functions, which is a weak form of crepant trans-
formation conjecture (CTC). In [12], Lee–Priddis–Shoemaker deduced the
LG/CY correspondence for a special type of polynomial from this corre-
spondence.
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6 The Calabi–Yau complete intersection case

Let Z be a Calabi–Yau complete intersection (CYCI) in a weighted projected
space P(w), defined by M weighted homogeneous polynomials Wi : CN → C
of degree di. Consider the G = C∗ action on the vector space V = CNx ×CMp :

λ · (x1, . . . , xN , p1, . . . , pM ) = (λw1x1, . . . , λ
wNxN , λ

−d1p1, . . . , λ
−dMpM ).

Together with the potential W (x, p) :=
∑
piFi(x), we get a GIT system

with potential.
In this case, there are also two possible GIT quotients. One of them

yields the Gromov–Witten theory of Z, the other one yields a Landau–
Ginzburg-type theory.

Clader–Ross proved in [5] that the genus zero Gromov–Witten theory of
Z is equivalent to the genus zero Landau–Ginzburg-type theory (constructed
in [7]), under some ”Fermat-type” conditions. Their proof is motivated
by ideas introduced in [12], i.e. deduced from a correspondence without
potential functions.

The first goal of my Ph.D thesis is to clarify the CICY case as much as
the hypersurface case. For example, I will try to construct an analog of Orlov
equivalence for CICY and show its connection with the correspondence given
by Clader–Ross. My long term goal is to clarify gauged linear sigma model
(GLSM).
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[1] Per Berglund and Tristan Hübsch. “A generalized construction of mir-
ror manifolds”. In: Nuclear Physics B 393.1-2 (1993), pp. 377–391.

[2] Alessandro Chiodo, Hiroshi Iritani, and Yongbin Ruan. “Landau-Ginzburg/Calabi-
Yau correspondence, global mirror symmetry and Orlov equivalence”.
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