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Intorduction

We will introduce the height theory for projective varieties, the canonical height on

abelian varieties. There are some estimations of them and we can use the height theory

to prove some finiteness theorems.

1. Height and canonical height

We begin with the height theory. The main references are [HS] and [BG]. Most of

the details in this section can be found in the two books. Some basic results in algebraic

geometry and algebraic number theory that we will use can be found in [Ha] and [La].

Recall that the set of standard absolute values on the rational number field Q is the

set MQ consisting of the archimedean absolute value | · |∞ and the p−adic absolute values

| · |p for every prime p. The set of standard absolute values on a number field k is the set

Mk consisting of all absolute values on k whoes restriction to Q is one of the standard

absolute values on Q. We write M∞
k for the set of archimedean absolute values in Mk,

and similarly M o
k denotes the set of nonarchimedean absolute values on k. For υ ∈ Mk,

the local degree of υ is the number

nυ = [kυ : Qυ],

where Qυ is the completion of Q at the restriction of υ to Q. The normalized absolute

value associated to υ is

‖x‖υ = |x|nυυ .

Definition 1.1. For an element α ∈ k, put the height of α relative to k is

Hk(α) =
∏
υ∈MK

max{1, ‖α‖υ}.
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2 THE CANONICAL HEIGHT ON ABELIAN VARIETIES

The absolute logarithmic height is

h(α) =
1

[k : Q]
logHk(α).

For α ∈ Q̄, observe that h(α) does not depend on the choice of the number field k

containing α.

For example, let m
n

be a rational number, with m and n coprime. Then

HQ

(m
n

)
=
∏
v∈MQ

max
{

1,
∣∣∣m
n

∣∣∣
v

}
= max{|m|∞, |n|∞}.

It is easy to prove that the set of rational numbers with fixed bounded height is a finite set.

When we prove that the set of rational number is countable, we used similar argument.

We will generalize it to the case of projective variety.

Theorem 1.2 (Kronecker). For an algebraic number α ∈ Q̄ nonzero, one has h(α) = 0

iff α is a root of unity.

For an algebraic number α ∈ Q̄ which is not 0 and not a root of unity, one has h(α) > 0.

The Lehmer’s conjecture is the following question:

can we find a positive constant C such that h(α) > C
[Q(α):Q]

for any α ∈ Q̄ which is not

0 and not a root of unity?

The conjecture is still open in its full generality. The next result is due to Dobrowolski

[Do].

Theorem 1.3 (Dobrowolski). Let α be a nonzero algebraic number which is not a root of

unity. Then

h(α) ≥ C

d

(
log log d

log d

)3

.

where C is a constant not depending on α and d = [Q(α) : Q].

Definition 1.4. Let k be a number field, for a point P = (x0 : · · · : xn) ∈ Pn(k), the

height of P relative to k is the quantity

Hk(P ) =
∏
υ∈Mk

max{‖x0‖υ, · · · , ‖x0‖υ}.

The absolute logarithmic height of P is

h(P ) =
1

[k : Q]
logHk(P ).

It’s not difficult to check that Hk is well-defined over Pn(k) and for all P ∈ Pn(Q̄),

that h(P ) does not depend on the choice of k such and Pn(k) contains P .

Recall that the field of definition of a point P = (x0 : · · · : xn) ∈ Pn(k) ⊂ Pn(Q̄) is the

field

Q(P ) = Q(
x0

xi
, · · · , xn

xi
)

for any i with xi 6= 0.

One has
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Theorem 1.5 (Northcott’s property). For any numbers B and D > 0, the set

{P ∈ Pn(Q̄) | h(P ) ≤ B and [Q(P ) : Q] ≤ D}

is finite.

This is one of the fundamental finiteness theorem in Diophantine geometry. One direct

corollary of this property is the following

Corollary 1.6. Let k be a number field. For any number B, the set

{P ∈ Pn(k) | h(P ) ≤ B}

is finite.

One problem is counting points for projective varieties over number fields. We will

introduce it in the third section.

We will generalize the definition of height to all projective varieties over a number field.

Let V be a projective variety defined over Q̄. Let ϕ : V → Pn be a morphism. The

absolute logarithmic height on V relative to ϕ can be defined as

hϕ(P ) = h(ϕ(P ))

for all P ∈ V (Q̄).

The following result will be one of crucial ingredients in the construction of the height

machine later.

Theorem 1.7. Let V be a projective variety defined over Q̄. Let H ⊂ Pn and H ′ ⊂ Pm

be hyperplanes. Let ϕ : V → Pn and ψ : V → Pm be morphisms such that ϕ∗H and ψ∗H ′

are linearly equivalent (meaning that the morphisms ϕ and ψ are associated with the same

complete linear system). Then one has

hϕ(P ) = hψ(P ) +O(1).

Here the constant O(1) will depend on V, ϕ, ψ but not on P ∈ V (Q̄).

Theorem 1.8 (Weil’s height machine). For any smooth projective variety V defined over

a number field k. Let Div(V ) be the group of divisors of V . There exists a map

hV : Div(V )→ {functions V (k̄)→ R}

D 7→ hV,D

with the following properties:

• Normalization: for any hyperplane of codimension one H ⊂ Pn one has for all

P ∈ Pn(k̄)

hPn,H(P ) = h(P ) +O(1),

where on the right hand side is the usual height on Pn(k̄).

• Functoriality: for a morphism of varieties ϕ : V → W inducing a map ϕ∗ : Div(W )→
Div(V ), and a divisor D ∈ Div(W ) one has for all P ∈ V (K)

hV,ϕ∗D(P ) = hW,D(ϕ(P )) +O(1).
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• Additivity: for D,E ∈ Div(V ) one has for all P ∈ V (k̄)

hV,D+E(P ) = hV,D(P ) + hV,E(P ) +O(1).

• Linear equivalence: if D,E ∈ Div(V ) are two linearly equivalent divisors, then

hV,D = hV,E +O(1).

• Positivity: If D is an effective divisor on V , let B be the set of base points of the

associated linear system |D|. Then for all P ∈ (V rB)(k̄)

hV,D(P ) ≥ O(1).

• Algebraic equivalence: if D,E ∈ Div(V ), where D is an ample divisor and E is

algebraically equivalent to zero, then

lim
P∈V (k̄)

hV,D(P )→∞

hV,E(P )

hV,D(P )
= 0.

• Finiteness: if D ∈ Div(V ) is an ample divisor, then for any finite field extension

k′/k and any constant B the set

{P ∈ V (k′) | hV,D(P ) ≤ B}

is finite.

• Uniqueness The height functions hV,D are determined, up to O(1), by normaliza-

tion, functoriality just for embeddings ϕ : V ↪→ Pn, and additivity.

Remark 1.9. The ”O(1)” constants that appear in the height machine depend on the

varieties, divisors, and morphisms, but not on the points on the varieties.

The following theory was developed by Néron and Tate, for a smooth projective variety

with a ’nice’ morphism to itself, we can define a particular height function with some nice

properties.

Theorem 1.10 (Néron–Tate). Let V/k be a smooth projective variety defined over a

number field k. Let ϕ : V → V be a morphism such that ϕ∗D ∼ αD with α > 1 for some

divisor D. Then there exists a unique function ĥV,ϕ,D : V (k̄) → R, called the canonical

height on V , with the following properties:

(1) ĥV,ϕ,D(P ) = limn→∞ α
−n hV,D(ϕn(P )), where ϕn = ϕ ◦ · · · ◦ ϕ.

(2) ĥV,ϕ,D(P ) = hV,D(P ) +O(1).

(3) ĥV,ϕ,D(ϕ(P )) = α ĥV,ϕ,D(P ).

The canonical height depends only on the linear equivalence class of D.

For some projective varieties, it is easy to find such a divisor and construct a morphism

with this property. For the projective space, the hyperplan divisor and any morphism

with degree bigger than one will satisfy the condition of this theorem. For an abelian

variety, a symmetric divisor or an anti-symmetric divisor and the multiplication by n

map will work for any integer n bigger than one. The main object in the next section is

the Néron–Tate height or the canonical height on an abelian variety. Now we introduce a

property that used some technique in dynamical systems.

The canonical height has the following properties.
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Proposition 1.11. Let V/k be a smooth projective variety defined over a number field.

Let ϕ : V → V be a morphism such that ϕ∗D ∼ αD with α > 1 for some divisor D.

Assume that D is an ample divisor. Then

(1) ĥV,ϕ,D(P ) > 0, moreover, ĥV,ϕ,D(P ) = 0 iff ϕ is preperiodic at P , meaning that

the set

{P, ϕ(P ), ϕ2(P ), . . .}
is finite.

(2) The set

{P ∈ V (k) | ϕ is preperiodic at P}
is finite.

2. Canonical height on abelian varieties

In this part, I will introduce the canonical heights on abelian varieties.

Recall Mumford’s formula about divisors on an abelian variety. Let A be an abelian

variety and let D be a divisor on A. One has

[n]∗D ∼ n2 + n

2
D +

n2 − n
2

[−1]∗D.

Where [n] is multiplication by n map. A divisor D is called symmetric if [−1]∗D ∼ D.

Let A be an abelian variety and D be a symmetric divisor, one has

[n]∗D ∼ n2D.

Applying the Néron-Tate theorem in the case, we obtain the following.

Theorem 2.1. Let A/k be an abelian variety defined over a number field, and let D ∈
Div(A) be a symmetric divisor. There is a height function

ĥA,D : A(k̄)→ R,

called the canonical height on A relative to D, with the following properties:

(1) ĥA,D(P ) = hA,D(P ) +O(1) for all P ∈ A(k̄).

(2) ĥA,D([m]P ) = m2ĥA,D(P ) for all integers m and all P ∈ A(k̄).

(3) ĥA,D(P +Q) + ĥA,D(P −Q) = 2ĥA,D(P ) + 2ĥA,D(Q) for all P,Q ∈ A(k̄).

(4) The canonical height map ĥA,D : A(k̄) → R is a quadratic form. The associated

pairing 〈·, ·〉D : A(k̄)× A(k̄)→ R defined by

〈P,Q〉D =
ĥA,D(P +Q)− ĥA,D(P )− ĥA,D(Q)

2

is bilinear and satisfies 〈P, P 〉D = ĥA,D(P ).

(5) The canonical height ĥA,D depends only on the divisor class of D. It’s uniquely

determined by (1) and (2) for any one integer m ≥ 2.

One can apply the Néron-Tate theorem to obtain

ĥA,D(P ) = lim
n→∞

1

4n
hA,D([2n]P ).
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By the property (2), one has

ĥA,D(P +Q) = ĥA,D(P )

and

ĥA,D(Q) = 0

for all P,Q ∈ A(k̄) such that Q is a point of finite order.

Moreover, if D is ample, one has ĥA,D(P ) ≥ 0, with equality if and only if P is a point

of finite order. In the case, the canonical height is well-defined over A(k̄)/(torsion) and it

becomes a positive quadratic form over A(k̄)/(torsion). In fact, we can use the finiteness

property of Northcott to prove a stronger result.

Theorem 2.2. Let A be an abelian variety over a number field k. let D be a symmetric

ample divisor on A, we can extend the canonical height function R−linear to a quadratic

form

ĥA,D : A(k̄)⊗R→ R,

then the quadratic form is positive.

Remark 2.3. A positive quadratic form over Q can be not positive after a R−linear

extension. The proof of this theorem can be found in [La2] [HS].

The Mordell-Weil theorem tells us that the group of rational points for an abelian

variety A over a number field k is finitely generated. One has A(k)/torsion is Z−module

of finite rank. The last theorem implies that the canonical height function on a relative to

an ample symmetric divisor D has a positive lower bound for non-torsion points in A(k).

One of the main goal for my thesis is finding a lower bound of the canonical height

function of abelian varieties. There is an abelian Lehmer problem (see [DH]).

Conjecture 2.4 (Abelian Lehmer Problem). Let A be an abelian variety defined over a

number field k. Let D be an ample symmetric divisor on A, there is a constant C(A,D) >

0, such that for all P of infinite order modulo all proper abelian sub-variety of A, one has

ĥA,D(P ) ≥ C(A,D)δ(P )−1,

where δ(P ) = min{deg(V )
1

codimV , P ∈ V }, and V can be any irreducible proper sub-

varieties of A defined over k. There deg(v) means the degree of V relative to D.

It’s an analogue of Lehmer conjecture for abelian varieties over a number field.

3. Some applications and estimations of height theory

The Northcott property shows that the set of k−points X(k) of a projective variety X

over a number field k is finite. One problem in diophantine geometry is counting rational

points on varieties. There are some famous results about it.

Theorem 3.1 (Mordell-Weil). Let A be an abelian variety over a number field k. The

group of k− points on A is finitely generated.

Theorem 3.2 (Mordell-Faltings). Let C be a smooth projective curve of genus g over a

number field k. If g > 2, the set C(k) is finite.
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Now we introduce some results about the counting function.

Let C/k be a smooth projective curve C/k of genus g over a number field k, if g is 0,

then either C(k) is empty or C(k) is isomorphic with P1(k). The following result about

the counting function for a projective space over number field is due to Schanuel (see

[Sc]).

Theorem 3.3. Let k be a number field of degree d, one has

]{P ∈ Pn(k) | Hk(P ) 6 B} = CBn+1 +O(Bn+1− 1
d )}

for all B positive and d or n is not 1, where C is a constant which only depends on k and

n. In the case of P1(Q), one has

]{P ∈ P1(Q) | Hk(P ) 6 B} =
12

Π2
B2 +O(B logB).

Remark 3.4. In Schanuel’s article, he precises the constant in the theorem.

In the case g equals to 1, C(k) is either empty or a finitely generated abelian group.

Since the torsion part is finite and the canonical height is a positive quadratic form positive

defined on the free part, one obtains the following.

Theorem 3.5. Let A be an abelian variety over a number field k and let D be an ample

symmetric divisor on A, one has

]{p ∈ A(k) | ĥA,D(P ) 6 B} = CB
r
2 +O(B

r−1
2 )

where C is a constant which only depends on A/k and D and r is the rank of A(k).

For the Mordell’s conjecture, Mumford proved a weaker result for it, see [Mu].

Theorem 3.6 (Mumford). Let C be a smooth curve of genus g over a number field k. If

g > 2, for a fixed embedding from C to a projective space, one has

]{P ∈ C(k)|Hk(P ) 6 B} 6 R log logB

where R is a constant, depending on C and the embedding.

Vojta gives a proof of Mordell’s conjecture which starts with Mumford’s ideal of the

proof of this thoerem, see [Vo].

Now we introduce some applications of height theory.

There is a weak Mordell-Weil theorem.

Theorem 3.7. Let A be an abelian variety defined over a number field k and let m > 2

be an integer. Then the group A(k)/mA(k) is finite.

Obviously, the Mordell-Weil theorem implies this weaker version. We can use the height

theory to show that the weaker version also implies the stronger version.

Because the Northcott property, we can use the method of infinite descent. Let S be

the set of representatives for A(k)/mA(k). Let B be upper bound of the canonical heights

of points in S. Then A(k) can be generated by the finite set

{P ∈ A(k) | ĥ(P ) 6 B},
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where ĥ is the canonical height function relative to a symmetric ample divisor on A.

When we define the Weil height machine, one has a map

hV : Pic(V )→ {functions V (k̄)→ R}
{bounded functions V (k̄)→ R}

.

The map is a homomorphism of abelian group. Since the right side is torsion free, the

torsion elements are in the kernel of hV . One can show that the kernel is exactly the

set of torsion elements in Pic(V ). The idea of the proof is to use the intersection pairing

between divisors and curves of V , we can reduce the problem to prove the elements in the

kernel of the map in Pic0(V ) is torsion. Then we can use the theory of Albanese variety

and the canonical height pair to solve this problem. In the case of abelian variety, it’s

easier to prove it (See [?]). The similar idea can get a better estimation of heights relative

to a divisor algebraically equivalent to 0. One has

Theorem 3.8. Let V be a smooth projective variety defined over a number field k. Let D,

E be divisors with D ample and E algebraically equivalent to 0. Then there is a positive

constant C such that

hV,E(P ) 6 C
√
hV,D + 1

for all P ∈ V (k̄).

The proof of the theorem can be found in [HS]. In the case of curves, a divisor is ample

if and only if its degree is positive. A divisor is algebraically equivalent to 0 if and only if

its degree is 0. Applying the theorem to curves, we can say the ”main part” of the height

function depends on the degree.

Theorem 3.9. Let C/k be a smooth curve defined over a number field k. Let D, E be

divisors with D ample, then

lim
P∈C(k̄)

hC,D(P )→∞

hC,E(P )

hC,D(P )
=

degE

degD
.

Masser uses his counting theorem and gets a lower bound of the canonical height on

elliptic curves over number field. (see [Ma]) The counting theorem can be generalized to

the case of abelian varieties.

Let k be a number field, let g2, g3 be elements of k with g3
2 6= 27g2

3, and let E be the

elliptic curve defined by

y2 = 4x3 − g2x− g3.

We write q(P ) for the associated canonical height

ĥ(P ) = lim
n→∞

1

4n
h([2n]P ).

Let $ ≥ 1 be an upper bound for the absolute logarithmic height of the point in projective

space with coordinates 1, g2, g3, one has
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Theorem 3.10 (Masser). There is a positive effective constant C, depending only on the

degree of k/Q, such that for any D ≥ 1 and any extension K of k of degree at most D,

the number of points P in E(K) with

ĥ(P ) <
1

CD

is at most C
√
$D($ + logD).

One of the consequences of the theorem is the following.

Corollary 3.11. There is a positive effective constant C1 depending only on the degree

of k, such that

ĥ(P ) ≥ 1

C1$D3($ + logD)2

for all non-torsion pints P in E(K).

When we consider the height on elliptic curves we often use the canonical height for its

nice properties. For the difference between Weil height and the canonical height on the

elliptic curve E, one has the following.

Theorem 3.12.

|h(P )− ĥ(P )| 6 C$

for all P ∈ E(k), where C is a absolute constant.

The proof of this result can be found in [Zi].

In the case of Galois extensions, there are better estimations of heights in the Lehmer

problem which are due to Francesco Amoroso and David Masser (see [AM]).

Theorem 3.13. For any integer r > 1 and any ε > 0 there is a positive effective constant

c(r, ε) with the following property. Let F/Q be a Galois extension of degree D and α ∈ F×

. We assume that there are r conjugates of α over Q that are multiplicatively independent.

Then

h() > c(r, ε)D
−1
r+1
−ε.

For the canonical height on elliptic curves, there are also some better results in the

Galois case.

Theorem 3.14. For all P ∈ E(k̄) of infinite order such that k(P )/k is Galois of degree

D, one has

ĥ(P ) >
C

D
for some positive constant C.

The proof can be found in [GM]

Remark 3.15. We introduced the height theory in the case of number fields. We can

also consider the height theory in the case of function fields, see [La3]. Many works on

elliptic curves can be generalized to the case of abelian varieties. For Masser’s counting

theorem. The abelian variety version of it is also due to Masser, see [Ma2].
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de type C. M. Journal fur die Reine und Angewandte Mathematik, 1-74.

[GM] Galateau, A., Mah, V. (2017). Some consequences of Massers counting theorem on elliptic curves.

Mathematische Zeitschrift, 285(1-2), 613-629.

[Ha] Hartshorne, R. (2013). Algebraic geometry (Vol. 52). Springer Science Business Media.

[HS] Hindry, M., Silverman, J. H. (2013). Diophantine geometry: an introduction (Vol. 201). Springer

Science Business Media.

[La] Lang, S. (2013). Algebraic number theory (Vol. 110). Springer Science Business Media.

[La2] Lang, S. (Ed.). (2013). Number theory III: Diophantine geometry (Vol. 60). Springer Science

Business Media.

[La3] Lang, S. (2013). Fundamentals of Diophantine geometry. Springer Science Business Media

[Ma] Masser, D. W. (1989). Counting points of small height on elliptic curves. Bulletin de la Société
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