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Abstract

In this report we outline the work accomplished during the internship. After giving the necessary prerequisites we focus
mostly on the unexplored �eld of the maximal energy in the Random Energy Model under Metropolis dynamics and in
other related settings. We present some quantitative non-rigorous results concerning it as well as their numerical aspects.
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Course of the internship

Let us �rst outline the work accomplished during the internship. We also discuss the content of some of the references.

Mathematical prerequisites

The strictly mathematical part of the internship which was supervised by Justin Salez took place during the second
semester of the academic year in parallel with the coursework, namely from mid-February to mid-May. He suggested
several references consistent with what Giulio Biroli had told him we would do in the "Physics" part as the author's
stochastic process background was clearly insu�cient if at all existent. More precisely:

[23] Namely the chapters 11-13 on conditionning, discrete martingales and discrete Markov chains, which were not
covered in [14], which was already known and is a better reference on what can be found there.

[30] For the extensive treatment of Markov chains and Poisson processes.

[20] Recommended by Justin Salez due to the rather messy structure and hasty reasoning the author noticed in [30].

[15] For the Central limit theorems chapter and more precisely stable laws.

[21] For the concise and rigorous introduction to the REM (see 2.1.2).

Although those references left little ambiguity, he did discuss some problematic points with the author in order to clarify
the uncertainties and to ensure the good comprehension of the material. This part of the work gave rise to most of
chapters 1 and 4 and were, of course, of constant use throughout the rest of the present paper. The supervisor was always
ready to suggest an adequate reference to reply to the trainee's needs.

Physics prerequisites and introduction to the area

Giulio Biroli suggested a few of the following references, which were to introduce the author to the area of spin glasses in
general and the REM in particular and added a few others when prompted by my queries. The last three were stumbled
upon rather accidentally and were thus less appropriate, but informative nonetheless. Their study was accomplished
before the start of the internship in mid-June.

[24] A rather contemporary discussion of spin glasses and its links to information and computation. It provides a fair
introduction of all those subjects including the REM.

[13] The original article introducing the REM and giving many of the fundamental results on it.

[8] The original article introducing trap models and discussing ageing from a phenomenological point of view.

[5] For a summary on aging in trap models and in particular [4] � namely section 5.

[3] For some mathematical results on aging in the REM.

[4],[11] For rather self-contained mathematical proofs of aging, namely on the complete graph, using di�erent approaches.
[11] gives as well a detailed explanation of the reduction of the REM to the BTM.

[22] For an excellent introduction to Monte Carlo methods from the practical viewpoint, namely chapters 1,2 and 7.

[10] For a physicist's view on the central limit theorems and extreme values � namely chapter 1.

[29] For a general qualitative overview of the area even though it is by far not an introduction for non-specialists.
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[25] For a more comprehensible for beginners and more extensive coverage of the area despite the obscure reasoning.

[27] A general overview of phase transitions, which states rather what does not happen in glasses than what does.

Biroli was also available to discuss and suggest further reading on issues that were encountered in reading those, as they
were much less clear than the mathematical ones at least to the student's impression. Although many of those references
were there rather to provide cultural context than to be used directly, they supplied some much needed height on what
was to be done during the internship.

Internship at IPhT

The internship at IPhT took place from Monday 20th June, 2016 to Friday 22nd July, 2016 under the supervision of
Giulio Biroli. During this period the author worked in considerable autonomy, discussing with Biroli from time to time
and yet often enough to keep the former occupied. At the beginning the supervisor was more directive, asking carefully
chosen questions, whose answers he was well aware of, and giving the intern the time necessary for him to �nd the answers
himself and to build up his understanding eventually arriving at the core matter of the internship. About that time Biroli
gradually started suggesting only lines of thought for further development. He was always open to hearing out the ideas
of the author and attentive when doing so, which allowed him to spot what sometimes had eluded his trainee.

Collaboration with Marco Baity Jesi, who is a post-doctoral student also under the supervision of Biroli, during this
period also needs mentioning, as it clearly played an important role in the internship.

Impressions

In the author's opinion the whole idea of having a theoretical physics internship for the cursus Math-Pysique is very well
conceived. Moreover, the mixed and co-supervised internship is very appropriate. It gave him the occasion to learn much
Mathematics that will be of use for his future studies and Physics that is in close enough relation with Mathematics and
therefore may provide a useful alternative point of view as well as a �eld of application and study. Furthermore, this �rst
experience of actual research as it is done in a theoretical physics laboratory is quite an invaluable con�rmation of how
things work "in real life" and yet in a su�ciently supervised environment to ensure that work stays on the right track.
Finally, the writing of the report, even though it is quite time consuming and of little interest for contemporary research,
is a good opportunity to develop and re�ne writing skills that will be essential for the students' future careers.

An important aspect of the internship was the choice of the domain and afterwards of the theme. Most fortunately
both went on splendidly, as the domain was precisely to the author's liking with its tight relations with probability and
the theme was very successfully suggested by Biroli and turned out to be very accessible even at such low level but
still by far not trivial and demanding good understanding of the context and the previously established results. Despite
the fact that Biroli's choice was very appropriate it should be brought to the tutors of the cursus Math-Physique's
attention that it might be a good idea to survey more closely the supervisors' ideas in order to ensure that they do not
overestimate the modest knowledge of the students, which even their ultimate resolve may not be able to make up for.
In this respect, Salez's selection of adapted and self-contained references that could make a smooth extension of already
known material without need of searching elsewhere was no less crucial. Finally, both supervisors' pedagogical skills were
much appreciated. The trainee's impressions could not easily be more positive. The only regrettable aspect is the fact
that the current work remained almost entirely physical due to the author's lack of experience with processes with two
levels of randomnees.
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Chapter 1

Preliminaries and setting

1.1 Preliminary Mathematics

Even though the Mathematics used in this text is fascinating, it is out of the question to give here a self-contained
work on stochastic processes. Yet, we will try to state in this section the main results and notions used throughout the
text. Should the reader happen to be unfamiliar with any of these, it is highly recommended to consult for instance the
references in Mathematical prerequisites if one intends to understand the matter on a non-super�cial level. We will not
give the "good" de�nitions, but rather stick to what is the most conveniently announced. Note that some objects are
de�ned inside theorems and not restated as de�nitions though it is mentioned explicitly if we �x notations.

1.1.1 Generalities

In order to give a precise setting for what follows, we �x U :=
(
Ω,F ,P, (Ft)t∈R+

)
a �ltered probability space referred

to as the universe. Unless otherwise mentioned any stochastic process1 (Xt)t∈R+

2 will be supposed adapted to U .
The process is valued in a measurable space (S,S ), (Rn,B (Rn))3. If the notation θt is used, we suppose that U is
equipped with a commutative translation monoid (θt)t∈R+

such that ∀t ≥ 0, s ≥ 0, Xt ◦ θs = Xs+t and we still denote
U :=

(
Ω,F ,P, (Ft)t∈R+

, θ,X
)
. The same notations are used for discrete4 time processes, substituting t by n and R+

by N, where N := {0, 1, . . .}.

De�nition 1.1.1.1. We call trajectories of a process the functions t 7→ Xt(ω) and we denote them by X(ω).

De�nition 1.1.1.2.

• We call a stopping time a random variable5 T : Ω→ R+ ∪ {∞}6 such that ∀t ≥ 0, (T < t) ∈ Ft.

• For a stopping time T we note FT := {A ∈ F | ∀t ∈ R+, A ∩ {T < t} ∈ Ft} the σ-algebra of the past.

• For a stopping time T we note XT (ω) := XT (ω)(ω)1{T<∞}(ω). We sometimes extend this de�nition to {T = ∞}
by setting a value depending on the context. If that set is negligible, that is of no importance.

In the discrete case we replace T < t by T ≤ n, which makes a di�erence.

De�nition 1.1.1.3. For P a transition probability from S to (F,F) and f ∈ Fm(S,R)7 we note Pf(y) :=
∫
S
P (y,dx)f(x),

when de�ned, for instance for f positive or bounded. Hence Pf ∈ Fm(F,R) respectively positive or bounded.

De�nition 1.1.1.4. We say that a processX equalsX ′ in law if ∀n ∈ N, (t1, . . . , tn) ∈ Rn+, L(Xt1 ,...,Xtn ) = L(X′t1
,...,X′tn )

8.

1We will say simply process.
2We will write simply X when there is no ambiguity. This same notation is used for other objects : we write for instance (Xt)t∈R+

at the
�rst occurrence and then use simply X without any mention afterwards.

3σ-algebras will be systematically implicit. Rn is equipped with the Lebesgue measure l unless otherwise stated.
4We will use countable and discrete interchangeably as any countable set will be equipped with the discrete topology and the algebra P(S).
5We will say simply variable and it is implicit that it is measurable.
6We will write simply [0;∞].
7We will denote by Fm(S, F ) measurable functions from S to F , F(S, F ) � general and Fb(S) � measurable bounded real functions.
8We will denote by LY (dy) the law of the variable Y and equality in law will be denoted by

law
= .

1



1.1.2 Conditional expectation

Theorem 1.1.2.1. For X ∈ L1(Ω,F ,P) and G a sub-algebra of F there is a unique variable E[X | G ] ∈ L1(Ω,G ,P)
called conditional expectation of X with respect to G such that

∀A ∈ G , E[X1A] = E[E[X | G ]1A].

Moreover, it veri�es
∀Z ∈ Fb((Ω,G )), E[XZ] = E[E[X | G ]Z]

and
X ∈ Fm((Ω,F ), [0;∞])⇒ E[X | G ] ∈ Fm((Ω,G ), [0;∞]).

De�nition 1.1.2.2. For G a sub-algebra of F we introduce the conditional probability knowing G by

∀A ∈ F , P(A|G ) := E[1A|G ].

Remark 1.1.2.3. We will not take into account the fact that it is only de�ned a.e.9 and treat it as a true probability.

De�nition 1.1.2.4. For (A,B) ∈ F 2, P(A) > 0 and X a variable we introduce

P(B | A) :=
P(B ∩A)

P(A)
, P(• | X) := P(• | σ(X)10).

These de�nitions are coherent with for a.e. ω ∈ A, P(B | A) = P(B | 1A)(ω).

1.1.3 Markov chains and processes

De�nition 1.1.3.1. We call a Markov chain11 a process (Xn)n∈N, such that

∃Π ∈ L
(
RS
)
12∀n ∈ N, (x0, . . . , xn, y) ∈ Sn+2, P(Xn+1 = y | X0 = x0, . . . , Xn = xn) = Π(xn, y) =: πxn,y

when the conditional probability is de�ned. Π is called the transition matrix (it is a transition probability).

De�nition 1.1.3.2. We call a Markov process13 (Xt)t∈R+
equiped with a transition probability monoid (Pt)t∈R+

such
that

∀t ≥ 0, s ≥ 0, f ∈ Fm(S,R+), E[f(Xt+s) | Ft] = Psf(Xt)

and whose trajectories are right-continuous (this condition is not in the general de�nition of a Markov process).

Remark 1.1.3.3. We are already cheating a bit since X is a variable but we have not said in what measurable space it is
valued. This problem is solved by the cylinder spanned sigma-algebra or, better yet, the Borel algebra of the Skorokhod
topology (or metric) on the càdlàg space, but we will just pretend it did not matter.

De�nition 1.1.3.4.

• We set the stopping times Tn = inf{t > Tn−1 | Xt 6= XTn−1
} eventually in�nite with T0 = 0, that we call jump

times.

• We set Sn = Tn+1 − Tn and ξn = XTn1{Tn<∞} + ∆1{Tn=∞} with ∆ /∈ E.

• We set T∞ := limTn, that we call the �rst explosion time. We say that there is no explosion when T∞ =∞ a.s.

De�nition 1.1.3.5. Indi�erently for a Markov chain or process (or its transition probability) we note for any x ∈ S
by Px a probability such that Px(X0 = x) = 1 (and X is Markov). We note for µ a probability measure on S by Pµ a
probability such that ∀A ∈ S , Pµ(X0 ∈ A) = µ(A). (Their existence is not trivial but holds.) We join (Px)x∈S to U .

Theorem 1.1.3.6. For a Markov process X, under Pµ and conditionally to FTn the variables Sn and ξn+1 are indepen-

dent, there are (ai)i∈S such that Sn|FTn

law
= EXP (aξn)14 and Pµ(ξn+1|FTn

= j) =: πξn,j gives the transition matrix of ξ,
which is a Markov chain under Pµ. We shall use these notations as well and we will call transition rates qi,j = aiπi,j.

9We will use a. for almost, e. for everywhere, every and s. for sure, surely according to context.
10σ(•) denotes the spanned sigma-algebra � for example for an event it is {Ω, A,Ω\A, ∅}.
11Implicitly on a countable (i.e. which injects in N) set S and in discrete time.
12Identi�ed henceforth with M|S| by the means of the canonical basis, where |S| ∈ N ∪ {N} is the cardinal avoiding the ω notation.
13Implicitly on a countable set S and with time in R+.
14LEXP (a)(dx) = ae−ax1R+

dx if 0 < a <∞ and δ∞ otherwise.
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Proposition 1.1.3.7. If supx∈Sax <∞, then ∀x ∈ S Px-a.s. there is no explosion. This is the case for |S| <∞.

De�nition 1.1.3.8. A Markov chain is

• reversible with respect to a measure15 µ if µiπi,j = µjπj,i. For a Markov process µiπi,jai = µjπj,iaj .

• invariant with respect to a measure µ if µΠ = µ. For a Markov process µQ = µ.

• irreducible if ∀(x, y) ∈ S2 ∃n ∈ N, Πn(x, y) > 0. For a Markov process ∀(x, y) ∈ S2 ∃t ∈ R+, Pt(x, y) > 0.

• d-periodic if it is irreducible and GCD(n ≥ 1 | Πn(x, x) > 0) = d for some (any) state x.

• recurrent if ∀x ∈ S, Px(∃n > 0, Xn = x) = 1. For a Markov process replace X by ξ and n by t.

• ergodic if it is irreducible, 1-periodic, recurrent and has an invariant probability measure. For a Markov process
remove 1-periodicity.

Remark 1.1.3.9. The chain associated to a Markov process reversible with respect to µ is (aiµi)i-reversible.

Proposition 1.1.3.10. A recurrent Markov chain has an invariant measure and if it is irreducible as well, the measure
is unique up to a multiplicative constant.

Theorem 1.1.3.11. Let X be an ergodic Markov chain with invariant probability measure µ. Then

∀x,
∑
y∈S
|Px(Xn = y)− µ(y)| n→∞−→ 0.

Theorem 1.1.3.12. Let X be irreducible with invariant probability measure µ. Then ∀f ∈ Fm(S,R+)∀x ∈ S, Px-a.s.

1

n

n∑
0

f(Xk)→
∫
fdµ.

Theorem 1.1.3.13 (Kolmogorov equations). Set pt(i, j) := Pi(Xt = j). The t 7→ pt(i, j) are C∞ and satisfy

p′t(i, j) = −aip(i, j) +
∑
k

p(k, j)qi,k.

If there is no explosion, then
p′t(i, j) = −ajpt(i, j) +

∑
k

p(i, k)qk,j .

1.1.4 Poisson processes and subordinators

De�nition 1.1.4.1.

• A point process is a random measure (measure-valued variable) on R, that is the sum of a random number (at most
a countable in�nity) of Dirac masses at positions given by measurable functions i.e. µ(ω,dx) =

∑M(ω)
k=0 δTk(ω)(dx).

• The Laplace functional of a point process µ is Fm(R,R+)→ [0; 1] : f 7→ E
[
e−µ(f)

]
, where µ(f) =

∑M
k=0 f(Tk).

• A Poisson point process is a point process whose Laplace functional is of the form exp
(
−
∫ (

1− e−f(x)
)
ν(dx)

)
,

where ν is the associated measure.

• The intensity measure of a point process µ is ν(dx) = E[µ(dx)].

• A subordinator is an increasing process X such that the increments Xt+s−Xt are independent of the process X[0;t]

and distributed as Xs.

• An α-stable subordinator is one whose Laplace transform is Ψ(λ) = cλα.

Theorem 1.1.4.2. The measure associated to a Poisson point process is its intensity measure.

Theorem 1.1.4.3 (arcsine law). Let X be a stable subordinator. Then the variable X(inf{t|X(t)>x}−)
x has the density

sin(πα)
π uα−1(1− u)−α on [0; 1].

15All measures are supposed positive, never in�nite and not identically zero.
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1.1.5 Stable laws

De�nition 1.1.5.1.

• We call a stable law the non-degenerate law of a variable Y : Ω→ R such that if Y1, . . . , Yn are IID16 with the same
law as Y , then ∃((an), (bn)) ∈

(
(R∗+)N

∗ × RN∗) , Y1+...+Yn−bn
an

law
= Y .

• L is a slowly varying function if ∀t > 0, limx→∞
L(tx)
L(x) = 1.

Theorem 1.1.5.2 (Gnedenko, Kolmogorov). The following assertions are equivalent for a variable Y that is not Gaus-
sian.

i Y has a stable law.

ii There are (Xn) IID and (an), (bn) such that
∑n
k=1Xk−bn

an

law→ Y (we can replace "law" by "a.s.").

iii The Fourier transform of Y is (after a translation and dilation) given by

Φ(t) = e−|t|
α(1+iκ.sgn(t)wα(t)), (1.1)

where 0 < α < 2 and

wα =

{
− tan

(
πα
2

)
if α 6= 1

2
π ln |t| if α = 1.

Furthermore, the existence of a non-degenerate law for Y as in ii is equivalent to having

a ∃ limx→∞
P(X1>x)
P(|X1|>x) = κ+1

2

b P(|X1| > x) = x−αL(x) with L slowly varying.

Remark 1.1.5.3. As we will be mainly interested in α ∈ (0, 1), it is practical to note that bn are not necessary for ensuring
the convergence to a non-degenerate limit if it is possible.

De�nition 1.1.5.4.

• The totally asymmetric α-stable law is the law whose Fourier transform is the one from Equation 1.1 with κ = 1.

• We say that a law is in its domain of attraction if conditions a and b are ful�lled.

Remark 1.1.5.5. The unwary reader should be alert that such rescaling to a non-degenerate variable is not necessarily
possible (be it for the mean or for the maximum � cf. next subsection) and thus the associated domains of attraction do
not form a partition of the space of variable laws.

1.1.6 Extreme values

Though we will not use directly the convergence of types, it is useful to state it, as it gives an idea of what we might get
as limit distribution of the extreme values. For our purposes what is of greater importance is the scale at which we are
certain to �nd the max.

In this subsection only we shall denote by (Xn)n∈N a sequence of IID real variables with law L and by Mn :=
max(X0, . . . , Xn−1).

De�nition 1.1.6.1.

• The Gumbel distribution is given by ∀x ∈ R, LGUM ((−∞, x]) = e−e−x .

• TheWeibull distribution with parameter α is given by ∀x ≤ 0, LWEI(α)((−∞, x]) = e−(−x)α and LWEI(α)(R+) = 0.

• The Fréchet distribution is given by ∀x ≥ 0, LFRE(α)([0, x]) = e−x
−α

and LFRE(α)(R−) = 0.

Theorem 1.1.6.2 (Convergence of types, Fisher-Tippett-Gnedenko). If Mn−bn
an

has a non-trivial limit in law, then it is
a translated and dilated (by constants not depending on n) GUM , WEI or FRE.

The proofs of the following lemmas are very similar and we will only give the last one.
16We will say that a set of variables are IID if they are independent and identically distributed.
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Lemma 1.1.6.3. Set L = LEXP (a) and an = a−1, bn = a−1 lnn. Then Mn−bn
an

law−→ GUM .

Lemma 1.1.6.4. Let ∀x ≥ 0, L ([x,∞)) = x−α, α > 0, an = nα
−1

, bn = 0. Then Mn−bn
an

law−→ FRE(α).

Lemma 1.1.6.5. Let L be in the domain of attraction of the α-stable law and set bn = 0 and an such that P(X > an) = 1
n .

Then Mn−bn
an

law−→ FRE(α).

Lemma 1.1.6.6. Set L (dx) = 1√
2π

e−
x2

2 dx, an = 1√
2 lnn

and bn =
√

2 lnn− ln lnn+ln(4π)

2
√

2 lnn
. Then Mn−bn

an

law→ GUM .

Proof. Set F (x) = P(X1 ≤ x). Then integrating by parts we get

1− F (bn + xan) =
1√
2π

∫ ∞
bn+xan

e−
y2

2 dy
n→∞∼ 1√

2π
e−

(bn+xan)2

2
1

bn + xan
∼ 1√

4π lnn
exp

(
−x− b2n

2

)
∼ e−x

n
.

Remark 1.1.6.7. Conditioning by Mn we can show that the di�erence with the runner-up M ′n scales as an.

1.2 Physical setting

We will not attempt to give here a self-contained work on spin glass theory (or worse yet, glass theory) and nor does the
author believe in the existence of such a reference. In order to avoid a lengthy introduction, we will rather redirect the
reader towards the references in Physics prerequisites and introduction to the area. A general qualitative overview of
properties of structural glasses and particularly of the structural glass transition can be found in [27] � namely extensive
remarks on experimental approaches, history and industrial applications. For a more concrete approach giving more
insight of research results the talk [7] is a good start and the article [1] provides greater detail and relevant references.
As for spin glasses, see [24]. We give here only a "de�nition" of spin glass in order to know what we are talking about
even though we will exclusively focus on the REM.

De�nition 1.2.0.1. A spin glass is a system of spins (implicitly 1/2), which interact in a frustrated manner i.e. which
present both ferromagnetic and anti-ferromagnetic interactions (for 2 spin interactions) and that in a "disordered" way.
We speak of a "glass" when the system is not in equilibrium and relaxation times are macroscopically large (or more).

Let us just mention a few of the key words found in the domain, which are of great interest and have seen notable
development over the last 40 years:

• Glass transition � dramatic slowdown of dynamics along with emergence of complex types of order.

• Links to theoretical informatics, namely optimisation problems, for instance max cut.

• Annealing � relaxation and gradual switching on of constraints that are di�cult to ful�l.

• Replicas � a mysterious but powerful method for tackling otherwise very complicated problems, which has proved
to be particularly elusive for mathematical justi�cation and is poorly understood.

• Belief propagation � using the locally tree-like percolation structure by assembling neighbours' "information".

We will not dwell more on context, as the next chapter will provide a bit more.
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Chapter 2

Introduction

2.1 De�nitions and notations

We introduce in this section the models and notations that will be used further.

2.1.1 Dynamics

De�nition 2.1.1.1. We �x n ∈ N destined to go to ∞ and G = (S,Ed) an n-regular simple graph.

• We call Gibbs measure (at temperature T = β−1 ∈ [0;∞]) associated to an energy function E : S → R the one
given by µs = |S|−1e−βEs and Z ∈ [0;∞] the associated partition function. The only case that will be considered
is (Es)s∈S being IID (unless otherwise stated) with density ρ (if de�ned).

• Glauber dynamics is a Markov process (or chain) X reversible with respect to the Gibbs measure when conditioned
by E. We actually need a product universe (product σ-algebra, product �ltration, etc.) on which are de�ned both
the random energies and the Markov process. We shall refer to PE := P(• | E) as the quenched probability.

• Metropolis dynamics is given by the transition rates qi,j = n−1exp(−βmax(E(j)− E(i), 0))1{i,j}∈Ed.

Dynamics are used to study out-of-equilibrium properties of thermodynamic systems, in our case, aging, which is way
out of reach for equilibrium analysis. What is more, the very de�nition of glasses often refers to relaxation, which is
ill-de�ned without a microscopic dynamics mechanism1.

De�nition 2.1.1.2.

• t shall be the time scaling with n, (t = nκ or eκn by default). Do note that all times considered are only orders of
magnitude � constants are irrelevant. Moreover, they are often correct just to the leading exponential order.

• N shall denote the number of states visited until t.

• Emin, Emax shall denote the extremes of the process E ◦X until t. In text we will refer to them as min and max
respectively. This should not be confused with the global min (max ) on all the states.

• The dependence on t and therefore on N will be kept implicit. We may consider t as a function of N instead as
well (�xing a number of jumps and setting t = TN or rather for the number of states)2.

Remark 2.1.1.3. Although we will pretend that there is no di�erence between the number of jumps and the number of
states visited (in our model from chapter 5 there would be just a eβσ = eβ

√
n

lnn factor between them), if any rigour is
attempted, it is crucial to pay the attention due to the di�erence. It actually turns out that in the REM with Metropolis
dynamics the number of jumps is dominated by the rare event of neighbouring very low energy states.

1Some properties such as condensation of the Gibbs measure may be tackled without dynamics.
2This, however, could have consequences on aging functions, for instance.
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2.1.2 REM

De�nition 2.1.2.1.

• The REM (Derrida's Random Energy Model) is de�ned by its state space S = {0, 1}n � the n-dimensional hypercube

with its edges � and its IID energies distribution E law
= N (E0) i.e. ρ(x) = 1√

2πn
e−

x2

2n .

• We shall denote by I the (typical) interval in which are located n such independent energies.3

The REM was introduced as a simpli�ed version of usual spin glass models such as the p-spin (It can namely be
regarded as its the in�nite p limit.) and induced great interest due to its being analytically solvable (is some respects)
and having the same qualitative behaviour as what was known for other models. One of its most important features is to
be solvable without the use of questionable methods like the replica one and thus allowing a tractable way for studying
the e�ects of the replica magic. The intuitive idea behind the REM is that we approximate the energy landscape of an
n-spin (1/2) system with frustrated and complex interactions by a completely random one which neglects any correlation
between close states � a single spin �ip su�ces for decorrelating from the initial energy. The normal distribution is there
mostly for convenience though as we will see further the choice of the tail can lead to dramatic changes of the properties.

2.1.3 BTM

De�nition 2.1.3.1.

• The BTM (Bouchaud Trap Model) is de�ned by a random trapping times function τ : S → R+ or rather by its
marginal distribution, as it is assumed that τs are IID. The states are called traps.

• The associated BTM dynamics is de�ned by the transition rates qi,j = n−1τ−1
i 1{i,j}∈Ed.

• If an energy function is available, we use τ(s) = e−βE(s).

• Unless otherwise stated the BTM is on the complete graph Kn and the distribution of τ is in the domain of
attraction of the totally asymmetric α-stable law with 0 < α < 1. For technical reasons we shall assume that
∀x ≥ 1, Lτ ([x;∞)) = x−α.

• We de�ne τmax and τmin as in De�nition 2.1.1.2.

The BTM was conceived as a simpli�cation of the REM. The intuition goes as follows. In the random energy landscape
there are only a few (macroscopically) low energy minima that become important below the critical temperature of
condensation of the Gibbs measure to them (see chapter 4). Thus we need to get out of those "traps" in order to move to
another one. It would be reasonable to think that getting out requires essentially climbing up to 0 energy (see the next
chapter) and that once we are in those high energies, the system evolves very fast until it �nds another trap and doing so
unbiased by where it was or by the energy of the trap (taking the �rst found). We should mention that the corresponding
n in the BTM is not the same as the dimension of the hypercube it corresponds to (see [11] for more detail).

2.1.4 Aging

De�nition 2.1.4.1. We speak of aging if a certain two-time correlation function is not invariant by translation in time.

Example 2.1.4.2. One of the most common correlation functions studied in the literature is:

Π(tw, tw + t) := PE
(
∀t′ ∈ [tw; tw + t], Xt′ = Xtw

4
)
.

We shall also use another common correlation function similar to Π:

R(tw, tw + t) := PE(Xtw = Xtw+t).

As we will see, the hallmark of aging is, loosely speaking, the dynamics becoming slower and slower as time passes up
to a certain (very long) time scale (or forever in the step model, for instance).

3In fact we will rather use it as a variable depending on the vertex whose neighbours we are referring to, but we will not be that precise.

7



2.1.5 Additional models

We de�ne here the Edwards-Anderson (EA), p-spin, the Sherrington-Kirkpatrick (SK) and the step models, for reference.
Those will not be the object of this study, but as sporadic remarks mention them, they are given here for the reader's
reference. We leave the choice of dynamics for these models free but mention that the BTM dynamics is rather irrelevant.

De�nition 2.1.5.1.

• The EA model is given by a graph G′ = (S′, Ed′)5 (a lattice) and its IID interactions (Je)e∈Ed′ (their choice is not
�xed but a standard choice is LJe = J

2 (δ1 + δ−1)). Its energy is

E(σ) = −
∑

{i,j}∈Ed′
J{i,j}σiσj .

• The p-spin model is given by its interactions (Ji1,...,ip)1≤i1<...<ip≤n. It is de�ned on the hypercube and its energy is

E(σ) = −
∑

1≤i1<...<ip≤n

Ji1,...,ip

p∏
j=1

σij .

The distribution of the IID Ji is taken to be the following normal one (J is a constant)

∀i, ρ(Ji) =

√
np−1

πp!
e
− J

2
i n
p−1

J2p! .

• The SK model is the 2-spin model.

• The step model (Barrat-Mézard model) is given on an uncountable state space (we identify states and energies)
with a certain density ρ′ (often exponential) with the complete graph (no transition is forbidden). The original
dynamics (others like Metropolis are also considered) has the following transition rates

qE,E′ =
ρ(E′)

1 + eβ(E′−E)
.

For further reference on the latter the reader is redirected to [2, 6, 12]. For the others [25, 24] should be a good start.

Remark 2.1.5.2. As it was brought to the author's attention the model introduced in Chapter 5 and especially its simpli�ed
version in Appendix A may resemble the step one. However, usual viewpoints on it are extremely di�erent from ours
(including features like di�erent graph, dynamics, energy distribution, zero temperature), the most important di�erence
being the really in�nite (uncountable) number of states � not just the in�nite limit. Yet, what we will be regarding here
is more of a mixture between the trap and step models and in the author's opinion is much closer to a modi�ed trap
model.

2.1.6 Models summary

It is interesting to notice how all of these models are linked and how that in�uences their invention and treatment.
Denoting A < B when A was invented chronologically before B, A ⊂ B when B is a generalisation of A, B ⊃ A when A
is a simpli�cation of B and A ≺ B when A has been treated rigorously before B (as it concerns aging), we get

Ising[19]<EA[16].SK[31]< p-spin[13, 18]<REM[13]<BTM[8]<step[2],

Ising
Je=1
⊂ EA

mean field
⊃ SK

p=2
⊂ p−spin

p→∞
⊃ REM

�{s|E(s)�inf I}
⊃ BTM.

Finally, denoting (A,B) the dynamicsB on the modelA, we have (BTM,BTM)[9]≺(REM,BTM)[3]≺(REM,Metropolis)[17].
It is this last order that we will tend to follow in this paper, as it represents the increasing di�culty. We might also
want to add to the picture the (BTM-hypercube,BTM) and (BTM-normal energies,BTM)[26] and the other variations
whose combinatorics is left to the reader. The general pattern is that Kn is the "simplest" graph, the exponential energy
distribution is the "simplest" distribution and BTM is the "simplest" dynamics.

5This is a geometrical graph representing the bonds between sites and not the abstract state space graph G we used earlier.
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2.2 Basic observations and properties

2.2.1 BTM

Dynamics Notice that the Markov chain associated to the BTM dynamics is a simple random walk on G and as = τ−1
s ,

meaning that at each step we wait an exponentially distributed time with mean τs at the trap s and then jump to a
randomly chosen neighbour completely disregarding the landscape (τ or E). This is somewhat the simplest reasonable
dynamics possible. Hence, the process is often disassembled into a random walk and a clock process, both being simpler
to apprehend. Furthermore, on the complete graph the random walk becomes completely trivial � it is a sequence of
IID uniform variables on the states. As we will see further it is often possible to simplify even further, disregarding the
walk and considering a clock that is the sum of IID variables drawn from the distribution of τ each multiplied by an
independent EXP (1) (step model with BTM dynamics).

Heavy tails Let us discuss the tails hypothesis, which might have evaded the reader's attention. The importance of
the distribution tail being an α power law with 0 < α < 1 cannot be stressed enough. This arti�cial choice is absolutely
essential and all of the model's properties are dictated by it. We will see that in certain regimes we can view the normal
distribution as "locally an exponential one" (Subsection 4.2), thus making it more natural. This hypothesis is needed in
order to have an in�nite mean of the trapping times, thus causing the system to be impossible to explore entirely on the
"macroscopic" time scale given by |S| and resulting in aging. As we will see in 3 we need |S| 1α instead. With that stated,
we can make a handy observation.

Lemma 2.2.1.1. Set E
law
= −EXP (α). Then τ := e−βE has an α/β-exponent tail.

Proof.

∀f ∈ Fb(Ω),

∫
R−

f(e−βE)αeαEdE =

∫
[1;∞)

f(τ)
α

β
τ−α/β

dτ

τ

This property establishes the link between exponential variables and heavy tails. Thus whenever we want a heavy tail
for τ we will take an exponential distribution for E. This property also has the virtue of being a "good" way of sampling
heavy tails in "practice" (Monte Carlo based simulations), as exponential laws are readily sampled.

Non-returning An essential aspect of the BTM is its non-returning property. This states that on scales such that
N � |S| the process has no chance of returning to its starting point. This observation is completely trivial to prove but
absolutely crucial for us. For the time being it is more important to see clearly what we are not stating here. We do not
suggest that (and it is false) the process does not revisit states on those scales. It is actually easy to prove (bounding as
crudely as possible) that it does not do so until

√
n and is certain to do so afterwards.

Yet, we will extensively (and more often than not implicitly) use that it is as though we draw a new independent
variable at each step. What gives us that right (in most contexts) is the fact that in total the revisits are rare (a zero
fraction of N at n → ∞) because the probability of going back to the initial state is small and the revisited states are
chosen independently (this is needed because otherwise we might only revisit few states but many times amounting to
a non-zero fraction). In this line of thought the revisits being independent and uniform (if we do not specify the order
in which the states were visited), if we want to calculate an average on the walk, for example, means that even less
corrections are needed (at sub-dominant orders), because the revisits average themselves out (they give the same mean
as the rest). It is worth noticing that we are not being rigorous here, but nor could we at this degree of generality, as it is
clear that whether we can act as though the process is equivalent to an IID with the original distribution or not depends
on the property we are interested in � for a trivial counter example, given what was said, consider the probability of
having the same trapping time at two di�erent times separated by at least one jump. Ideally, whatever the property, at
su�ciently short time scales (or N scales) the walk should not be able to determine that it is on a �nite sample of the
distribution and not on the distribution itself (this is somewhat a motivation for the step model).

2.2.2 REM

Non-returning We might want to mention as well that the non-returning holds for the BTM on the hypercube or,
equivalently, the REM with BTM dynamics (as the energy landscape is irrelevant for returning with BTM dynamics)
� it is, in fact, just a property of an ordinary unbiased random walk. That is a bit more tricky to establish (see [11])

but the idea is based on the fact that the binomial coe�cients
(
n
k

)
increase greatly up to k = bn2 c. This allows one to

prove that it is very likely to increase the distance (induced by the 1-norm) to the initial state up to bn2 c and then that
it is very likely once we are at that distance to go back to a state at the same distance before returning to the origin. A
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far more heuristic (and certainly very abusive) way of seeing it would be go through the non-returning on Zn, which is
better-known.

In the Metropolis REM the situation with returning is more complex. This is natural, as the states visited become
dependent on the energies, which they are not with BTM dynamics. Here we can expect for low energy states to be
"attractive" and so making returning easier (provided we start in such a state). Generally, as we are mostly in low energy
states (as we shall discuss later), we can easily �nd our way back, given that the dynamics is constantly pulled down.
Namely, if the trap we are in is the only lower neighbour of its own lowest neighbour, then we are nearly certain to jump
to that neighbour and then go back (a few times). As this scenario is not unlikely, once we are likely to be in a trap (as
we shall discuss in chapter 5, that is very soon after the start), returning to the current state is not unlikely.

However, as we de�ned it (returning to the starting state) returning is still very unlikely in this setting because of the
initial uniform distribution � there is very little chance that we start at a trap and the odds of �nding exactly the same
high energy state any time soon after we left it are very small as well (only traps are potentially easily regained). However,
that should not make us overcon�dent, as it is purely a property of the initial distribution (in the BTM dynamics case
the initial distribution was completely irrelevant). What is important is that returning to the state we are in at t for t
not very small is not impossible, as we said. In particular we cannot use the same arguments as before, saying that we
draw a new energy at every new jump � we need to retain a probability of going back to the last pool we were in.

Yet, as this property is very handy, we might want to �nd a way to retrieve it in an "e�ective" sense. Namely, if we
group together low energy states and their "domains of attraction" (we remain intentionally vague), we can hope that
the resulting "traps" will not favour returning (by construction). This heuristics is more or less the same one as the one
permitting to reduce the REM to the BTM.

Remark 2.2.2.1. Let us repeat that the fact (which is true) that there is no return i.e. returns to the starting position for
a simple random walk on the hypercube does not at all state (and it is false) that the dynamics does not self-intersect.
Moreover, typically after n (compare with the

√
|S| for Kn) jumps we already have jumped right back to a state we had

just left - the thing is that we do not specify when.

Neighbours In the in�nite n limit by the extremes we have I ≈
[
−
√

2n lnn;
√

2n lnn
]
and typical di�erences between

di�erent inf I are ' 6
√

n
lnn as well as the di�erence between the lowest and the second lowest energies. Thus, most of

the states see exactly I as their surrounding � with one minimal neighbour at inf I (with uncertainty of order
√

n
lnn ),

a few other nearly lowest energies spaced by about
√

n
lnn as well, many states sampling the Gaussian from there up to

about sup I and, �nally, the max and the few highest energies (behaving at the inverse of the lowest ones). Of course,
there are rare exceptions, but as long as we do not push things too far considering events that concentrate on such rare
cases, we will argue as thought all the states saw this same scenery.

6' shall denote "is of the same order in n as" i.e. ". . . = Θ(. . .)".
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Chapter 3

BTM

3.1 Preliminary remarks

As the BTM's original purpose is to e�ectively describe the dynamics of other models, it would be out of place to look at
its equilibrium properties, which are rather clear anyway. From Lemma 2.2.1.1 we see that a phase transition will occur
at β = α, as the Gibbs measure will stop giving a strictly positive fraction of the mass to single states.

Trapping times In order to see why we associate a trapping time that is given by τ = e−βE , we will consider the
Metropolis dynamics on the REM (for simplicity, set ρ(x) = e−

x2

2 ). Let i ∈ S be a local minimum of the energy which is
low in energy (what we would call a trap). Then the exit rate is the sum of the transition rates to its neighbours, that is

ai =
1

n

∑
j,{i,j}∈Ed

e−β(E(j)−E(i)) n→∞≈
∫
E>E(i)

e−β(E−E(i))ρ(E)dE = eβE(i)e
β2

2

∫
E>E(i)

ρ(E + β)dE
E(i)�−1
≈ eβE(i)e

β2

2

and thus the average waiting time at the trap is proportional to τ .

Remark 3.1.0.1. Note that this is only true for traps and not at all for high energy states. Therefore, it is not viable to
use the BTM to study the max (we will look into this further on).

3.2 τmax and aging

3.2.1 τmax

Let us discuss the evolution of τmax(t). First of all, we have already seen that τmaxN−
1
α
law→ FRE(α). Technically, we

actually proved that for independent variables drawn from the distribution of τ and not from the discrete realisation of
the sampling we have (recall that at �xed n we have n values of τ and we indi�erently chose one of them at each step
rather than drawing a new independent τ). However, as long as we are on a scale N ' nγ , 0 < γ < 1 the non-returning
property assures that only a zero fraction of the jumps were towards already visited states and thus the convergence still
holds.

We now show that t and τmax are of the same order in the sense ln τmax
ln t

P→ 1, where P→ denotes convergence in
probability.

Proof. Suppose that τmax > nεt with non-zero probability (at n → ∞ after subsequence extraction) by which we
condition. Then N

1
α > nεtε with high probability for ε su�ciently small. Consider the �rst Nn−ε

′
jumps with ε′ < αε

2 .

Among them we should have τ ′max '
(
Nn−ε

′
) 1
α

and with high probability the process spent at least ε′ of the expected

time in the state corresponding to τ ′max. Hence t > ε′τ ′max & nε/2tεε′ � contradiction.
Suppose that τmax < n−εt with non-zero probability (at n→∞ after subsequence extraction) by which we condition.

We then have N ' (tn−ε)α and thus t . (tn−ε)α
∫ t

1
τdLτ = αtn−εα � contradiction.

This means that a macroscopic part of the time is spent in a single state and that holds at any time scale (before
exploring the whole system). In particular the exploration of the whole system (in the sense of discovering that it is �nite
by �nding the global minimum) takes about the global max of τ . Hence, according to the extremes it is of order n

1
α .

Moreover, we get τmax(t) ≈ t and so Emin ≈ −β−1 ln t.
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3.2.2 Aging

The previous subsection's arguments should be su�ciently convincing for one to believe that until that time scale we
will observe aging � if the deepest trap takes us a time of order t to get out, then there should be a strictly positive
probability that we are still there and thus a strictly positive probability that we stay there another θt for θ a constant
(of order 1). This intuition is indeed right � more precisely, one can show the following[4].

Theorem 3.2.2.1. If tw = nκ, 0 < κ < 1
α and θ ∈ R+, then for a.e. E

lim
n→∞

Π(tw, tw(1 + θ)) =

∫ 1
1+θ

0

sin(απ)

π
uα−1(1− u)−αdu.

Though we will not prove this last statement, in order to give the reader an idea, we give the main steps (we follow
the proof in [4] and not the initial renewal theory one). At the �xed time scale the traps are divided into three groups
� the shallow ones (shallower than the deep ones), the deep ones (of the order of the time scale with a factor between
ε→ 0 and M →∞) and very deep ones (deeper than the deep ones). The very deep traps are shown to be too unlikely
to have been visited and the shallow ones are shown not to contribute. Finally, the deep ones are shown to account for
a clock process which is well approximated by an α-stable subordinator, which yields the result using the arcsine law for
stable subordinators.

There is actually not much else to say about this model (besides on the longest and shortest time scales for example,
but that does not concern us much) once we know that it is approximately a stable subordinator, most of the questions
we may ask are reduced to classically known ones.

3.3 Bare, process and chain measures

We turn our attention to an aspect that is not particularly attached to the BTM, but we need to make the distinction
between the three natural measures we have at our disposal, as we constantly use all of them and the sooner we make a
clear point on them, the better. We will come back to this in subsection 5.3.2 in a more precise setting, but let us give
some generalities here.

3.3.1 Preliminaries

De�nition 3.3.1.1. In this subsection only we shall use the following names for the measures.

• The bare one is the measure µb from which we have drawn E independently for each state.

• The process one is the measure (depending on t) given by µp({s}) :=
∫ t

0
dt′1{s}(X(t′)).

• The chain one is the measure (depending on N thus implicitly on t) given by µc({s}) :=
∑N
k=0 1{s}(ξk).

We call Lp := E(µp) the image (push forward) measure by E and the same with index c.

Example 3.3.1.2. The bare measure is the one whose density we called ρ and in our setting it is exponential or Gaussian.

Remark 3.3.1.3. µp can also be seen as the image measure of l�[0;t] by the dynamics X. Similarly, µc is the image of #1

on [0;N ] by the discrete dynamics chain ξ.

Remark 3.3.1.4. Another way to put it is that µp is the weight as seen by the Markov process � the time sum, while µc
is the associated Markov chain � the jump sum. Thus the �rst one may be seen as the second weighted by the (random)
mean (on the occurrences in the dynamics up to t) waiting times.

Remark 3.3.1.5. The weary reader has doubtlessly noticed the link with the problem from Remark 2.1.1.3 and is right to
note that we will be talking rather of yet another measure given by µn({s}) := 1(0;∞)(µc({s})) � the new state measure,
whose Ln is simply #(•∩E(X([0; t])))2. However, we will stick to our convention not to consider the di�erence between
the n and c indices.

1# shall henceforth denote the counting measure (A 7→ |A|) on any space and in any context.
2This is true in the a.s. event of no energy coincidences. Moreover, it is of �nite mass in the a.s. event of no explosion of the dynamics

process, which ensures a �nite number of jumps and a good de�nition of X at all t.

12



3.3.2 General properties

Let us outline the general (true for both REM and BTM, both Metropolis and BTM dynamics) properties of those
measures. The very de�nition of Glauber dynamics demands for the process measure to converge towards the Gibbs one
µg on the longest time scale consisting in taking limt→∞ �rst and (eventually) limn→∞ only afterwards. Clearly, in the
part that has not yet been accessed we have Lc = Lp = 0. We also know that at the part G of the energy spectrum that
is in equilibrium (visited many times close to all its energies) at time t the laws verify Lg�G = Lp�G = a−1

E Lc�G = Lb,
where a−1

E is the mean waiting time at energy E. This can be seen to hold by a law of large numbers argument � the
number of states visited with energy close to E is big so we have had the chance to mean out �uctuations of the state
dependency of the exit rates as well as the �uctuations of the exponentially distributed exit times in order to �nd only
the mean (on the states and on the exit times) aE . Moreover, still in G but also in the zone H where aE ∝ eβE , we have
Lc ∝ Lb. Finally, the area close to the borders Emax and Emin is more complicated � there we do not have many states
yet � the measures are what is called granular � and thus we need a more speci�c approach. Essentially the energies
visited form a Poisson process, but we will look into this further, as the consideration in subsection 4.1.3 will certainly
make things clear enough. Yet, if we allow ourselves to take the mean over the realisations of the energy landscape E
and we cut at a jump time, we should have E[Lp(dE

′)] = E[Lc(dE
′)a−1

E′ ] everywhere.

3.3.3 Model speci�c features

Let us now give the model dependent aspects.

• The aE we mentioned is, of course, dependent on the dynamics we chose. Namely, for BTM dynamics it is eβE ,
while for Metropolis it is (as we shall see in chapters 5 and 6) 1

ne−β(inf I−E) for energies lower that inf I, 1 for
energies higher than sup I and of order 1 in between (with the exception of a transitory zone from inf I to energy
scales of order

√
n).

• H is all R in the BTM dynamics, while with Metropolis dynamics on the REM H = (−∞; inf I].

• For the BTM dynamics (where this is of little importance), we can use the non-returning to justify that Lc = Ln.

13



Chapter 4

REM

In this chapter we summarise a few classical properties of the REM, that will be of use for the understanding and the
motivation of what is to follow.

De�nition 4.0.3.1. We de�ne the critical inverse temperature by βc :=
√

2 ln 2 and set βi = min(βc, β) for further use.

The �rst thing to notice is that according to the extremes the global min is ≈ −βcn.

4.1 Thermodynamic properties

As the reader has doubtlessly noticed we are not particularly interested in the equilibrium of the models, as is natural
for glasses, which are for all practical purposes out of it and usually far from it. Yet, we will take advantage from the
fact that we will need some calculations in the dynamics regime which yield the equilibrium values as particular cases.
Thus, we regroup what is available throughout the text (mostly in chapter 5), but also give a more rigorous approach.

4.1.1 Phase transition

Let us begin with two results from chapter 5. We will not seek to understand how they are established just yet, but only
interpret them.

• According to Equation 5.1 the mass given by the Gibbs measure to the ground state is around

eββcn

2n√
2πn

∫∞
−βcn e−βEe−

E2

2n dE
≈

exp
((
βcβ −

(
ln 2 + β2

2

))
n
)

if β < βc
1√

2πn(β+βc)
if β > βc.

This can also be seen directly, considering that the energies are given by the Gaussian truncated at −βcn, which is
where the ground state is. We should keep account of the fact that this cut-o� is rather imprecise as is the usage of
the value −βcn as value for the minimum (recall the corrective terms from the extremes). That imprecision leads
to the incorrect result at β > βc, as we can only argue that it is Ω (ean) for all a < 0. What we actually show in
this way is that

ln maxµ

n
=

{
−βcβ + ln 2 + β2

2 ifβ < βc

0 ifβ > βc

is not twice di�erentiable at βc. We will see this more neatly and in more detail in the next subsection.

• According to Equation 5.2 the average energy is given by Emean = −nmin(β, βc). Again this allows to see the
second order transition, as the mean intensive energy Emean

n is not di�erentiable at βc. This is what is called the
glass transition of the REM (the glass is the low temperature phase).

It is clear that from a physical point of view the second discontinuity is more important than the �rst one, while the
concentration of the measure on single states is certainly more exciting mathematically. Needless to say, we will emphasise
on the concentration phenomenon.
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4.1.2 Condensation of the Gibbs measure

We follow closely or even just detail the proof of [21] for a rigorous approach to the condensation. Let N (β) = #{s ∈
S | E(s) ≤ −βn} be the number of states with energies ≤ −βn. We have E[N (β)] ∼ |S|β e−

nβ2

2 for β > 0. Hence,

∞∑
n=1

P(N (β) ≥ 1) ≤
∞∑
n=0

E[N (β)] <∞

for β > βc and by Borel-Cantelli a.s. N (β) = 0 for large n.
Furthermore, for 0 < β ≤ βc we get by independence

V (N (β)) = 2nV (1E(s)≤−βn) = 2n
(
P(E(s) ≤ −βn)− (P(E(s) ≤ −βn))2

)
∼ 1

β
2ne−

nβ2

2 .

By Chebyshev's inequality for large n

P(|N (β)− E[N (β)]| > ε) ≤ C 2ne−
nβ2

2

ε2

and so by Borel-Cantelli a.s. ln N (β) = lnE[N (β)] + o(1) = n
2 (β2

c − β2)− ln(β) + o(1), taking ε =
(

2ne−
nβ2

2

) 2
3

. These

results should be understood as a condensation of the Gibbs measure to a small (not exponential with n) number of states
(recall that if we introduce the Boltzmann factor in the Gaussian density, we get another Gaussian centered at −βn) �
in the high temperature phase many states are involved (those around −βn are about as many as those below −βn, as
we can see if we apply two times the result for N ), while in the low temperature one only the lowest energies count.

4.1.3 Lower edge

Let us now consider the lower edge of the distribution of the energies more precisely (we still keep close to [21]). To that
end, using what we saw at the extremes, we introduce the point process given by the energies and center it where the
lower edge is i.e. we set Ξ =

∑
s∈S δE(s)−an with an = βcn− lnn

2βc
. We want to prove that its Laplace functional converges

to a Poisson point process' (which implies process convergence). We have for f ∈ Fm(S,R+) with compact support

E
[
e−Ξ(f)

]
= (1− E [1− exp(E(s)− an)])

2n ∼
(

1− 2−n
∫ (

1− ef(x)
)

e−βcxdx)

)2n

→ exp

(
−
∫ (

1− ef(x)
)

e−βcxdx)

)
,

which is exactly the Laplace functional of a Poisson point process with intensity measure e−βcxdx.
Note that this result zooms around the lower edge on a scale of order 1, which is very small compared to the usual n

scale � the order of the position of the edge. What it means is that an is indeed the typical position of the min up to a
�uctuation of order 1, the next lowest energies are also around the same distance away and that we �nd an exponentially
increasing number of states.

4.2 Dynamics

As we will discuss the dynamics of the max in length in the next chapter, we will not say too much about the dynamics
in general here but a few things that are good to keep in mind for what follows.

An important point is to explain why we expect to observe aging despite the di�erent setting. Recall that in the
BTM an essential feature that induced aging was the heavy tailed waiting time or, otherwise stated, the exponential tail
of the energies. In the REM, the Gaussian will, of course, not produce a heavy tail and one might expect not to observe
aging as the lowest energy should not dominate the Gibbs measure and we should not spend most of the time there.
Yet, perhaps surprisingly, we �nd nearly the same aging results for the REM as for the BTM. More precisely, we observe
"interrupted aging" with an e�ective time-dependent exponent, as we will explain.

Let us explain how this fact should be understood heuristically. With time the dynamics explores more and more of
the con�guration space and consequently of the energy distribution available in the sample. Therefore, at a �xed time
scale the dynamics is only aware of what it has seen of the energy distribution and ignores the real Gaussian tail, as it
has not yet "seen" it. That is why the dynamics behaves as though we had an exponential tail but with an exponent
that depends on the cut-o� up to where we have explored the energy distribution and thereby depends on time � the
Gaussian is "locally exponential-tailed". Yet, this dependence is slow and allows us to see the dynamics given by the
current exponent establish well before we go to the "next" one.

15



We should note that this mechanism cannot go on forever. There are two potential reasons for it to be "interrupted"
� either we reach the end of the distribution i.e. we �nd the global min while aging and clearly it cannot continue, or
we explore enough of the Gaussian to understand that the tail is not heavy. This reasoning turns out to be correct, as
the Gaussian "becomes less heavy-tailed as we explore more of it" and, as we will see in the next chapter, depending on
temperature, aging can continue as long as we have not explored all the negative energy states or until a scale determined
by the temperature itself.

Now let us explain what has been established to get an idea of the potential di�culies. In [26] one can �nd physicist's
proofs of aging on the complete graph with exponential tails and e�ective aging with gaussian distributions but still on
the complete graph. Afterwards were proved results on the REM with BTM dynamics in [3], for example. The only
change being the underlying graph (and the more rigorous treatment), the di�culties have "topological" roots, as results
such as the non-returning we discussed need to be re-established in this new and more complex context. Finally, [17]
proved aging in the REM with Metropolis dynamics. Here the main problem was to handle the numerous "0-energy"
states (those close to zero at a scale at most about

√
n), where the dynamics is quite complicated. In all of these settings

the same results hold in the limits set by the heuristic considerations we outlined above. More insight will be gained in
the next chapter, but the interested reader should consider referring to the bibliography.

4.3 Essentials

We recapitulate here the toolbox we dispose of as the REM is concerned in order to use it in the next central chapter.

• The equilibrium REM goes through a phase transition at βc. This transition leads to concentration of the Gibbs
measure on single states � the lowest energy ones.

• At the (lower) edge the energies available are distributed like a Poisson point process on the scale 1 around the
position of the minimum (see the extremes).

• The BTM dynamics REM does not return, while the Metropolis one can only be considered non-returning once we
group states together to form "domains of attraction" or once we restrict the dynamics to low energy states.

• If we restrict the dynamics to low energy states, the Metropolis dynamics on the REM behaves like the BTM.

• The REM exhibits interrupted aging corresponding to the Gaussian being "locally exponentially-tailed", where the
exponent depends on the exploration of the state space.
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Chapter 5

Dynamics of the maximum

This chapter addresses the main theme studied during the internship. We will begin with simple or even trivial cases
before we move on to the main object of interest, namely the maximum of the energy as a function of time in the REM
with Metropolis dynamics. The second section can well be viewed as a warm-up, but before we start, let us explain why
we might be interested in the max of the Metropolis REM.

5.1 Motivation

Let us recall how the di�erent spin glass models were coined in the �rst place. Globally, the movement was from
complicated and realistic to simple and easy to deal with models, culminating with the REM. As equilibrium was
concerned it was possible (by means of weird techniques or much more elaborate tools recently developed) to solve even
the complex models, leaving the easier ones a test ground for methods. Yet, when the sight was turned towards dynamics
even the simplest model turned out to be in need of simpli�cations, as even for it things were very unclear. That gave rise
to the BTM and after its rather quick resolution, the inverse path was to be taken. We may safely say that for at least
10 years now the BTM is very well understood and we dispose of varied di�erent techniques for rigorously proving the
interesting results. Then it was the REM's turn. As a realistic one, Metropolis dynamics was the physically interesting
choice. Yet, the di�culties were only just overcome with [17] and are certainly not yet well comprehended. Nevertheless,
now that aging is understood in the Metropolis REM, we might want to expand on that dynamics by looking at more
complex features than aging, as the REM is much richer than the BTM, where aging is about all there is to it (without
being trivial). Besides, we could hope that the new aspects studied in the REM will behave qualitatively as in more
realistic models, but even if that is not the case, they remain interesting, as they would provide an idea of the limitations
of the simpli�cation towards the REM.

That is where Biroli's interest in the max comes into play. As we shall see, the max contains all the information about
aging and the min as well as much more (the max re�ects both tails of the energy distribution), as it continues to vary
beyond the usual aging stage. Moreover, we might see the variations of the max as some "extended aging", as we will
note deliberately only in the conclusion. Finally, as always with extremes, the interest can be justi�ed with estimation
of risk. Let us imagine for a second that the REM were a realistic model representing a physical system (this will be
justi�ed if the qualitative behaviour of more realistic models is the same). Then very high energy states would often be
undesirable, as they often lead to degrading the system or simply going out of the model. Furthermore, those sudden (as
we will see) jumps to and from very high energies would be accompanied by abrupt transfers of much energy from and to
the thermostat, which could perturb its normal functioning. In this sense, this may be a way of calculating the lifetime
of the system.

To sum it all up, the Metropolis REM is the most realistic model where aging is well understood, the max contains
most of the features we are already familiar with, as well as new ones, and may be used to estimate the risk of breaking
of the model or waiting times for very rare events.

5.2 BTM

First of all, we should note that for all practical purposes the only important thing about the distribution of τ is its tail.
However, obviously, studying the evolution of the max requires knowledge of the high energy end as well (τ → 0+). We
thus specify the model by assuming that the energies are exponentially distributed in both the positive and the negative
regions with parameters giving τ exponents α+ and 0 < α− < 1 at 0 and ∞ respectively. We assume that the number of
positive (negative) energy states is n+ (resp. n−), both being of order n.
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5.2.1 Usual BTM

The conduct under the BTM dynamics is particularly simple once one has understood the evolution and in�uence of the
min. We shall assume that β = 1, as β only changes α (see 2.2.1.1). Notice that the positive energy states have a mean
trapping time and it is of order 1, so as soon as many have been visited, the time spent there is of the same order as the
number of such visits. Moreover, by the law of large numbers N− = N n−

n + o(N) a.s. (and similarly for N+).

• If α− < 1, we know that the number of jumps to negative energy states N− satis�es that N−

τ
α−
max

is of order one by
the extremes (those are IID power law variables). Now recall that t and τmax are of the same order, which still
holds in this context as we spend less time in positive energy states than in negative1. Hence, N+ is also of order
tα− (passing by N− and τα−max). Thus, once more by the extremes of power laws Emax ≈ α−

α+
ln t .

• If α− > 1, the whole distribution has a mean trapping time, so after t � E[τ ] ' 1 the law of large numbers gives

N+
n
n+
≈ N ≈ t

E[τ ] . Moreover, by extremes Emaxα+ ≈ lnN+ and combining the two we get Emax ≈ α−1
+ ln t .

We might as well consider a more complicated distribution for positive energies and all we would need to determine in
order to �nd the evolution of the max is its limit extreme value distribution scaling and plug N+ in it. A �nal thing to
bear in mind is that those expressions are only valid as long as N � n, when the max stations at the global max.

5.2.2 An additional model

Note that the main reason for the simplicity in the considerations above is that the time spent in positive energies
is necessarily negligible compared to that in negative energy states. This property makes the positive energies rather
irrelevant to the dynamics itself � they only appear because the question we are asking is about them. We might then
want to explore what happens when this is not the case and the positive energy states are the important ones determining
the speed of the dynamics.

A way to achieve that is to assume that there are much fewer negative energy states than positive energy ones. Such a
setting might suggest to view the negative energy states as impurities, but as will be discussed in the next subsection the
physical signi�cance of this model should not be overestimated. We suppose that n+ ≈ n, 0 < α− < α+,

n
n−
� t � n

(as might be expected, we lose the over-macroscopic relaxation times in this setting) and we consider the BTM dynamics.
Within this frame we stay at a state of positive energy an average time of order 1 (it has a mean of order 1). We still
have N−

τ
α−
max

of order 1, τmax of order t− and N− = N n−
n (provided the time scale satis�es N � n

n−
, which we suppose,

as otherwise we are certain not to have visited many negative energy states). But then N+ ≈ N and by the law of large

numbers t+ ∼ N � (N n−
n )

1
α− ' t− (we use N � n, as t � n). Then Emax ≈ α−1

+ ln t. However, we do not see any
in�uence of the positive energies exponent on the minimum, but it no longer varies as α−1

− ln t but as α−1
− ln

(
tn−n

)
.

5.2.3 Critics

Except for the simplicity of this section, its main drawback is that it lacks just about any physical sense. That is
because the BTM is a good approximation of the REM (which is an approximation of more realistic models) when we are
interested in the dynamics in the traps of the REM. One should bear in mind the vertices of the complete graph in the
BTM correspond to the deepest wells in the energy landscape of the REM and the maxima of the REM are completely
forgotten in the BTM. Therefore, we cannot really expect similar results in the REM. The results on the BTM might
still be interpreted as the evolution of the depth of the least deep among the deep states visited2, even though a precise
de�nition, a way for experimental or numerical detection or an interest of these results seem rather elusive.

5.3 REM

We now consider the REM.
1In fact, we spend no time in positive energy states in the sense that over [0, t] the time spent in positive states is on a lower time scale

than t � it is in fact of order N+ and thus of order tα− � t.
2It is in fact worse than that, as the limiting process leading from the REM to the BTM does not produce positive energies in the BTM.

We would then be better o� considering a scaling of convergence towards Weibull at 0 with no positive energy state, but the considerations
given are closer to what we will see in the next section.
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5.3.1 BTM dynamics

If we use BTM dynamics, things are not really complicated. We are, as usual, drawing independent energies from the
Gaussian distribution, which means n− = n+. Like in the previous section the time scale sets the number of jumps via
the negative energy tail (this has nothing to do with the max). We then only need to consider the extreme value of
N Gaussian variables, which we have already done. What is more, we do not even need to do that, as the Gaussian is
symmetric and so the max is just the inverse of the min at a �xed number of trails. Thus, studying the max does not
add anything compared to the min.

5.3.2 Metropolis dynamics

It should be noted that Biroli had already obtained Equations 5.4 and 5.5 (among else), perhaps more heuristically.
Let us now examine Metropolis dynamics. The di�erence is that now the time spent in high energy states is of order

1 (all their neighbours have lower energy and thus the exit rate is 1). What is more, the high energy states are harder to
get to, which we would expect to decrease the max.

Transitions Let us �rst �nd out what are the di�erent regimes that we should expect in the dynamics that will
potentially a�ect the behaviour of the max (as a function of time). As always, the jump speed will be dictated by
negative energy states and given what we have seen on aging, we might expect that any qualitative change of the
minimum as a function of time should imply such in the max.

De�nitions We consider the following events (a priori in an unknown order) that may be relevant to the evolution
of the max (depending on the regime in which we are):

a The min becomes smaller than inf I, more precisely the dynamics visits a local minimum of the energy (the second
happens a time ' n after we go from a state to its lowest neighbour).

b The max becomes larger than sup I.

c The aging regime begins (most of the time is spent in the min).

d The aging regime ends.

e The mean energy becomes stationary � the system reaches macroscopic equilibrium.

f The system visits the global minimum.

g The system visits the global maximum (the dynamics process has discovered all the states) � the system reaches
microscopic equilibrium.

Interpretations Let us explain why is each of those changes important:

a From then on the min typically has no lower neighbour and thus is obliged to go up to I, which makes the trap
model relevant (strictly speaking it becomes relevant slightly later). Namely from this time on, we can use the
trapping time e−βE as an estimate of the time spent in the min.

b Before this time typically every state has a neighbour of energy as high as the max and thus the time required for
attaining it is only the time needed for accepting the transition, while afterwards the dynamics needs to explore
�rst in order to �nd a high energy state and only then wait to make the transition.

c Aging means that we need to investigate only the behaviour of the min and not that of all the states.

d We have to average (in an appropriate sense) over all the states and not only consider the min.

e From then on we can just use the stationary distribution to determine the evolution of the max and no longer need
to consider what happens with the min, even if it is still moving.

f From then on the min is constant and equal to the global min.

g From then on the max is constant and equal to the global max.
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Estimates We now estimate the times at which these events come about in order to know at each time scale what
regime we are observing depending on the time scale (and the temperature as we will see).

a We typically always have exactly one neighbour of energy equal to the typical minimum of n independent energies
(it is tautological). As the rate of transiting to it is 1/n, we need a time of order n to get there. This is discussed
in a more serious way in Appendix A.

b As in the previous case we always have a neighbour of that order. Recall that the energy of the max ofm independent
energies is

√
n2 lnm as we have seen. We need to visit about e2β

√
2n lnn local minima in order to get to the typical

max of n independent states (every time we are in a local minimum we are nearly sure we will go to the lowest
among the neighbours and the probability of going to the highest among them is the same divided by this factor).
Among that many local minima the lowest energy attained should be about√

2n ln
(
ne2β

√
2n lnn

)
=

√
2n
(

lnn+ 2β
√

2n lnn
)
≈ 2

√
βn
√

2n lnn =:
√

2E1.

We know that we wait at each one a time such that ln t = −β
(
E +

√
2n lnn

)
� that is ' β

√
n

lnn at the shallowest

ones and
√

2βE1 at the deepest one. We then notice that as most of them are shallow and that e2β
√

2 lnneβ
√

n
lnn �

e
√

2βE1 (we had better use c and d). Hence, the time scale we are after is e2β
√
βn
√

2n lnn .

c According to [26]3 the corresponding time scale is ln t ' β
√
n . We will actually show this in our own way later.

d According to [26]3 the corresponding time scale is ln t ' β2n. We will not use the result but rather establish it for
high temperatures as well as its low temperature counterpart. In order to determine it, it su�ces to compare the
time spent in the deepest trap with the time spent in all the others. That is e−βEmin and (as in Equation 5.2)

N√
2πn

∫ 0

Emin

e−βEe−
E2

2n dE ≈

Ne
β2n
2 if βn < −Emin

nN√
2πn

e−βEmine−
E2
min
2n

1
Emin+βn if βn > −Emin,

(5.1)

where N = e
E2
min
2n is the number of states visited until we �nd Emin. Hence

• If β < βc, the system stops aging when Emin = −βn. This gives the time scale eβ
2n (deepest trap time).

• If β > βc, the system ages until the min reaches the global minimum (after that no aging can take place

anyhow). This gives the time scale eββcn (deepest trap time).

e Knowing that all the states between Emin and Emax are at equilibrium and the others have not been discovered,
we get the following for the mean energy.

Emean = Z−1

∫ Emax

Emin

Ee−βEe−
E2

2n dE =

∫∞
Emin+βn

(E − βn)e−
E2

2 dE∫∞
Emin+βn

e−
E2

2 dE
≈ max(−βn,Emin). (5.2)

We deduce from there that there are two di�erent scenarios depending on the temperature, both identical to d.

• If β < βc, macroscopic equilibrium is reached when Emin = −βn and afterwards the minimum keeps going

downwards without impact on macroscopic properties. The corresponding time scale is eβ
2n .

• If β > βc, macroscopic equilibrium is reached when Emin = −βcn, which is the global minimum � in this case
the transition coincides with f and the time scale is eββcn .

f • If β > βc we just saw that the time scale is enββc .

• If β < βc after the aging stage equilibrium settles and the mean time per state stations at eβ
2ne−n

β2

2 = eβ
2 n

2

(cf. d). That determines N and using N = e
E2
min
2n , we get Emin = −

√
2n ln t− β2n2. Thus the time scale is

e(β2+β2
c )n2 .

3The setting considered there is the complete graph with BTM dynamics and with Gaussian energies rather than the REM with Metropolis.
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g For symmetry reasons the system discovers (and not visits) the positive energies just like the negative energy ones.
Thus the time needed to visit the global max is the one for visiting the global min multiplied by the inverse of the
transition rate towards the global max (from I i.e. 0 energy as we will discuss further and provided that we neglect
the small correction that was paid attention to at d), that is (compare with Equation 5.6)

• e2nββc , if β > βc.

• e
n
2 (β+βc)

2

, if β < βc.

Remark 5.3.2.1. We should mention that given that after f the dynamics starts systematically returning to already ex-
plored states (a non-zero fraction of the states have been explored already), the implicit e�ective independence hypothesis
might cause potential di�culty in establishing related statements rigorously if they do indeed hold.

Preliminary remarks Before describing the max, we should note two facts that will be of use in what is to follow.

Markov chain presence probabilities The Markov process we call dynamics has, as usual, an associated chain
(see 1.1.3). Observe that at traps ai = eβE , at high energies ai = 1 and around I ai ' 1. Moreover, the Gibbs
measure is reversible for the continuous time process, so the measure given by the Markov chain presence probabilities
(µm({i}) := PE(ξm = i) for i ∈ S)4 is uniform on the traps (' 2−n) and decreases as the Boltzmann factor on the high
energy states (' 2−ne−βE). This justi�es our considering that newly drawn trap energies are IID Gaussians cut above 0
(inf I) � the chain presence probability is uniform on them and thus in terms of energy it is Gaussian.
Remark 5.3.2.2. A point that needs attention if we aim at rigour is that the chain we are describing is not ergodic, as it
is (clearly) 2-periodic. Knowing that the initial uniform probability gives half of the mass to "odd" and to "even" states
(imagine a chessboard coloured hypercube), that remains so for all times. Recall that (the chain is irreducible positive
recurrent) the chain measure (see Section 3.3) converges towards the invariant measure we discussed above and that the
invariant measure in question gives necessarily equal masses to even and odd states (as it is invariant). Therefore, the
initial condition is nice enough to ensure that the 2-periodicity does not interfere and the chain behaves like an ergodic
one, the chain presence probabilities converging towards the invariant measure. Do note that this is the second time
(along with returning) when the seemingly innocent and arbitrary uniform initial distribution turns out to give interesting
consequences and this time it is not just a curious fact but an important feature of the dynamics.

New records for the max always jump from 0 Recall that the Gibbs measure decreases like the inverse
Boltzmann factor and consider jumping to a new record for the max. As the Botzmann factor is exactly compensated (it
is easier to go up to the new record from a state that is already high but such a state is unlikely to be in such a state),
the distribution of the energy, from which we attain the new record, is the bare Gaussian. Therefore, it is legitimate to
consider that we reach records from 0.

Evolution of the max Now that we have discussed (most of) the transitions that are supposed to take place, we are
ready to look into the evolution of the max itself as a function of the time scale. We can expect the following regimes:

1. At the start of the process the max is certain to be of order
√
n (Avoid confusion with I, as we will use

√
n�

√
n lnn)

i.e. the standard deviation of the Gaussian (just like the min), as we take a uniform initial distribution.

2. We will explain in Appendix A why until a the maximum is strictly constant. Moreover, the dynamics goes down
rapidly.

3. The extremes of the Gaussian show that at a the typical energy barrier that the dynamics has to overcome is
'
√

n
lnn . Therefore, up until the time scale (for once we do not even have an accurate leading order but just the

order of ln t) eβ
√

n
lnn the system is stuck in the same state (note that this is far more than just to say that it stays

there the majority of the time) � in particular aging has already begun, after which it climbs to the lowest energy
neighbour, then looks for a lower energy among his neighbours (thus jumping back with a probability ' 1). Thus
until that time scale both the min and the max stay constant (exactly and not just in order) and equal to their
values at the time scale n.

4. Before the time scale eβ
√

2n lnn (on any strictly shorter scale) it is certain that the max cannot increase, as the
system has not been given enough time to return to 0 energy (in the sense energy .

√
n) from the energy it had

discovered at a. Moreover, with the same reasoning as in b one can show that there is no movement of the max
until eβE1 either. It is worth noticing that we are already way past the point at which the trapping times become
relevant (strictly speaking that is when Emin � −

√
2n lnn).

4Take heed that we consider states and not energies � the latter would require to include the Gaussian density.
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5. Using the same reasoning as in b we get

∀t = e
√

1+γβE1 , γ ∈ (0; 1)⇒ Emax ≈ γ
√

2n lnn. (5.3)

Note that we have constrained ourselves not to use that there is aging but we rather show that there is.

6. As long as aging lasts (depending on temperature) we have −βEmin = ln t, lnN =
E2
min

2n and thus with the reasoning

from b we get N = e
E2
max
2n eβEmax (we take into account that we only have a neighbour of energy Emax once out of

e
E2
max
2n states). Hence,

Emax = −βn+
√
n2β2 + β−2(ln t)2. (5.4)

Note that at short time scales we �nd Emax = (ln t)2

2β2n and in particular in the setting of Equation 5.3 (1+γ)β
√

2n lnn,
which is of the right order but contains an error due to the fact that we do not satisfy the (implicit) hypothesis
that Emax �

√
2n lnn. In order to get a correct result for the scales γ > 1 one needs to mix this point's reasoning

with that of b, but that only leads to needless complications. Another interesting value is the longest aging time
scale at high and low temperature, namely Emax = βn(

√
2− 1) and n(

√
β2 + β2

c − β) respectively.

7. After the end of aging we have (the only change compared to the previous case is that the time per state is stationary

instead of determined by the min) t = Neββine−n
β2i
2 , N = e

E2
max
2n eβEmax . Hence,

Emax = −βn+
√

(β − βi)2n2 + 2n ln t. (5.5)

Of course, this is only true as long as the max is smaller than the global max i.e. until

ln t ≤ (2β − βi + βc)(βc + βi)
n

2
=

{
n (β+βc)

2

2 if β < βc

2nβcβ if β > βc.
(5.6)

Note that this gives a (perhaps) more convincing proof of the scales found in g.

8. The system has reached full microscopic equilibrium by visiting all of its states. The max is constant ever after.

Remark 5.3.2.3. As always with phase transitions, the analysis near the critical temperature needs special attention and
some of the results may not hold there.

Summary To put it all clearly, we reassemble the previous results here.

• Initial value '
√
n.

• Constant until t ' eβ
√

2βn
√

2n lnn = eβE1 .

• An increase leading to Emax ≈
√

2n lnn at ln t ≈
√

2βE1 according to Equation 5.3.

• As long as there is aging (cf. d), the max evolves according to Equation 5.4.

• After macroscopic equilibrium (cf. d) the evolution is given by Equation 5.5 until the scales given by Equation 5.6.

• Constant afterwards.

Underlying model As it may have remained unclear exactly what approximations and hypotheses we made, we
recapitulate here the "e�ective" model we described instead of the strict Metropolis on the REM.

• The energies in I are treated apart. We assume that there are always neighbours of all those energies.

• For E < inf I we say that the state holds the process for the time necessary for it to have a probability of order
1 to go up to a state in I (to a neighbour essentially). However, we do not assume that it always goes to inf I,
but has a chance e−β(E′−inf I) to go to a state of energy E′ instead, as long as such a state is available among the
neighbours. We neglect the possibility of having two such "deep" states next to each other.

• For E > sup I the process stays there for a time 1 (clearly this is a.s. the mean waiting time). We neglect the
possibility of having two such "high" states next to each other as well as any other way of accessing them other
than what was described in the previous point.
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• When we are "far" from I, we often neglect the number of neighbours and set it to 1 (this only simpli�es calculations
a bit and the hypothesis can be easily discarded).

• Finally, we suppose that the system becomes independent from its past at each jump, namely that the neighbours
are dawn anew (which is clearly only approximately true and completely false beyond f for example, but might be
true in an e�ective fashion). Yet, we keep account of a global max and min somewhat arti�cially and say that we
cannot go beyond them even though by drawing new variables we will eventually go past them.

Now, this might seem (or not) very close to the original Metropolis dynamics on the REM but if a rigorous treatment
is attempted the strict equivalence is needed and is not necessarily obvious.

Records approach We now present an approach which allows us to obtain a few additional results for free. Even
though it might seem much more rigorous, all the dirt is just concentrated in one place at the very beginning so �nally we
are doing basically the same thing but in a way that ensures we �nd ourselves exactly in the framework of the common
theory of IID records (and extremes) and thus permitting the use of all the classical results. In order to do that, we need
to rephrase our max in terms of an IID.

We suppose that at every jump (recall Remark 2.1.1.3) to a state of energy > inf I (at least half the jumps according
to our hypothesis that there are no adjacent traps, so we will say simply that there are N of those jumps) in an e�ective
fashion we draw an independent variable from the law L that we will give explicitly in Equation 5.7. This distribution
should incorporate the original energy distribution and the acceptance rate. For C a normalisation constant we have

L (dx) = Cn

(
e−

x2

2n e−β(x−inf I)
1[inf I,βcn](x)dx+ e−β(βcn−inf I)2−nδβcn(dx)

)
. (5.7)

We had best disregard the Dirac and the cut, as they only ensure the correctness of the �nal value. Given that L is
just a cut Gaussian centered at −βn, when we are still far from the global max we �nd a GUM max and afterwards
identically the global max.

Now in order to get as many results as we want all we need to do is look up a result from records theory (for example
in [28]), apply it to this law and then go back to an expression in terms of t instead of N using what happens with the
min. For this last purpose, let us sum up what we establish in this chapter and the next one.

• During the aging stage we have lnN ≈ (β−1 ln t)2

2n and if we include �nite n corrections, that becomes

lnN ≈ (inf I − β−1 ln t)2

2n
.

• The end of aging is given by ln t ≈ nββi and if we include �nite n corrections, that becomes ln t ≈ nββi + β inf I.

• After the end of aging lnN ≈ ln t+ nβi

(
βi
2 − β

)
and if we include �nite n corrections, that becomes

lnN ≈ ln t− β(βin+ inf I) +
nβ2

i

2
.

Example 5.3.2.4. Using this recipe we obtain that the expected number of records is given by≈ min
(

lnN,nβc

(
β + βc

2

)
− β inf I

)
.

Remark 5.3.2.5. We can also minorate the standard deviation (there are other additional �uctuations) by
√

lnN .

Yet, we need to take heed not to use directly results on the records' lifetimes. For instance, if we are interested in the
longest lifetime of a record, is not (necessarily) the rescaled lifetime of the record which survived the most jumps, as the
jumps become more scarce as time goes. Nevertheless, we can potentially get correct results by modifying accordingly
the proofs of standard records results. As this is not of central concern to us, we will not investigate this further.
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Chapter 6

Numerical results

It should be noted that many of the observations in this chapter had already been done by Baity Jesi.

6.1 Motivation

Though the theory given in the previous chapter should hold under the assumptions given, it is good to note that those are
far from the "reality" of numerical simulations of the REM, currently possible. The content of this chapter is in�uenced
by discussions with Marco Baity Jesi, who was doing simulations of the Metropolis dynamics on the REM and also
provided the author with some priceless data to examine. Most unfortunately, the limited numerical capacities do not
permit going over t = 1012 (do note that for such t it is already impossible to naively save the trajectory, as the size of
such data is overwhelming) and so most of the regimes we discussed remain beyond their reach. What is more, the max
as it was de�ned remains constant and equal to its initial value most of the time and if we are a bit unlucky we may even
see it constant over the whole simulation which is hardly of much use.

We can, however calculate other types of max, that convey more information. As was explained, the max remains
constant for a very long while mostly because increasing it requires going out of the �rst trap visited. Then, we come to
some natural ideas that Baity Jesi used to suppress the initial value or even make the max lose its memory. Namely, we
can consider the two-time max in two manners � M(tw, t) and M( t2 , t) (note that this computationally very particular
choice corresponds to calculating the max on disjoint intervals, as the times considered in the simulation are powers of 2)
with a particular choice of tw of order n (16), which ensures that we will be in the �rst trap by then. With this trick one
manages to get much more information concerning the max out of the sample and we will use these functions to compare
theory and simulation results.

Clearly, if we desire access to exponential time scales like g, for example, we cannot a�ord to have very large n.
However, at small n much of what we have stated fails to be true and sometimes by far (Nevertheless, in physical systems
with n being a number of spins in a sample, we should not have this kind of problems). Typically the possible n for
which one is able to reach time scales like en and to operate on {0, 1}n is at most about 20 (in numerical applications
this is the value we will use, as well as β = 4

3 ). Now, clearly we have to reconsider n1/4 � 1 and worse yet,
√

lnn� 1.
In order to see that something more needs to be done, take a look at Figures 6.1 and 6.2. For all �gures we

systematically omit E[•] and we write Ma,n(t1, t) for the mean of the max on the interval [t1, t] for the given n (if ∞, it
is without corrections) and a is among s, t, f , standing respectively for simulation, theory and �t (we will discuss those
further). As we will see in Appendix B, 6.2 is more important and 6.1 is somewhat of a consequence. Indeed the tendency
of simulation data is towards the in�nite n prediction but we are quite far away.

Therefore, we will attempt to give an adapted theory for �nite n in the spirit of the one for in�nite n, so that the
results may be applicable to the case studied in simulations. However, no justi�cation will be attempted, for one because
a moment's thought shows that most of the hypotheses that will be made are false. We only seek to �nd a correct result,
acting as if n were big when needed but keeping negligible corrections, that will not be negligible in the end.
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6.2 Finite n corrections

This section summarises the useful results of Appendix B.1 Most of what will be said is false at t < n. Before we start,
let us mention what is taken into account. The most important is that we do not neglect inf I before anything and we
use the true value of inf I instead of the asymptotic equivalent. The global min is not corrected.

6.2.1 Notations

βc :=
√

2 ln 2 (6.1)

βi := min(β, βc) (6.2)

erfc :=
1√
2π

∫ ∞
•

e−
E2

2 dE (6.3)

inf I := −
√
n

∫
Ed(1− erfc)n (6.4)

σ :=

√
n

∫
E2d(1− erfc)n − (inf I)2 (6.5)

S := eβ(inf I+nβi) (6.6)

lnF := (2β − βi + βc)(βc + βi)
n

2
=

{
n (β+βc)

2

2 if β < βc

2nβcβ if β > βc.
(6.7)

That is inf I ≈ −8.34053 (all numbers are at n = 20, β = 4
3 ). It has a statistical error (it may vary from one point

of the same instance to another) of order σ ≈ 2.34241, which decreases after t = S at β < βc and stations at some
instance-dependant value (but no longer time-dependant) at β > βc.

6.2.2 M(16, 16 + t)

After the initial phase, at the end of which both the min and the max are well out of the zone [inf I −σ, inf I +σ], things
get more robust. If we call this time t0, what we will refer to by t is in fact t− t0 (if it is large, this does not matter).

• For t < S
Emax

2 ≈ −βn+
√

(βn+ inf I)2 − 2β−1 inf I ln t+ β−2(ln t)2. (6.8)

While we are here, we also have
Emin ≈ inf I − β−1 ln t. (6.9)

• For S < t < F
Emax
n

= −β +

√
(β − βi)2 + 2

ln t

n
. (6.10)

• For t > F
Emax = βcn. (6.11)

6.2.3 M( t
2
, t)

t = eβ(inf I+nβc) (6.12)

(times a few eβσ, say 1) is the time at which M( t2 , t) joins the other two de�nitions of the max (up to small �uctuations).

6.2.4 E[M(0, t)]

In this subsection Em is Emax from the previous one, corresponding to M(16, t+ 16). From here on we discuss the mean
max energy.

1The interested reader is invited to study the appendix before continuing.
2We shall refer to M|E0=inf I(0, t) as M(16, 16 + t) or Emax in this subsection.
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• At very short times t� eβ
√
n (particularly unimportant regime that can safely be ignored)

E[Emax] ≈
(

erfc

(
inf I√
n

)
− erfc

(
Em√
n

))
Em ≈ ln t

inf I

β(βn+ inf I)2

inf I√
2πn

e−
(I)2

2n . (6.13)

Either one of the expressions can be used � the �rst is more accurate, the second is simpler. . .

• Afterwards

E[Emax] ≈
(

1− erfc

(
Em√
n

))
Em +

√
n

2π
e−

E2
m

2n . (6.14)

To be more explicit, we give the Em that should be plugged in Equation 6.14

� Up to t = S see Em in Equation 6.8.

� Up to t = F see Em in Equation 6.10.

� After t = F
E[Emax] ≈ βcn (6.15)

or, if you are very pedantic, see Em in Equation 6.11 � it is not exact.

6.3 Comparison

Using the simulation of Baity Jesi we can now investigate to what extent this theory re�ects the (numerical) "truth".

6.3.1 Qualitative

To begin with, we outline some of the aspects predicted by the previous chapter, which are con�rmed by the simulations.
We will mostly comment on the memory-loosing max M

(
t
2 , t
)
as it contains the most information.

• The max from t = 0 is constant and equal to its initial value for a very long time.

• The �rst trap is reached very quickly.

• The process does exactly as we assumed in our model � when it reaches a trap it starts jumping eventually back
an forth between it and its lowest neighbour. This is testi�ed to by the long time regions where M

(
t
2 , t
)
takes the

same value around inf I, while it is more than clear that the process can escape from such a state quickly, were it
a trap and not the lowest neighbour of a much deeper trap.

• M
(
t
2 , t
)
joins the other two at some point, namely when the dynamics stop taking values about (or below) inf I.

An important aspect that is foreign to our model (especially as it is in Appendix A) is the presence of short cycles.
This might seem innocent, but it actually shows that we are overlooking some things. In order to emphasise this, we
argue below that the frequency of appearance of 3-cycles remains large even at in�nite systems and is not just a small n
problem. As already discussed, we often �nd a deep trap A with a lowest neighbour B around inf I. Then all we need
(it su�ces) in order to observe a 3-cycle is that B be the lowest neighbour of C and that C have exactly one neighbour
lower than C, where C is the lowest neighbour of B excluding A. Under these circumstances we will typically jump
A-B-C-B-A. . . 3 That is rewritten as inf E(Γ(C)) ≥ inf E(Γ(A)) =: E(B), inf E(Γ(C)\B) > inf E(Γ(B)\A) =: E(C) and
E(B) < E(C). There is exactly one common neighbour of two among A, B and C, which we neglect to say that we
independently draw the energies of the neighbours of A, the remaining ones of B (save A) and �nally, the remaining ones
of C (including the one that is technically already known but excluding B). In this setting the �rst inequality is "the
lowest among n is lower than another n− 1" � its probability is about 1

2 . The second one is roughly 1
2 as well, because C

is the min of n − 1 variables just like inf E(Γ(C)\B)). The same holds for the third one. Although this does not prove
anything at all especially as there is no independence, it should be enough to convince that the event of having a 3 cycle
is far from being rare and that is all we were aiming at.

While this can be handled at in�nite n by arti�cially adding an "e�ective trap" (much like what is done in the BTM)
containing the trap itself and the lowest neighbours and eventually their lowest neighbours and so on as long as we are
nearly certain to come back to the original trap. At in�nite n this is all right as that will not get the threshold energy
up, at small n we might �nd the discrete energies in�uencing the e�ective inf I.

3Read the last three sentences two more times and draw a �gure.
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6.3.2 Quantitative and �nite n corrections

General agreement As it is easily seen from Figures 6.3 and 6.4 (recall that at in�nite n the prediction for M(n, t) is
the same as M(0, t) at t such that ln t ' n, as we are way past b and thus way past the initial value) the corrections at
�nite n are crucial and give exactly what they should during the aging stage (after all that is the most important period
in practice). After the aging regime the theory becomes the same with or without corrections as we saw and it is quite
close to the truth (see rather Figure 6.9). Yet, there is a seemingly constant asymptotic error.

Additional �tted correction Let us attempt to understand this error and to see if it means that the theory is
somewhat false or if it is within the "errorbar of the theory". Firstly, it is nice to note that it is approximately constant
(up to a transitory phase) after the aging stage and it starts being visible exactly where we expect (with �nite n corrections)
that the end of aging will be. We happen to have actually noted a feature that might intervene in this fashion in Remark
B.1.0.2. If the global min is not what we took it to be, corrective terms will appear in 6.10, leading to4

Emax
n

= −β +

√
β2 + β2

c − 2ββm + 2
ln t

n
(6.16)

at β < βc, where βm (it is a modi�ed βc) is an adjustable parameter corresponding to −Eminn for the global min and
the end of aging is shifted to eβ(inf I+βm). If we allow ourselves to vary βm so as to �t the obtained prediction to the
simulation data, we get Figure 6.5 and the resulting (mimicking the way we obtained Equation B.5) Figure 6.6. For
veri�ability, we note that the value used is βc + 0.055.

In should be noted that we prefer to keep the discontinuity for visibility. Clearly in the real system there should be a
smooth joint, which works to our advantage, as obviously combining the two regimes will result to a serious improvement
around the jump, as they are on opposite sides of the simulation. The reason not to make a smooth curve is to avoid
choosing arbitrarily what convolution kernel to use, for example.

Let us give three reasons as to why we are entitled to this adjustable parameter.

• We know that the global min is not −βcn according to the extremes. Moreover, the corrective terms (for our values
of n we have ln(n ln 2) 6� ln(4π)) are of order 1

n (for E
n ), which is just the order of the deviation (yet it should be

noted that it goes in the wrong direction).

• Still according to extremes, we know that the (random) global min has the Gumbel distribution, whose mean is not
0 but γ (Euler's constant) and so we should correct the global min by γ

n if we want the average.

• In the same line of thoughts, we are not at all obliged to use the mean, as that would be arbitrary. All we can be
certain of is that the e�ective global minimum that we need to consider (taking into account the distribution of
typical size 1

n ) di�ers from the one we used by an order 1
n i.e. exactly the order of the di�erence we need.

Records Let us look into the number of records. For Figure 6.7 we theoretically expect about 14 records up to the end
of aging and we count 8-9 of them. We should take into account that the standard deviation is still rather big (square
of the mean) and that it is possible that some records be hidden by the simulation (especially when we see successive
records), as we calculate the max only on huge intervals (what we see is a minorant of the number of records). Thus, the
result can be deemed satisfactory.

Remark 6.3.2.1. Although the analysis carried out does not at all permit us to claim that the corrections added are, say
the sub-leading orders up to a yet smaller error, the remarkable agreement with numerical data might suggest that such
is the case.

M
(
t
2 , t
)

Finally, we discuss the only observable where the previous considerations fail to give an adequate result �
E
[
M
(
t
2 , t
)]
. This is the reason why we do not show any theoretical prediction in Figure 6.8. We might well try Equation

B.6 and even envision a correction to Π
(
t
2 , t
)
� seeing it as a parameter to be �tted between 0 and 1, but that does not

at all allow us to obtain the dip clearly visible in Figure 6.8 (or obtain a "not very straight" curve). We might as well try
the very sensitive expression from the crude approach, but that is rather guessing than doing anything serious and in any
case, no satisfactory result was found. This can only lead to the conclusion that this observable requires more attention
and going back over all the di�culties of determining the energy distribution at a given time, namely close to the edge.

4We assume that the number of visited states before the global min is unhindered, but the time needed to do it is altered by its depth.
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Chapter 7

Conclusion

To conclude, let us �rst recapitulate what we have seen throughout this work.
The REM is a spin glass model representing a random energy environment where the energy has no spacial correlation

in the state space. It can be related to other more realistic models, but its simplicity allows analytical equilibrium
treatment as well as mathematically tractable dynamics. One of the natural Glauber dynamics associated with it is
the Metropolis one, which favours transitions towards low energies. As we have mentioned in this setting the dynamics
restricted to "traps" behaves like the BTM one, which is much simpler, at least as far as aging is concerned. This last
very important feature of glasses represents the lack of time invariance of a correlation function. In both models it boils
down to the dynamics being trapped progressively in lower and lower energy states for longer and longer lapses so that
at all times up to a certain scale where aging eventually ends (for the REM that is the point where the Gaussian is
explored su�ciently to �nd that its tail is not heavy enough to induce aging on the long run) the dynamics has spent
much of its time in the deepest trap and is likely to still be there. Furthermore, thanks to non-returning not moving at
all is practically the only way for the dynamics to �nd itself in the same state. This also makes the walk act as though
neighbours were drawn on the go. Finally, we saw a few classical results like the convergence of Π towards the arcsine law
in di�erent contexts, which establishes aging (and gives much more information). We also discussed the phase transition
in the REM at equilibrium and the related condensation of the Gibbs measure to a few states.

From then on we focused exclusively on the evolution of the maximal energy visited rather than the minimal one.
In order to justify this we might want to notice that if we look at a "low correlation" function like PE(∃t′ ∈ [tw; tw +
t), d(Xt′ , Xt) > an), the max becomes signi�cant. Similarly to what we have seen, we should expect that once the global
min is attained and setting, for example, t = tw, the function is nearly 0 above the current max + βcn and nearly 1
below it (for the REM with Metropolis). That is why according to De�nition 2.1.4.1 we will also have aging depending
on the max. This "extended" aging will last until all the energies are at equilibrium. The reason not to mention this
earlier is that this "aging" is somewhat a mathematical artefact caused by the strict interpretation of the de�nition of
aging rather than a physically observable reality, as the physical properties of the system become the equilibrium ones
beyond the end of (normal) aging. This idea corresponds to the notion of "microscopic" equilibrium we used. Though
this is not of major physical interest, it should be enough to justify our study.

Besides for completeness the only setting of interest for the max is the REM with Metropolis dynamics. For it we need
to consider the aging and post-aging stages separately and di�erentiate between before and after the max outgrows the
max of n Gaussians. Then the simpli�ed model we described gives adequate results. Yet, those results are only good for
the in�nite n limit and numerical implementations require additional corrective terms. The corrections we gave are not
redundant and agree almost up to statistical �uctuations with the simulations data, thus suggesting that the underlying
model is su�ciently truthful. Yet, it is not precise enough to cover one of the observable max, which we �nally left out.
If there is one thing to remember from chapter 6, it is that the dynamics is accelerated during the aging stage at �nite n
in a way dictated by inf I.

Finally, we could suggest a few routes for further development. We already mentioned some features that we left open
like E[M(t/2, t)], the longest life of records and the corrections needed for the expression of the global min for �nite n,
as well as the extensions mentioned in Appendix A. Furthermore, as always the behaviour near the critical temperature
and further corrective terms are worth investigating, although we should recall that the physical content of the max is
perhaps too limited to justify such pursuits.
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Appendix A

Very short time scales

In this appendix we discuss the very short time scales dynamics � before reaching the �rst trap.

A.1 Results

We consider here the oriented graph

G =
(
N× {1, . . . , n},

{
((m, l), (m+ 1, l′)) | (l, l′) ∈ {1, . . . , n}2

})
=: (S,Ed)

with Metropolis dynamics (the only possible transitions go in the direction of the edges) associated to E Gaussian IID
on S with uniform initial distribution on {0} × {1, . . . , n}. This corresponds only to the last approximation in the
"Underlying model" paragraph of chapter 5. We introduce TN := T := min{t | E(Xt) < minE(Γ+(Xt))}1, where
Γ+((m, l)) := {(m+ 1, l′) ∈ S} denotes the outbound neighbourhood of (m, l) in G. We also consider its associated
Markov chain using the notations we have seen2. Note that a.s. in E there are no two equal energies � we restrict
ourselves to this event.

We will explain (in a way that can doubtlessly be turned without too much di�culty into a rigorous proof, although
we will not give one) why the energy is strictly decreasing until T and that T ' n, while N ' lnn.

A.1.1 Monotony

Consider a current energy E. The states that are nε above E, where ε is small and positive, are impossible to reach, as
(we have not yet reached a local min, so we have a lower neighbour) the total transition rate towards them is at most
e−βn

ε

. Therefore, we only need to compare the number of states with lower energies to that of those di�ering from E by
at most nε, which is much smaller. Hence, it is very likely to go down. This reasoning is valid for one transition and, as
we want to show that the dynamics decreases all the time, we need to have few enough jumps for it to still be unlikely to
go up even once. That turns out to correspond to a number of jumps about

√
n. It is good to note that this reasoning

also shows that the dynamics decreases by at least nε per jump.
Now that we know that over

√
n jumps we never go up in energy (provided that we do not reach the �rst trap before

that), we can show that the dynamics goes down fast, which will yield that we reach the �rst trap far before
√
n jumps

and will thereby prove that the energy actually decreases (fast) all the time (until the �rst trap). We know that the
transitions towards lower energy states are equally probable. As the states of a generation are distributed in the same way
for all generations, we tend to go halfway down the distribution (i.e. dividing the rank by 2 in the ordered statistics or,
equivalently, dividing by two the remainder of the distribution function below the current energy). That way in around
log2 n jumps we already �nd ourselves at a state at inf I, which is the lowest one among its generation (which does not
make it a trap, as that depends on the next generation). Once we are there, there is a non-zero probability that the next
generation will be entirely comprised of higher energies, so (recall, that we know that we decrease for about

√
n jumps)

in a �nite number of jumps (not going to ∞ with n) we will �nally reach the �rst trap without having ascended.

Remark A.1.1.1. We can clearly not state that a.s. for large n the process is decreasing, as is readily seen using that the
di�erent n processes are independent and applying Borel-Cantelli only to the �rst transition, which has a probability of
order 1√

n
to go up.

1The �rst min exists because the trajectories are càdlàg and it is clearly a.s. �nite. This is the "a local min is visited" stopping time.
2This chain can be seen as de�ned on {1, . . . , n} with time-dependant transition probabilities but we will not take this point of view.
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A.1.2 Time for reaching the �rst trap

We already said that N ' lnn, but in Chapter 5 we were interested in T . It is very easy to see that it takes a time of
order n to go to a state of energy inf I, by introducing another Markov process, with two states, one being absorbing and
the transition corresponding to going to the lowest neighbour for the �rst time. Then, the reasoning from above shows
that in a few jumps, which take a time of order n each, we get to a trap. Hence, T ' n, which is indeed the result we
stated in Chapter 5. This means that aging is already in place (recall that towards the last transition we have only one
lower neighbour, which means that we take a time of order n to transit to it, which is of the same order as the total time
elapsed), even though we have not even reached a trap!

A.2 Extensions

We might want to note a few extensions of the preceding results. To begin with, it is natural to try to make them work on
our original model � the REM. To that end, we could add a state to the next generation with the energy of the previous
state visited and prove that it is unlikely to be used, which is the case because we go down quickly and so the energy
di�erence to overcome will be too large. Furthermore, we would need to take into account the second common neighbour
of two vertices of the hypercube. That is without impact, as it comes down to choosing randomly and uniformly a
neighbour of the m-th state, which is not the m+ 1-th and adding it as a neighbour of the m+ 2-th. Finally, we would
need a non-returning property to be sure to avoid having any other common neighbours throughout the walk.

Furthermore, it is more than clear that the reasoning is not optimal in the sense that the �rst phase gives a rather
weak result, that we need to use in the second one, which inevitably leads to a weak �nal result. Hence, if a precise
statement was to be made, it could be made reinforced if we limit the number of jumps to C lnn instead of

√
n (and take

ε→ 0+), as it is all we need and it increases dramatically the probability of the event of decrease.
Finally, we have already mentioned that we show more than mere monotony, as we bounded the increments away

from 0. In this line of thought, we might want to attempt to prove stronger results, assuring a certain rate of decrease.
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Appendix B

Finite n corrections

B.1 Overall corrections

The overall model remains the same as in chapter 5. However, we give up some approximations � we now say that:

• No state is far from I or deep.

• The trapping times are never relevant � not even for the deepest traps.

• The bounds of I are no longer given by their asymptotic values, but taken "exactly" � that is

±
√
n

∫
Ed(1− erfc)n, where erfc :=

1√
2π

∫ ∞
•

e−
E2

2 dE. (B.1)

Attention: In what follows erfc denotes this function and not a standard error function, should it di�er!

Remark B.1.0.1. Note that the value of the max of n variables can be very uncertain due to its high variance
(for n = 20 we get a standard deviation of 0.524

√
n, while the mean is 1.865

√
n). Hence we need to have already

discovered a good number of deep traps before we can identify inf I with its mean.

Remark B.1.0.2. We need not consider corrections of the global max and min, as for them we have 2n variables,
which is su�cient for approximating them by their asymptotic values. Yet, the variance is not to be underestimated
� it is of order 1 (in fact at in�nite n it is of order lnn

n , but we shall disregard that as 1) even for rather small
n but the problem is that the smaller n is, the less negligible 1 becomes. Nevertheless, we will not take this into
account (we should add the corresponding �uctuations to the scales at which aging ends and at which the global
max is attained, as well as to the whole regime between the two for low temperatures.). The e�ect of that will be
discussed in chapter 6.

• We �x the starting energy at E0 instead of the Gaussian distribution.

Remark B.1.0.3. In order to get all three max functions with one hit, we only need to consider the usual one
(beginning at t = 0 without memory loss), but with atypical initial energy E0 not necessarily of order

√
n (we

forgot all about orders anyway, so this is somewhat redundant) and use the fact that the process is Markovian.
Then the delayed max is just the original one starting at the energy we expect to have at the starting time
(determined by aging if relevant) and the t

2 − t max is the max starting at the energy we expect at t
2 and lasting

for t
2 (we do not actually need to take the expected energy, if we allow ourselves to access the true one).

B.2 Corrected results

• Assume that E0 > inf I. Then the dynamics goes down to the �rst trap quickly as in chapter 5 i.e. in t ' n.

• Let us assume that E0 < inf I. Then the max goes to inf I at about eβ(inf I−E0). Then, as soon as we get out of
the initial trap (the time is of the same order), it starts behaving as though we had begun at E0 = inf I. Note that
the time scale we just gave is extremely �uctuating.

• We are thus left with the case E0 = inf I and we can assume that we are in a local minimum (otherwise, we say
that E0 > inf I). The typical waiting time there is ln t ' βσ (with a factor up to 2, say).

Remark B.2.0.1. We should mention that this is rather vague, as we have constantly used inf I, while its value is unstable.
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After this initial phase, at the end of which both the min and the max are well out of the zone [inf I − σ, inf I + σ],
things get more robust. If we call this time t0, what we will refer to by t in what follows is in fact t − t0 (if it is large,
this does not matter).

• We can approximately say that most of the time is spent in traps and that almost all of the remaining time is spent
at inf I and the time spent at inf I while at a trap E is the fraction eβ(E−inf I). As far as the min is concerned,
nothing changes in the result of d from chapter 5 except for the fact that the time in a trap of energy E is eβ(inf I−E)

and so t ≈ eβ(inf I−Emin) (as in d � it is not a tautology). In particular aging ends at eβ(inf I+nβc) and eβ(βn+inf I)

at low and high temperatures respectively. To be honest, we should multiply the time spent by n, as we only look for
the deepest neighbour, but that is compensated by the fact that we should also divide N by n, as we somewhat draw
new trap energies only among those lower than inf I. We should be aware that there is a �uctuating factor about
e±βσ until the end of aging (as the deepest trap dominates and all that matters is the single deepest neighbour it has,
which does not mean out σ). However, after this regime, this factor gradually dies out to 1 in the high temperature
phase and stations at some value (which no longer �uctuates) in the low temperature phase (corresponding to the
�uctuation of the lowest neighbour of the global min).

About half of the states visited are around inf I with a trap neighbour and without another lower neighbour. The

time spent in a state like that is of order n and so we have spent about e
E2
min
2n . Then12

PE(Emax > E1) ≈ e
E2
min
2n

√
n

2π

∫ ∞
E1

eβ(inf I−E)e−
E2

2n dE ≈ eβ(inf I−E1)e−
E2

1
2n e

E2
min
2n

and so

Emax ≈ −βn+
√
β2n2 + 2nβ inf I + E2

min ≈ −βn+
√

(βn+ inf I)2 − 2β−1 inf I ln t+ β−2(ln t)2. (B.2)

Once again, note that inf I may �uctuate by about σ.

• After the end of aging Emin is replaced by nβi in the following way:

PE(Emax > E1) ≈ te−β(βin+inf I)e
nβ2i
2

√
n

2π

∫ ∞
E1

eβ(inf I−E)e−
E2

2n dE ≈ te−β(nβi+E1)e−
E2

1
2n e

n2β2i
2n

and so
Emax
n

= −β +

√
(β − βi)2 + 2

ln t

n
. (B.3)

This is, of course, the same as Equation 5.5, so the bounds given by Equation 5.6 are still valid.

• A �nal feature that we might want to investigate is when do all three max functions start giving the same thing.
The coincidence of the normal max and the delayed one is trivial � when the delayed one gets to the initial value of
the process, they stick together. The memory loosing one, however presents an additional aspect � it keeps taking
dips from time to time until a certain point and from then on it is equal to the others up to �uctuations3. With
what we have said it is easy to quantify when is that point � it is when the min is no longer deep enough to hold
the process, that is ln t = β(inf I + nβc) (+a few βσ) and that no matter the temperature.

• In order to be able to produce a full-�edged prediction for the mean (over di�erent energies or, which is the same
for the main part, over di�erent trajectories) of the max (starting from 0), we will need to mean out the initial
regime of waiting until the max starting at the �rst trap (we will call it delayed max and denote Em) reaches the
initial value. For a start, we will neglect the probability to have an initial value lower than inf I, the time needed
to reach the �rst trap (of order n) and assume that it is always of energy inf I. Thus,

E[Emax(t)] ≈ 1√
2πn

∫ ∞
inf I

max(Em(t), E)e−
E2

2n dE =

(
erfc

(
inf I√
n

)
− erfc

(
Em√
n

))
Em +

√
n

2π
e−

E2
m

2n .

We see clearly that at Em well over
√
n we get Em. Now let us evaluate the term given by low initial states that

we neglected. For them Emax
(
t+ eβ(inf I−E0)

)
≈ Em(t), which gives Em when the trap is su�ciently shallow and

E0 if it is deep, hence a contribution about Emerfc
(
− inf I√

n

)
. Therefore, except at very small t,

E[Emax] ≈
(

1− erfc

(
Em√
n

))
Em +

√
n

2π
e−

E2
m

2n (B.4)

1Needless to say, this is a linear approximation, that ceases to be valid before reaching 1.
2We get the same result if we say that we go up from Emin in average, as the time increase compensates the rate decrease exactly.
3Of course, if we insist on exact equality, we will have to wait until a bit after the global max is attained.
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and

E[Emax] ≈
(

erfc

(
inf I√
n

)
− erfc

(
Em√
n

))
Em ≈ ln t

inf I

β(βn+ inf I)2

inf I√
2πn

e−
(inf I)2

2n (B.5)

at very small t (typically n < t < eβ
√
n).

Remark B.2.0.2. It is good to notice that the di�erences from chapter 5's results are not only corrective terms in
complicated expressions. There are serious qualitative di�erences � for instance at n = 20, β = 4

3 we get to the end of
aging (and reach macroscopic equilibrium) before the max has reached sup I � it is still just over 0 and in some cases we
are even still in the phase when the max has not moved from its initial value (this is because 4

√
20 6� 1, among else)!

B.3 EE
[
M
(
t
2 , t
)]

We will give this last max function the special attention it deserves, as it is (perhaps surprisingly) much more complex
than the others (before the end of aging, as we already noted that afterwards it joins the others). Its consideration was
useful in samples, as it conveys the most information, but when we average it this diverse information makes it di�cult
to handle. We give a natural and naïve attempt to treat it, which allows us to see why it requires much more e�ort.

B.3.1 Decomposition

We consider the events A :=
{
∀t′ ∈

[
t
2 , t
]
, Xt′ = Xt

}
and B :=

{
Xt = X t

2

}
(this second one will be interpreted as

remaining in the "domain of attraction" of the t
2 trap) to get

EE
[
M

(
t

2
, t

)]
= EE

[
E

(
t

2

)
1A

]
+ EE

[
M

(
t

2
, t

)
1B\A

]
+ EE

[
M

(
t

2
, t

)
1Ω\B

]
.

In the recent paper [17] Gayrard proves the long conjectured fact that4 R(t, t+ s) has the non-trivial limit at n→∞ :

sin(πα)

π

∫ t
t+s

0

uα−1(1− u)−αdu,

where α = βc
β (see the paper for more precision and for the 40-page proof). What is more, her proof seems to imply the

same result for Π, which means that B\A is negligible and so the second term is zero. The third one can be dealt with
conditioning by the time t′ + t

2 of exiting the "domain of attraction" (whatever its de�nition this is a stopping time).
Thus it is written

−
∫ t

2

t′=0

EE
[
M|E0=inf I

(
0,
t

2
− t′

)]
dR

(
t

2
,
t

2
+ t′

)
=

=
sin (πα)

π

∫ t
2

t′=0

−βn+

√
(βn+ inf I)

2 − 2β−1 inf I ln

(
t

2
− t′

)
+ β−2

(
ln

(
t

2
− t′

))2
( t

2t′

)α
2

t+ 2t′
dt′.

As EE
[
M
(
16, t2 − t

′)]5 varies slowly with t′ save for 2t′ ≈ t (which is also diminished by the t
2t′ factor), that simpli�es

to

EE
[
M

(
16,

t

2

)]
sin(πα)

π

∫ 1

0

1

(1 + x)xα
dx

B.3.2 No jump term

A crude approach Now let us address the most problematic term EE
[
E
(
t
2

)
1A

]
. To begin with, we note that the

two factors are by far not independent (clearly if the energy is low, we are unlikely to jump and vice versa). For this one
we condition by E

(
t
2

)
in order to obtain∫

R
E′EE

[
e−a(E′) t2

]
dL t

2
(E′) ≈

∫ inf I

−∞
E′e−e−β(inf I−E

′) t
2n dL t

2
(E′) +O

(
e−

t
2n inf I

)
,

where Lt denotes the law of the energy at time t conditional on the random environment and a(E′) (we assume it to be
a function only of the energy, which it is not) is the exit rate from a state of energy E (conditional on the environment).

4Please do note that what we announce here is not her result but rather a loose interpretation of it. For a simpler statement, see 3.2.2.1.
5We shall refer to M|E0=inf I(0, t′) as M(16, 16 + t′) and eventually omit the second 16, as for n = 20 it is what we use in practice.
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The problem is that we do not know that law. We might be tempted to approximate it by a natural candidate � the
equilibrium distribution between EE

[
Emin

(
t
2

)]
= inf I − β−1 ln t

2 and EE
[
M
(
16, t2

)]
and 0 elsewhere. Thus we get∫ inf I

inf I−β−1 ln t
2
E′e−e−β(inf I−E′) t

2n e−βE
′
e−

E′2
2n dE′∫ EE [M(16, t2 )]

inf I−β−1 ln t
2

e−βE′e−
E′2
2n dE′

≈
(

inf I − β−1 ln
t

2

) ∫∞
inf I−β−1 ln t

2 +βn
e−

E′2
2n e−e−β(inf I−E

′+βn) t
2n dE′

exp
(
− (inf I−β−1 ln t

2 +βn)2

2n

)
n

inf I−β−1 ln t
2 +βn

,

which simpli�es to inf I − β−1 ln t
2 , because the double exponential factor is 1 near the lower bound where most of the

Gaussian is concentrated (we use lnn� 1 and ln t ' n).

Problems Now let us explain why this reasoning is not legitimate. The problem is that we used in a crucial way our
"knowledge" of EE

[
Emin

(
t
2

)]
with precision we do not have (we only know an equivalent of it but we used the same

expression up to a relative error of order lnn
n ). What is more, we somewhat arbitrarily postulated that the lower bound is

the mean of the minimum rather than another similar quantity � the mode for instance. If we suppose (reasonably) that
2n
t eβ(inf I−Emin( t2 )) has a non-trivial law, this last choice can lead to a multiplicative factor in the �nal result, which we
do not tolerate. Hence, the usage of this method requires far better knowledge of the law of the energy at t

2 . Logically
enough, this is con�rmed numerically � the result above is very di�erent from the one obtained if we leave out the n from
t

2n in the exponential (which is precisely a relative error of order lnn
n on Emin).

Yet another startling issue is the upper bound in the denominator integral. Numerically we �nd out that at rather
short (but still not very short) scales it has an in�uence on the result (recall that we are at �nite n). We then need
to remain with the �rst and more complicated expression above (the integral quotient). Clearly, this problem should
disappear at big n but in our case it is still very visible.

To sum up, EE
[
M
(
t
2 , t
)]

remains beyond our reach (even at n → ∞) with the methods outlined due to insu�cient
precision on the law of the energy at t

2 near its lower "edge" (we should use a result like the one in subsection 4.1.3,
which we will not attempt here).

An alternative idea Let us now describe another idea suggested by Biroli, which manages to exploit the result of
Gayrard in a way that circumvents any �ner knowledge of L t

2
and does not use the crude cut-o� approximation. To

that end we turn back to
∫
RE
′EE

[
e−a(E′) t2

]
dL t

2
(E′) and notice that, as we saw before the double exponential behaves

roughly as 1 up to about Emin and 0 afterwards, while L t
2
should be concentrated around Emin (recall that we expect

for Emin to have a variance ' 1 at time scales ln t ' n by the extremes). Then we can approximate the integral by

EE [Emin]

∫
EE [e−a(E′) t2 ]dL t

2
(E′) ≈

(
inf I − ln tβ−1

)
Π

(
t

2
, t

)
≈
(
inf I − ln tβ−1

) sin(πα)

π

∫ 1
2

0

(
u

1− u

)α
du

u
.6

We should note that all of this boils down to writing (in a slightly justi�ed manner)

EE [M(t/2, t)] ≈ EE
[
M

(
16,

t

2

)](
1−Π

(
t

2
, t

))
+ Π

(
t

2
, t

)
EE
[
Emin

(
t

2

)]
. (B.6)

6Note that we ought not use the convergence result established at n→∞ in conjunction with the �nite n correction but it is our best bet.
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