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1 Results

We consider the following communication model, n users are communicating
with n antennas in such a way that user i communicates with antennas i and
i + 1 with a random fading ai and bi respectively.

user 1

user 2

user n

user 3

antenna 1

antenna 2

antenna n

antenna 3

Random fading

a1

a2

an

a3

b1

b2

bn-1

We describe the problem in the following formal way. We consider two random
sequences of complex numbers (an) and (bn). The (an) (resp. (bn)) are i.i.d of law
πa (resp. πb) and the (an) are independent of the (bn). We set Ω := ((an), (bn)).
We denote by P the probability associated with those random sequences and by
E the associated expectation. For a given integer n, we consider a channel H of
size n × (n + 1).
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We consider the capacity

Capn(ρ) =
1

n
tr {log (I + ρAnA∗

n)} .
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The results obtained so far use the following hypothesis

(H1) Eπa
(log |x|)2 < ∞ and Eπb

(log |x|)2 < ∞.

(H2) πa and πb are absolutely continuous with respect to Lebesgue measure on
C.

(H3) There exist a real M such that if x is distributed according to πa (resp.

πb) then the density of |x|2 is strictly positive on the interval [M ;∞).

(H3’) There exist ma < Ma ∈ R∪ {∞} (resp. mb < Mb ∈ R∪ {∞}) such that if

x is distributed according to πa (resp. πb) then the density of |x|2 and the
Lebesgue-measure on [ma; Ma] (resp. [mb; Mb]) are mutually absolutely
continuous.

(H4) Eπa
log |x| ≤ Eπb

log |x|.

The principal result obtained so far is the following theorem.

Theorem 1.1. Assume (H1) and (H2)

a) For every ρ > 0, Capn(ρ) converges as n goes to infinity. We call the limit
Cap(ρ).

b) Further assume [(H3) or (H3’)]. As ρ goes to infinity,

Cap(ρ) = log ρ + 2 max (Eπa
log |x| ; Eπb

log |x|) + o(1).

Note that Theorem 1.1 continues to be true in the real set up, that is, if instead
of (H2), we assume

(H2’) πa and πb are supported on R and are absolutely continuous with respect
to Lebesgue measure on R.

Since the argument is identical, we do not discuss this case further.
Without loss of generality, we can assume (H4), indeed, exchanging the entries
ai and bi for 1 ≤ i ≤ n, we substitute AnA∗

n to AnA∗
n and the eigenvalues, which

are real, do not change, hence the capacity does not change.
Note that only (H1) and (H2) are needed for part a) of Theorem 1.1. The proof
of this part uses only the theory of products of random matrices and we give it
in Section 5.
Part b) uses the theory of Markov chains and is specific to the particular matrix
An, as a by product of this proof, we obtain a second proof of part a), however
under the additional assumption [(H3) or (H3’)].
The structure of the paper is as follows. In the development of the paper, we
give a proof assuming [(H3) or (H3’)]. In Section 2, we introduce an auxiliary
sequence which allows us to reformulate the problem in terms of certain random
sequences. In Section 3 we reduce the problem to the analysis of a special Markov
chain, whose study we carry out in Section 4.
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2 Auxiliary sequence

We begin with a technical lemma that will not be proved here.

Lemma 2.1. Assume (H2). P-a.s, AnA∗
n does not have multiple eigenvalues.

In the sequel, we denote by λ1, . . . , λn the ordered eigenvalues of AnA∗
n. For a

given λ, we consider the following sequence of complex numbers (the dependence

in λ will only be mentioned when it is relevant) : x1 = 1, x2 = x1
λ−|a1|

2−|b1|
2

a2b1
,

and for n ≥ 2,

anbn−1xn−1 + (|an|
2

+ |bn|
2
)xn + an+1bnxn+1 = λxn,

that is

xn+1 =
λ − |an|

2 − |bn|
2

an+1bn

xn −
anbn−1

an+1bn

xn−1. (2.1)

Note that xn+1(λ) = 0 if and only if λ is an eigenvalue of AnA∗
n. Moreover,

xn+1 is a polynomial in λ of degree n with highest coefficient 1/
∏n

i=1(ai+1bi).
One can thus write using Lemma 2.1

xn+1(λ) =
n
∏

i=1

(ai+1bi)
−1

n
∏

i=1

(λ − λi) P − a.s,

Hence, P-a.s,

Capn(ρ) = log(ρ) +
1

n
log |xn+1(λ)| +

1

n

n
∑

i=1

log |ai+1bi| , (2.2)

where λ = −1/ρ. By the Law of Large Numbers (LLN),

lim
n→∞

1

n

n
∑

i=1

log |ai+1bi| = Eπa
log |x| + Eπb

log |x| P − a.s.

Because of (2.2), to prove part b) of Theorem 1.1, we only need to show the
following lemma.

Lemma 2.2. Assume (H1), (H2) and [(H3) or (H3’)]

a) For every λ < 0, 1
n

log |xn+1(λ)| converges P-a.s as n goes to infinity. The
limit is γ(λ), the Lyapunov exponent defined by (5.1).

b) Assume further (H4). Then γ(λ) converges P-a.s to Eπb
log |x|−Eπa

log |x|
as λ goes to 0.

3 Reduction to a Markov chain

We take cn := xn/xn−1, for n ≥ 3. Note that by (2.1) and (H2), P-a.s, xn 6= 0,
hence cn is well defined and non-zero. By (2.1), we get

cn+1 =
λ − |an|

2 − |bn|
2

an+1bn

−
anbn−1

cnan+1bn

.
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Let dn = cnanbn−1. Then,

dn+1 = λ − |an|
2 − |bn|

2 −
|an|

2 |bn−1|
2

dn

= λ − |bn|
2 − |an|

2

(

1 +
|bn−1|

2

dn

)

.

Let en =
(

1 + |bn−1|
2

dn

)

. Then dn+1 = λ − |bn|
2 − |an|

2
en, and

en =
−λ + |an−1|

2
en−1

−λ + |bn−1|
2
+ |an−1|

2
en−1

, (3.1)

with the initial conditions,

c3 =
λ − |a2|

2 − |b2|
2

a3b2
−

|a2|
2 |b1|

2

a3b2(λ − |a1|
2 − |b1|

2
)
;

d3 = λ − |b2|
2 − |a2|

2

(

1 −
|b1|

2

−λ + |a1|
2

+ |b1|
2

)

.

d3 ∈ R and d3 < − |b2|
2
, hence, 0 < e3 < 1. From (3.1) we conclude that for all

n, en ∈ R and 0 < en < 1. Now, for all n,

cn =
dn

anbn−1
=

bn−1

an

1

en − 1
.

Then,

1

n
log |xn+1| =

1

n

n+1
∑

i=3

log |ci| +
1

n
log |x2|

=
1

n

n+1
∑

i=3

(

log

∣

∣

∣

∣

bi−1

ai

∣

∣

∣

∣

− log(1 − ei)

)

+
1

n
log |x2|

(3.2)

1
n

∑n+1
i=3 log

∣

∣

∣

bi−1

ai

∣

∣

∣
converges to Eπb

log |x|−Eπa
log |x| by the LLN. We now study

in details the Markov chain en.

4 Study of the Markov chain en

For simplicity, we write δ := −λ and we re-index the chain so that it starts from
e0. As in (3.1),

en =
δ + |an−1|

2 en−1

δ + |bn−1|
2

+ |an−1|
2
en−1

. (4.1)

We denote by fn the random function s.t. en = fn(en−1). We denote by Pe0
the

law of the sequence starting from e0 and by Ee0
the associated expectation.

Proposition 4.1. Assume (H2) and [(H3) or (H3’)]. The Markov chain en has
a unique stationary probability, say, µδ and for s ∈ L1(µδ), for every starting
point e0 ∈ [0, 1], Pe0

-a.s,

1

n

n
∑

i=0

s(ei) −−−−→
n→∞

∫

sdµδ.
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The proof is omitted. We also omit the proof of the following fact,

− log(1 − ·) ∈ L1(µδ). (4.2)

With Proposition 4.1, we get

1

n

n+1
∑

k=3

− log(1 − ek) −−−−→
n→∞

∫ 1

0

− log(1 − x)dµδ(x) Pe3
− a.s. (4.3)

With (3.2), it gives another proof of Lemma 2.2 a). Let us prove Lemma 2.2 b).
Take η > 0 and ε > 0 small.

∫ 1

0

− log(1 − x)dµδ(x)

=

∫ ε

0

− log(1 − x)dµδ(x) +

∫ 1−η

ε

− log(1 − x)dµδ(x) +

∫ 1

1−η

− log(1 − x)dµδ(x)

≤ −ε log(1 − ε) − log ηµδ([ε, 1]) +

∫ 1

1−η

− log(1 − x)dµδ(x).

(4.4)

By (4.2), the last term converges to 0 as η goes to 0. By (3.2), (4.3) and (4.4),
to prove Lemma 2.2 b), we only have to prove that for any given ε > 0,

µδ([ε, 1]) −−−→
δ→0

0.

For that, by Proposition 4.1, we need to show that the proportion of the time
that the chain en spends above ε converges to 0 as δ goes to infinity. We take
ε < ε0 < 1, where ε0 will be chosen later. We consider the Markov chain
zn := log en and the random function gn such that zn = gn(zn−1). It is enough
to show that the proportion of the time that zn spends above log ε goes to 0 as
δ goes to 0. Let us couple zn with another Markov chain wn, such that wn ≥ zn

a.s. and that the time that wn spends above log ε goes to 0 as δ goes to 0.
For that, we need good information on the jumps of zn.

Lemma 4.2. Assume (H1) and (H4). Set

jn(zn−1) := zn − zn−1

= log

(

δ

ezn−1
+ |an−1|

2

)

− log
(

δ + |bn−1|
2

+ |an−1|
2
ezn−1

)

.

(∀δ > 0) (∃ε′ > 0) (∀x ≥ log ε′)

a) Ejn(x) ≤ 0,

b) Varjn(x) ≤ V := E

(

(

log(|an−1|
2 + |bn−1|

2)
)2

+
(

log(|an−1|
2)
)2
)

+ C.

C is a constant independent of everything. ε′ is a function of δ but we will not
write it to keep the notation clear. Moreover,

lim
δ→0

ε′ = 0.
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The proof is omitted. We continue with the proof of Lemma 2.2 b)
We take δ > 0 such that 0 < ε′ < ε < ε0 < 1. We define wn in a way that it
stays between log ε′ and 0. Set w0 = z0, for δ small enough, w0 > log ε′. For
x ∈ [log ε′; 0], denote

hn(x) = gn(x) − Ejn(x) ≥ gn(x).

That is

hn(x) = x + log

(

δ
ex + |an−1|

2

δ + |bn−1|
2

+ |an−1|
2
ex

)

−

E log

(

δ
ex + |an−1|

2

δ + |bn−1|
2 + |an−1|

2 ex

)

.

(4.5)

Notice that

E(hn(zn−1) − zn−1|zn−1) = 0. (4.6)

– If hn(wn−1) > 0, set wn = 0.
– If hn(wn−1) < log ε′, set wn = log ε′.
– Otherwise, set wn = hn(wn−1).
In the first two case, we say that the chain is truncated. Note that for all n, wn ≥
zn. Indeed, either wn = 0 ≥ zn or wn ≥ hn(wn−1) ≥ gn(wn−1) ≥ gn(zn−1) = zn,
by induction and using the fact that gn is a.s. non-decreasing. Therefore, the
proportion of the time that the chain wn spends above log ε is larger that the
proportion of the time that chain zn spends above log ε.

Proposition 4.3. Assume (H2).

a) The Markov chain wn has a unique stationary probability, say, νδ and for
s ∈ L1(νδ), for every starting point w0 ∈ [log ε′, 0], Pw0

-a.s,

1

n

n
∑

i=0

s(wi) −−−−→
n→∞

∫

sdνδ.

b) We denote T the return time to 0, starting from 0. Then νδ(0) = 1/E0T .

The proof is omitted. We continue with the proof of Lemma 2.2 b).
By Proposition 4.3 a), to prove that the proportion of the time that wn spends
above log ε goes to 0 as δ goes to 0, we only need to prove that

νδ([log ε, 0]) −−−→
δ→0

0.

Let us first prove that ET −−−→
δ→0

∞, which by Proposition 4.3 b) will prove that

νδ(0) −−−→
δ→0

0.

We use the following lemma.

Lemma 4.4. Assume (H2).
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a) There exist u > 0 and α > 0 dependent on ε and independent of δ such
that for all x ∈ [2 log ε; 0],

P (hn(x) ≥ x + u) > α.

b) There exist v > 0 and β > 0 dependent on ε and independent of δ such
that

P (log ε < h1(0) < −v) > β.

The proof is omitted. We continue with the proof of Lemma 2.2 b).
We denote A the event log ε < h1(0) < −v. On A, we define the stopping time

T̃ = 1 + inf{n ≥ 1; hn+1(wn) > 0 or hn+1(wn) < log ε′}.

By martingale arguments, we get

E(T̃ ) ≥ β
v(− log ε′) − (log ε)2

V
.

We have proved that ET −−−→
δ→0

∞, which proves that νδ(0) −−−→
δ→0

0.

Using Lemma 4.4, let us prove by induction that for N ≤
⌈

− log ε
u

⌉

,

νδ ([−Nu; 0]) ≤ α−N νδ(0).

νδ([−(N − 1)u; 0]) ≥

∫

νδ(dw0)Pw0
(w1 ∈ [−(N − 1)u; 0])

≥

∫

[−Nu;0]

νδ(dw0)Pw0
(w1 ∈ [−(N − 1)u; 0])

≥

∫

[−Nu;0]

νδ(dw0)Pw0
(h1(w0) ≥ u + w0)

≥ ανδ([−Nu; 0]).

Therefore,

νδ ([log ε; 0]) ≤ α⌈
− log ε

u ⌉νδ(0).

So,
νδ([log ε, 0]) −−−→

δ→0
0.

That concludes the proof of Lemma 2.2 b).

5 Product of random matrices

We prove Lemma 2.2 b) assuming (H1) and (H2). We use the theory of product
of random matrices theory. It will be proved again in Section 4. For a general
introduction to the aspects of the theory we use here, the reader may consult
[5], [6], [8], [9] and [14].
Let us take |·| any norm on C2 and ‖·‖ the associated operator norm on M2(C).
For a given λ,

(

xn+1

xn

)

=

(

λ−|an|2−|bn|2

an+1bn
−anbn−1

an+1bn

1 0

)

(

xn

xn−1

)
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For a, a′, b, b′ ∈ C

0, we define

g(λ, a, a′, b, b′) :=

(

λ−|a|2−|b′|2

a′b′
− ab

a′b′

1 0

)

∈ GL(2, C).

Finally, we define

gn(λ) := g(λ, an, an−1, bn−1, bn) =

(

λ−|an|2−|bn|2

an+1bn
−anbn−1

an+1bn

1 0

)

,

Mn := gn . . . g2.

Set E = (C − 0)4 which is a borel set of a separable and complete metric
space. Xn := (an+1, an, bn, bn−1) is a Markov chain on E , with invariant measure
Π := πa × πa × πb × πb. With (H1),

EΠ

(

log+ ‖g(λ, a, a′, b, b′)‖ + log+
∥

∥

∥g(λ, a, a′, b, b′)
−1
∥

∥

∥

)

< ∞.

Notice that gn(λ) is a continuous function of Xn, therefore ((Xn, Mn), Π) is
a multiplicative Markovian process. By [3, Proposition 2.2], 1/n log ‖Mn(λ)‖
converges P-almost surely and in L1(Ω), we set

γ(λ) = lim
n→∞

1

n
log ‖Mn(λ)‖ . (5.1)

γ(λ) is the first Lyapunov exponent. The L1(Ω) convergence already gives an
easy upper bound for γ(λ). By the property of operator norm,

γ(λ) ≤ Eπ log ‖g2(λ)‖ .

Moreover, we can refine that bound into a whole family of upper bounds, for
k ∈ N,

γ(λ) ≤
1

k
Eπ log ‖g2(λ)...gk+1(λ)‖ . (5.2)

Note that this upper bound is getting better as k increases and tight as k → ∞.
Let us now prove that

1

n
log |xn+1(λ)| −−−−→

n→∞
γ(λ).

Definition 5.1. The multiplicative system ((Xn, Mn), Π) is irreducible if there
is no measurable non-random family {V (X), X ∈ E} of proper subspaces of C2

s.t.
MnV (X0) = V (Xn), P-a.s., ∀n ∈ N.

Lemma 5.2. The multiplicative system ((Xn, Mn), Π) is irreducible

The proof is an adaptation of the proof of [3, Proposition 6.1.1], it is omitted.
By [4, Lemma 2.6], irreducibility implies that

lim
n→∞

1

n
log

∣

∣

∣

∣

(

xn+2

xn+1

)∣

∣

∣

∣

= γ.

The following lemma completes the proof.
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Lemma 5.3.

lim
n→∞

1

n

(

log

∣

∣

∣

∣

(

xn+2

xn+1

)∣

∣

∣

∣

− log |xn+1|

)

= 0.

The proof is omitted.

6 Further questions

6.1 Continuity results

In [6], there are several results of continuity of Lyapunov exponents for Schrö-
dinger operators. We would like to use those results to get a proof of Theorem
1.1 without the assumption (H3). Nevertheless, there are two main obstacles.
[6] deals with random Schrödinger which is a slightly different model, most of
all because the off-diagonal coefficients of AnA∗

n are 1 in that case. The most
important obstacle is that the continuity requires irreducibility, among other
conditions. Unfortunately, the multiplicative system ((Xn, Mn), Π) is not irre-
ducible for λ = 0, which is precisely the point at which we need irreducibility.
Indeed, (−bn−1/an, 1) is a fixed direction. Since we have irreducibility for all
λ 6= 0, we may get a continuity result. There exists a counter example that
shows that a weak form of irreducibility for all λ 6= 0 is not enough for a conti-
nuity theorem [12]. Because of that, we will have to use the full extent of our
hypothesis.

6.2 Higher dimension

Our result deals with An bidiagonal, that is AnA∗
n tridiagonal. We would like to

get a result for An tridiagonal, imagine for example a model where every user i
would communicate with antennas i−1, i and i+1. For that case, we first need
to derive a formula like (2.2) and then, we need to study the resulting chain.
The problem is that the chain xn will no longer be one dimensional, therefore
the reduction to a Markov chain will be much more complicated. We should
be able to get existence results by tools coming from the products of random
matrices theory but the behavior in high-SNR will be much more difficult to
study.
Finally, the long term goal is to get results for general k-diagonal matrices.
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[10] B. Guerrien La théorie des jeux. Paris : Economica, 2002.

[11] O. Häggström,J. Johan Rates of Convergence for Lamplighter process,
Stochastic Processes and their Applications 67 (1997) 227-249.

[12] Y. Kifer Perturbations of random matrix products in a reducible case,
Ergodic Theory Dynam. Systems 2 (1982), no. 3-4, 367–382 (1983).

[13] S.P. Meyn, R.L. Tweedie Markov Chains and Stochastic Stability,
Springer-Verlag 1993.

[14] Pastur, Figotin Spectra of random and almost-periodic operators.

[15] Y. Peres Mixing for Markov Chains and Spin Systems, Pre-print at
http ://www.stat.berkeley.edu/users/peres/ubc.pdf.

[16] Y. Peres, D. Revelle Mixing Times for Random Walks on Finite Lam-
plighter Groups, Electronic Journal of Probability 9 (2004) 825-845

[17] L. Saloff-Coste Lectures on Finite Markov Chains, Lecture Notes in ma-
thematics 1665 (1997) 301-408. Ecole d’été de St Flour 1996.
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