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0.1 Notations
• M`pX q : The set of positive measures over X

• M1
`pX q : The set of probability measures over X

•
n

: the vector of size n with all entries equal to 1

• ⌃

n

: the set of probability vectors of size n i.e. ⌃

n

:

“

 

a P Rn

` :

∞

i

a
i

“ 1

(

• a✏b : for a P ⌃

n

, b P ⌃

m

is the matrix whose coefficients are pa
i

b
j

q

iPt1,...,nu,jPt1,...,mu

• u✓ v “ pu
i

v
i

q P Rn the entrywise multiplication between two vectors pu, vq P

Rn

ˆ Rn
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Well known for its applications in economy, physics, and in many other fields
of science, Optimal Transport of measures is an ancient problem, originally for-
mulated by Monge in 1791 : his problem was to move parcels of land from one
place to another, while minimizing the efforts and time needed. Later, in the mid-
dle of the twentieth century, Optimal Transport was developed by Kantorovitch
(a mathematician who won a Nobel prize in economy) to be applied in economy,
and was thus given a mathematical definition amenable for mathematical analysis
and numerical computation. Kantorovitch’s formulation corresponds to, given two
measures over two spaces, finding a probability measure over the product space,
that minimizes a global cost. This probability measure found corresponds intu-
itively to the mass of land moved in Monge’s example: d px, yq is the infinitesimal
element of land moved from rx, x ` dxs to ry, y ` dys, and the cost we want to
minimize is

≥

cpx, yqd px, yq with cpx, yq being the cost in time or energy it takes
to move a unit of land from x to y.

In the last two decades, the field of optimal transport has been very active in
theory, numerical methods, for its applications in nearly every optimization prob-
lem, and its various bonds with differential equations, statistical physics, economy,
machine learning and imaging. Hence, OT is a mathematical tool that finds appli-
cation in mathematics itself (functional analysis, differential geometry), as well as
in other domains (economy or imaging for instance).

The number of parameters used in practice makes optimal transport a very hard
problem to solve. For instance, in image processing, it is used to interpolate two
images, that can be seen as histograms and thus probability measures. However,
the very high number of variables makes it hard to compute. Hence the need of
effective methods to solve numerically this problem.

We will expose here numerical computational methods for solving this problem
in particular cases (discrete and semi-discrete OT), after introducing generalities
and theoretical bases.

These methods will be from different kinds: stochastic ones, to cope with the
very high number of parameters, the use of entropic regularization to approximate
solutions effectively, etc.
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Chapter 1

Introduction to Optimal transport,
theoretical foundations

1.1 Monge problem
The optimal assignment problem is one of the fundamental combinatorial opti-
mization problems, which aims at finding the best assignment between two lists of
points, minimizing a quantity (the cost). It is the first historical version of Optimal
Transport : given a number of tasks and agents, one wants to assign exactly one
task to each agent, minimizing the total cost of the assignment.

Let pC
i,j

q1§i,j§n

be a cost matrix, C
i,j

being the cost of moving a unit from point
i to point j.

The goal is to find � P S
n

minimizing the total cost
∞

C
i,�piq. This is the optimal

assignment problem.

It can be generalized into Monge’s problem, where the number of points at the
arrival is different from the number of points we want to assign: the cost matrix
is hence not a square matrix anymore, but pC

i,j

q1§i§n,1§j§m

. We do not seek a
permutation anymore (impossible anyway if n ‰ m, it is Kantorovitch’s problem).
Here is the new formulation of the problem:
Definition 1. Let X and Y be two sets of points, and let ↵ and � be two discrete
probability measures over X and Y respectively i.e

↵ “

n

ÿ

i“1

a
i

�
x

i

� “

m

ÿ

j“1

b
j

�
y

j

n

ÿ

i“1

a
i

“

m

ÿ

j“1

b
j

“ 1

The Monge problem seeks a map T : tx1, . . . , xn

u Ñ ty1, . . . , ymu called a Monge
map such that

@j P t1, . . . ,mu b
j

“

ÿ

i : T px
i

q“y

j

a
i

which condition will be denoted as T#↵ “ � . T must minimize a transportation
cost defined by a function cpx, yq defined over X ˆ Y

min

T

#

n

ÿ

i“1

cpx
i

, T px
i

qq : T#↵ “ �

+
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The optimal assignment problem corresponds to a Monge problem where n “ m
and C

i,j

“ cpx
i

, y
j

q.
Observe that a Monge map may not always exist in some cases. For example,

if n “ 2, m “ 3 and ↵ and � are uniformly distributed then there is no map since
halves cannot be summed into thirds.

Definition 2 (Push-forward operator). Given a map T : X Ñ Y, we define the
pushforward operator T# : MpX q Ñ MpYq . For a discrete measure ↵ “

∞

n

i“1 ai�xi

The push-forward measure is defined as

T#↵ “

n

ÿ

i“1

a
i

�
T px

i

q.

For general measures the push-forward measure � “ T#↵ P MpYq is defined
such that

@h P CpYq

ª

Y
hpyqd�pyq “

ª

X
hpT pxqqd↵pxq.

The push-forward operator’s action upon a measure is to be interpreted as
moving each mass element in the space so that we end up with a new measure
according to the new distribution of mass. Notice that this operation preserves the
total mass, therefore, the push-forward of a probability measure is still a probability
measure.

Proposition 1. Let ↵ and � be be two measures over Rd that have densities ⇢
↵

and
⇢
�

with respect to the Lebesgue measure. Let T be a smooth bijection of Rd such
that � “ T#↵ then we have the relation, thanks to the change of variable formula:

⇢
↵

pxq “ | detpJ
T

pxqq|⇢
�

pT pxqq,

where J
T

is the Jacobian matrix of T

We can now formulate Monge’s problem for arbitrary measures.
Given two measures ↵ and � over X and Y respectively and a cost function

c : X ˆ Y Ñ R, Monge’s problem seeks a map T : X Ñ Y such that T#↵ “ �
minimizing

ª

X
cpx, T pxqqd↵pxq

The similarity with the previous formulation is obvious, only sums have turned
into integrals. In case ↵ and � have the same total mass and no atoms, a solution
to this problem always exists since their mass would be distributed in infinitesimal
amounts on their respective spaces [Brenier, 1991].

We now introduce a relaxed version of the problem where atomic mass can be
split before mapping.
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1.2 Kantorovich relaxation
The previous formulation of the assignement problem and Monge’s problem has
quite a few shortcomings. The assignment problem can only be considered for
two equally sized sets of points, it’s generalization, Monge’s problem is slightly
better but can also lead to problems that accept no solution that satisfies the mass
conservation constraint. Additionally, these problems, allowing no splitting of mass,
are combinatorial which makes them difficult to solve in a practical setting.

Kantorovich’s relaxation gets rid of the fact that each source point can only
be assigned to a single destination . Kantorovich proposes to allow the mass of a
single point to be split and dispatched to potentially multiple destinations. In the
discrete case, instead of a map sending each point to some definite location, the
sought solution will be a coupling matrix P P Rnˆm

` where an entry P
i,j

describes
the fraction of mass moving from location x

i

to y
j

using previous notations.

Given two discrete measures a P Rn and b P Rm, the set of admissible coupling
matrices is

Upa, bq :“
 

P P Rnˆm

` : P
m

“ a and P T

n

“ b
(

The matrix P is a measure upon the product space which has a and b as
marginals with respect to each space, this is the mass conservation constraint and is
expressed as P

m

“ a and P T

n

“ b, indeed P
m

is the vector which has the sums
of P ’s lines for entries and P T

n

the sums of columns. An entry P
ij

represents the
fraction of mass moving from x

i

to y
j

.
Hence, Kantorovitch’s optimal transport consists in finding P P Upa, bq mini-

mizing the cost
ÿ

P
ij

C
ij

“ xP,Cy (1.1)

for a given cost matrix C P Rnˆm.
This formulation has the additional advantage of being symmetrical, indeed, if

we have P P Upa, bq then also P T

P Upb, aq and if P is a minimizer for (1.1), then
it is also one for the symmetrical problem.

Thus stated, this is a convex optimization problem, in fact it is a linear problem
for which many solvers are available.

For arbitrary measures ↵ and �, we can write this problem as the minimization
on

Up↵, �q “

 

⇡ P M1
`pX ˆ Yq : PX#⇡ “ ↵, PY#⇡ “ �

(

where PX and PY are the projections on X and Y respectively.

Proposition 2. If c is a continuous function, a minimizer always exists.

Proof. We suppose here that X and Y are compact. Let Z :

“ X ˆ Y , a compact
hence, and E “ CpZq, a normed vector space for the infinite norm (Z is compact).
We know that M1

`pZq Ä B
E

?

p0, 1q the closed unit ball of E?. According to Banach-
Alaoglu’s theorem, the ball is compact. Furthermore, M1

`pZq is closed. Hence,
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it is compact, and the minimizer exists (⇡ P M1
`pZq Ñ

≥

XˆY cpx, yqd⇡px, yq is
continuous for the weak topologies of both spaces).

From now on, given two measures ↵ and � and the cost function c, we will
denote the optimal cost as :

L
c

p↵, �q

:

“ min

⇡PUp↵,�q

ª

XˆY
cpx, yqd⇡px, yq.

The Kantorovich problem can be reformulated in the formalism of random vari-
ables, indeed it is equivalent to

L
c

p↵, �q “ min

X,Y

tEpX,Y qpcpX, Y qq : X „ ↵, Y „ �u

where pX, Y q is a couple of random variables over X ˆ Y and X „ ↵ means that
the law of X seen as a measure over X corresponds to ↵ and same for Y with �.

1.3 Metric properties of optimal transport
Optimal transport allows us to define a distance between probability distributions
when the cost matrix satisfies some specific properties

Proposition 3. Let C be a cost matrix such that C “ Dp

“ pDp

i,j

q

i,j

P Rnˆn for
some p • 1 where D P Rnˆn

` is a distance over t1, . . . , nu i.e satisfies

(i) D is symmetrical

(ii) D
i,j

“ 0 ñ i “ j

(iii) @ 1 § i, j, k § n , D
i,k

§ D
i,j

` D
j,k

Then

W
p

pa, bq :“ L
D

p

pa, bq1{p

defines a distance over ⌃

n

called the p-Wasserstein distance

Proof. Symmetry follows from the symmetry of Kantorovich’s problem and Dp ,
moreover, we have W

p

pa, aq “ 0 since the optimal transport plan for this problem
will be P “ diagpaq which has zero cost since Dp has a null diagonal. All other
non diagonal coefficients of Dp are strictly positive, therefore for all a ‰ b we
have W

p

pa, bq ° 0. Proving the triangle inequality calls for some calculations, let
a, b, c P ⌃

n

and P and Q be two optimal transport plans between a and b, and b

and c respectively and define b
j

:

“

#

b
j

if b
j

° 0

1 otherwise
We define S :

“ P diagp1{bqQ P Rnˆn

` such that S P Upa, cq. Indeed, we have

S
n

“ P diagp1{bqQ
n

“ P diagp1{bqb “ P pb{bq “ P
Supppbq “ a
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where
Supppbq is the indicator vector of the support of b, this is true because

P
Supppbq “ P

n

“ a since P
i,j

“ 0 for any j such that b
j

“ 0. Conversely,
we have

ST

n

“ QT

diagp1{bqP T

n

“ QT

pb{bq “ QT

Supppbq “ c

for the same reasons.
Checking the triangle inequality, we have

W
p

pa, cq “

ˆ

min

PPUpa,cq
xP,Dp

y

˙1{p
§ pxS,Dp

yq

1{p

“

˜

ÿ

ik

Dp

ik

ÿ

j

P
ij

Q
jk

b
j

¸1{p

§

˜

ÿ

ijk

pD
ij

` D
jk

q

p

P
ij

Q
jk

b
j

¸1{p

§

˜

ÿ

ijk

Dp

ij

P
ij

Q
jk

b
j

¸1{p

`

˜

ÿ

ijk

Dp

jk

P
ij

Q
jk

b
j

¸1{p

“

˜

ÿ

ij

Dp

ij

P
ij

ÿ

k

Q
jk

b
j

¸1{p

`

˜

ÿ

jk

Dp

jk

Q
jk

ÿ

i

P
ij

b
j

¸1{p

“

˜

ÿ

ij

Dp

ij

P
ij

¸1{p

`

˜

ÿ

jk

Dp

jk

Q
jk

¸1{p

“ W
p

pa, bq ` W
p

pb, cq

Where the first inequality comes from the suboptimality of S, the second is the
triangle inequality for D and the third is Minkowski’s inequality.

Once more, the p-Wasserstein distance’s definition can be extended to the case
of arbitrary measures as follows.

Proposition 4. Assuming X “ Y, let c be a cost function such that cpx, yq “

dpx, yq

p where d is a distance over X i.e satisfies

(i) d is symmetrical, dpx, yq “ dpy, xq • 0

(ii) dpx, yq “ 0 ñ x “ y

(iii) @ x, y, z P X , dpx, zq § dpx, yq ` dpy, zq

Then

W
p

p↵, �q

:

“ L
d

p

p↵, �q

1{p

defines a distance over M1
`pX q called the p-Wasserstein distance

We do not prove this proposition, the proof can be found in [Santambrogio,
2017].
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Proposition 5 (Translation invariance). Let X be an Euclidean space X “ Rd

, d P N?, for the ground cost cpx, yq “ kx ´ yk2, translations in the Wasserstein
distance can be factored, i.e, denoting T

⌧

: x fiÑ x ´ ⌧ the translation by ⌧ P Rd, we
have

W2pT⌧#↵, T⌧

1#�q

2
“ W2p↵, �q

2
´ 2x⌧ ´ ⌧ 1,m

↵

´ m
�

y ` k⌧ ´ ⌧ 1k2

where m
↵

:

“

≥

X xd↵pxq P Rd and m
�

:

“

≥

X xd�pxq P Rd are the means of ↵ and �
respectively. It follows that one has the decomposition

W2p↵, �q

2
“ W2p↵, �q

2
` km

↵

´ m
�

k2

where ↵ and � are the centered measures ↵ “ T
m

↵

#↵ and � “ T
m

�

#�

Proof. Let ⇡ be an optimal coupling for the pair p↵, �q, we have

W2pT⌧#↵, T⌧

1#�q

2
“

ª

X 2

kpx ´ ⌧q ´ py ´ ⌧ 1
qk2 d⇡px, yq

“

ª

X 2

kpx ´ yq ´ p⌧ ´ ⌧ 1
qk2 d⇡px, yq

“

ª

X 2

kx ´ yk2 ´ 2x⌧ ´ ⌧ 1, x ´ yy ` k⌧ ´ ⌧ 1k2 d⇡px, yq

“ W2p↵, �q

2
´ 2x⌧ ´ ⌧ 1,

ª

X 2

px ´ yqd⇡px, yqy ` k⌧ ´ ⌧ 1k2

“ W2p↵, �q

2
´ 2x⌧ ´ ⌧ 1,m

↵

´ m
�

y ` k⌧ ´ ⌧ 1k2

The decomposition is the particular case ⌧ “ m
↵

and ⌧ 1
“ m

�

.

Let’s remark that for instance, Wp

p

p�
x

, �
y

q “ dpx, yq, hence Wp

p

p�
x

, �
y

q ›Ñ

0 ñ dpx, yq ›Ñ 0. This is an illustration of the fact that Wasserstein’s distances
are a way to quantify weak convergence.

Definition 3. Let p↵
k

q,↵ P M`
1 pX q.

p↵
k

q converges weakly towards ↵ if for all g P CpX q, we have
≥

X gd↵
k

›Ñ

≥

X gd↵

This convergence can be shown to be equivalent to W
p

p↵
k

,↵q ›Ñ 0

[Villani, 2009]
Hence, Wasserstein metric is a natural way to compare two probability distri-

butions, whether they are with continuous density, or discrete, where the second is
derived from the first with small perturbations. For instance, W1 is widely used in
practice to compare histograms (color histograms of two images, ...). If one image
is the other but after transmission, we can compute the distance between these
images, to evaluate the “noise”.

9



1.4 Dual Problem
As a constrained convex minimization problem, the Kantorovich problem can be
paired with a dual problem which will be a concave maximization problem. We
now give this new formulation and it’s relationship with the primal problem.

Proposition 6. The dual of the previous problem is :

L
C

pa, bq “ max

pf,gqPRpa,bq
xf, ay ` xg, by

where

Rpa, bq :“ tpf, gq P Rn

ˆ Rm

: @ 1 § i § n 1 § j § m, f
i

` g
j

§ C
i,j

u

Proof. Including the mass constraint through auxiliary potentials f and g we have
:

L
C

pa, bq “ min

P•0
max

pf,gqPRnˆRm

xC, P y ` xa ´ P
m

, fy ` xb ´ P T

n

, gy

“ max

pf,gqPRnˆRm

xa, fy ` xb, gy ` min

P•0
xC ´ f T

m

´

n

gT , P y

where the reordering of the min and max operators is justified by the existence of
a solution for the linear program. We have

min

P•0
xQ,P y “

#

0 if Q • 0

´8 otherwise

So the last term in the previous formula is an infinite penalty as soon as the
constraint is violated and the original constraint over P is equivalent to that over
f and g given by Rpa, bq.

A classical result about optimization problems gives the following property,
called dual formulation of OT. (Santambrogio, 2015, Optimal Transport for applied
mathematicians).

Proposition 7. We define

Rp↵, �q “

 

pf, gq P RX
ˆ RYmeasurable : @px, yq, fpxq ` gpyq § cpx, yq

(

.

We have

L
C

p↵, �q “ max

"

ª

X
fd↵ `

ª

Y
gd� : pf, gq P Rp↵, �q

*

The easier part of the proof of that result is that the right hand part of the
equality is a lower bound to the left hand side.
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1.5 Special cases
In most cases, computing optimal transport plans and distances requires numerical
methods, however, in some cases, it can be done formally. We give a few examples
of such cases before we go on.

1.5.1 Arbitrary measures in one dimension

Sometimes, optimal transport applications only require the one-dimensional case,
for instance, it is the case when comparing the histograms of two grayscale images.
The solution is then quite straightforward.

Definition 4. Let ↵ be a probability measure on R we define it’s cumulative func-
tion as

@x P R, C
↵

pxq

:

“

ª

x

´8
d↵

It is a function C
↵

: R Ñ r0, 1s, we also define it’s pseudo-inverse C´1
↵

: r0, 1s Ñ

R Y t´8,`8u by

@r P r0, 1s , C´1
↵

prq “ min

x

tx P R Y t´8,`8u : C
↵

pxq • ru

For p • 1, for any probability measures ↵, � P M1
`pRqwe have

W
p

p↵, �q “

��C´1
↵

´ C´1
�

��p

L

ppr0,1sq “

ª 1

0

|C´1
↵

prq ´ C´1
�

prq|

pdr

For p “ 1 we have more simply

W1p↵, �q “ kC
↵

´ C
�

k
L

1pRq “

ª

R
|C

↵

pxq ´ C
�

pxq|dx “

ª

R

ˇ

ˇ

ˇ

ˇ

ª

x

´8
dp↵ ´ �q

ˇ

ˇ

ˇ

ˇ

dx

Then, an optimal transport plan T such that T#↵ “ � is given by T “ C´1
�

˝ C
↵

Intuitively, the optimal coupling moves each point where it would give the same
value for C

�

as it does for C
↵

1.5.2 Distance between Gaussians

The popular and widely used Gaussian distributions provide interesting instances
of optimal transport. The optimal transport plan between two such distributions
can be directly found according to their parameters in any dimension.

Let ↵ and � be two Gaussian probability distributions over Rd, ↵ “ N pm
↵

,⌃
↵

q and � “

N pm
�

,⌃
�

q and let ⇢
↵

and ⇢
�

be their respective densities with respect to Lebesgue’s
measure, let T be the mapping

T : x fiÑ m
�

` Apx ´ m
↵

q

where

11



A “ ⌃

´ 1
2

↵

´

⌃

1
2
↵

⌃

�

⌃

1
2
↵

¯

1
2

⌃

´ 1
2

↵

“ AT

such that T#⇢↵ “ ⇢
�

Indeed, we can verify that :

⇢
�

pT pxqq “ detp2⇡⌃
�

q

´ 1
2
expp´

1

2

xT pxq ´ m
�

,⌃´1
�

pT pxq ´ m
�

qyq

“ detp2⇡⌃
�

q

´ 1
2
expp´

1

2

xx ´ m
↵

, AT

⌃

´1
�

Apx ´ m
↵

q

“ detp2⇡⌃
�

q

´ 1
2
expp´

1

2

xx ´ m
↵

,⌃´1
↵

px ´ m
↵

qyq

Because
AT

⌃

´1
�

A “ ⌃

´ 1
2

↵

´

⌃

1
2
↵

⌃

�

⌃

1
2
↵

¯

1
2

⌃

´ 1
2

↵

⌃

´1
�

⌃

´ 1
2

↵

loooooomoooooon

ˆ

⌃
1
2
↵

⌃
�

⌃
1
2
↵

˙´1

´

⌃

1
2
↵

⌃

�

⌃

1
2
↵

¯

1
2

⌃

´ 1
2

↵

“ ⌃

´ 1
2

↵

⌃

´ 1
2

↵

“ ⌃

´1
↵

Moreover, since T is linear, the Jacobian of this mapping can be easily calculated

| detpJ
T

pxqq| “ | detA| “

ˆ

det⌃

�

det⌃

↵

˙

1
2

since we have verified the relation given in proposition 1, we have established
that T#⇢↵ “ ⇢

�

Further calculations can yield that T achieves optimal cost when the latter is
kx ´ yk2, hence the 2-Wasserstein distance between two such measures is

W2
2 p↵, �q “ km

↵

´ m
�

k2 ` Bp⌃

↵

,⌃
�

q

2

where B is the Bures metric between two positive definite matrices defined by

Bp⌃

↵

,⌃
�

q

2
:

“ tr

ˆ

⌃

↵

` ⌃

�

´ 2

´

⌃

1
2
↵

⌃

�

⌃

1
2
↵

¯

1
2

˙

which, in the particular case of diagonal matrices ⌃
↵

“ diagprq and ⌃

�

“ diagpsq

for r, s P pR`
˚ q

d simplifies to

Bp⌃

↵

,⌃
�

q “

��?

r ´

?

s
��
2

where
?

¨ is the entrywise square root.
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Chapter 2

Discrete Optimal Transport

The section presents efficient numerical methods for OT, in the discrete case (↵
and � discrete measures) a and b, that we simply write as vectors of size m and n
respectively. In the following paragraph, the index i is for a, and j for b.

The method consists in adding an entropic term to the quantity minimized, to
make the problem a �-convex one. But, instead of using a direct gradient descent
(which can anyway only be easily implemented on the whole space, which is not
the case, we minimize on Upa, bq), Sinkhorn’s algorithm finds a minimizer of the
entropicly regularized OT (with an ✏ term) with iterative computations.

Definition 5. For P P Upa, bq, HpP q :“ ´

∞

P
i,j

plogpP
i,j

q ´ 1q is the discrete
entropy of a coupling matrix.

Proposition 8. rHpP q “ ´plogpP
i,j

q ´ 1q

i,j

and B

2HpP q “ ´ diagp1{P
i,j

q.
Hence, H is 1-strongly concave.

For ✏ ° 0, we note

L✏

C

pa, bq :“ min

PPUpa,bq
pxP,Cy ´ ✏HpP qq (2.1)

which is called the regularized problem, solving this problem yields an approx-
imate solution for the original problem. The additional entropy term favors the
solution maximizing the entropy, that is, the most diffuse coupling, which better
corresponds to observable reality when modeling actual phenomena like flows of
commodities or people in a market in economy.

The minimized quantity is ✏-convex, Upa, bq is closed, so a minimizer always
exists. Thanks to strong convexity and the convexity of Upa, bq, it is unique. We
note P

✏

the minimizer.
The use of the entropy as a regularizing term is an arbitrary choice, another

possibility is to use the Kullback-Leibler divergence which we will be introducing a
little later.

Proposition 9. The unique solution P
✏

of 2.1 converges to the optimum with max-
imal entropy when ✏ Ñ 0 i.e

P
✏

✏Ñ0
››Ñ argmin

P

t´HpP q, P P Upa, bq, xP,Cy “ L
C

pa, bqu .

13



Hence, L✏

C

pa, bq Ñ L
C

pa, bq
Also P

✏

✏Ñ8
›››Ñ a ✏ b.

Proof. Let p✏
l

q

l

be a sequence such that ✏
l

lÑ8
›››Ñ 0 and ✏

l

° 0. Let P
l

be the solution
of 2.1 for ✏ “ ✏

l

. Upa, bq is bounded so we can extract a subsequence from p✏
l

q

l

( which we will not relabel for simplicity) such that P
l

Ñ P ? with P ?

P Upa, bq
because Upa, bq is closed.

Let P be a solution to the original problem, i.e xC, P y “ L
C

pa, bq. By subopti-
mality of P

l

for the original problem, we have :

0 § xC, P
l

y ´ xC, P y

And by suboptimality of P for the regularized problem with ✏ “ ✏
l

we have :

xC, P
l

y ´ ✏
l

HpP
l

q § xC, P y ´ ✏
l

HpP q

Therefore, we have

0 § xC, P
l

y ´ xC, P y § ✏
l

pHpP
l

q ´ HpP qq

H being continuous, taking the limit for l Ñ 8 in this expression yields xC, P ?

y “

xC, P y. Moreover, dividing by ✏
l

in the last inequality and taking the limit gives
HpP q § HpP ?

q ñ ´HpP ?

q § ´HpP q so P ? is actually a solution for

argmin

P

t´HpP q, P P Upa, bq, xP,Cy “ L
C

pa, bqu

By strict convexity of H the solution P ?

0 of this problem is unique, so P ?

“ P ?

0

and the original sequence P
l

is convergent.
For ✏ Ñ 8, a similar method shows that the problem becomes equivalent to

min

PPUpa,bq
´HpP q

the solution of which is a ✏ b.

Thus, for a small regularization, the solution converges to the optimal coupling
that maximizes the entropy, whereas for a large regularization, we simply get the
coupling that maximizes entropy while still being admissible.

2.1 Regularized Dual
Proposition 10. The dual problem associated to the previously introduced regular-
ized problem

L✏

C

pa, bq “ min

PPUpa,bq
xP,Cy ´ ✏HpP q

is

L✏

C

pa, bq “ max

fPRn

,gPRm

xf, ay ` xg, by ´ ✏xef{✏, Keg{✏
y

We defer the proof because it relies on that of the next proposition.

14



2.2 Sinkhorn’s algorithm
Definition 6. Given a cost matrix C P Rnˆm and a positive number ✏ ° 0 we
define the Gibbs kernel K associated to C as

K
i,j

:

“ exp´C
i,j

{✏

Proposition 11. The solution to the regularized problem L✏

C

pa, bq :“ min

PPUpa,bqpxP,Cy´

✏HpP qq is unique and has the form

@1 § i § n 1 § j § m, P
i,j

“ u
i

K
i,j

v
j

where K is the Gibbs kernel associated to C and the given ✏ in the problem, for two
scaling variables pu, vq P Rn

` ˆ Rm

` .

Proof. We first write the Lagrangian according to the problem’s constraints (P P

Upa, bq) by introducing the dual variables f P Rn

` and g P Rm

` , we have

⇤pP, f, gq “ xP,Cy ´ ✏HpP q ´ xP
m

´ a, fy ´ xP T

n

´ b, gy

When evaluating at an optimum, we have

@i, j
B⇤pP, f, gq

BP
ij

“ 0

Effectively differentiating yields

@i, j
B⇤pP, f, gq

BP
ij

“ C
i,j

` ✏ logpP
i,j

q ´ f
i

´ g
j

Finally, solving for an optimal P we get P
i,j

“ efi{✏e´C

i,j

{✏egj{✏ i.e efi{✏K
i,j

egj{✏

which matches the enunciated form with positive vectors u and v.

proof of proposition 10. We continue from the proof of proposition 11 having linked
the optimal solution P to the dual potentials f and g as P

i,j

“ efi{✏e´C

i,j

{✏egj{✏.
Substituting the optimal P as a function of f and g in the previously calculated
Lagrangian we get a function :

f, g fiÑ xdiagpef{✏
qK diagpeg{✏

q, Cy ´ ✏Hpdiagpef{✏
qK diagpeg{✏

qq

Because P
m

´ a “ P T

n

´ b “ 0

We also have

´✏Hpdiagpef{✏
qK diagpeg{✏

qq “ ´✏HpP q “ ✏xP, logP ´

nˆm

y

“ xP, ✏ plogP ´

nˆm

q

looooooooomooooooooon

:“M

y

And for 1 § i § n , 1 § j § m we have

15



M
i,j

“ ✏ log
`

efi{✏e´C

i,j

{✏egj{✏˘
´ ✏ “ f

i

` g
j

´ C
i,j

´ ✏

Therefore

´✏Hpdiagpef{✏
qK diagpeg{✏

qq “ xdiagpef{✏
qK diagpeg{✏

q, f T

m

`

n

gT ´ C ´ ✏
nˆm

y

“ ´xdiagpef{✏
qK diagpeg{✏

q, Cy

` xf, ay ` xg, by ´ ✏xef{✏, Keg{✏
y

Plugging this all back into the Lagrangian, we get the desired result.

The obtained factorization of P ’s entries in proposition 11 links it to the solution
of dual problem, it will also allow us to define an iterative algorithm to solve the
regularized problem now.

The previous result can be rewritten in matrix form as

P “ diagpuqK diagpvq

We can now reexpress the mass conservation constraints for u and v as

diagpuqKv “ a and diagpvqKTu “ b

.

Hence, the problem now is to find u and v such that

u ✓ Kv “ a and v ✓ KTu “ b

where ✓ is the entrywise multiplication , this problem is commonly known as the
“matrix scaling problem”.

An intuitive way of solving it is an iterative one. The idea is to alternatively
update u and v to satisfy each constraint in the last formula, Sinkhorn’s algorithm
is thus defined by initializing up0q

“

m

and vp0q
“

n

and iterating :

upl`1q
“

a

Kvplq and vpl`1q
“

b

KTupl`1q

where division in meant entrywise. The initialization choice made here is arbitrary,
the algorithm only needs to start from positive vectors. Note that different initial-
izations can lead to different solutions. In fact, the sought vectors are not unique
since, if u and v are two such vectors then so are �u and v{� for any positive �.
However, it turns out that this algorithm converges.

This algorithm was introduced with a proof of convergence by [Sinkhorn, 1964]
it was early used to scale a matrix to make it fit desired marginals. It was quickly
adopted in the field of economics to approximate solutions for optimal transport
problems and has recently received renewed attention in data sciences, machine
learning and imaging.

Sinkhorn’s convergence analysis is simpler using Hilbert projective metric on
Rn

`,˚ (positive vectors).

16



Proposition 12 (Hilbert metric). The application defined by

@u, v P Rn

`,˚ ˆ Rn

`,˚, dHpu, vq

:

“ logmax

i,j

u
i

v
j

u
j

v
i

is a metric on the projective cone Rn

`,˚{„ where the relationship „ is defined by
u „ v ñ Dr ° 0, u “ rv. The projective cone is a complete metric space for
this distance.

Proof. It is easy to see that the application is symmetrical and that for u, v P

Rn

`,˚ ˆ Rn

`,˚ such that u “ rv with r ° 0 we have dHpu, vq “ 0.
We notice that, if for some i, j we have u

i

v

j

u

j

v

i

† 1 then u

j

v

i

u

i

v

j

° 1 which ensures
that the application is positive to begin with. It also implies that, if dHpu, vq “ 0

then @i, j u

i

v

j

u

j

v

i

“ 1 ñ

u

i

v

i

“

u

j

v

j

“ r ñ u “ rv.
Finally, for u, v, w P

`

Rn

`,˚
˘3 there exist integers k and l such that

dHpu, wq “ log

u
k

w
l

u
l

w
k

“ log

ˆ

u
k

v
l

u
l

v
k

ˆ

v
k

w
l

v
l

w
k

˙

“ log

u
k

v
l

u
l

v
k

`log

v
k

w
l

v
l

w
k

§ dHpu, vq`dHpv, wq

which establishes the triangle inequality.

The following theorem will play a critical role in proving the convergence of
Sinkhorn’s algorithm

Theorem 1. Let M P Rnˆm

`,˚ be a positive matrix, then for u, v P Rn

`,˚ ˆ Rn

`,˚ we
have

dHpMu,Mvq § �pMqdHpu, vq where

$

’

&

’

%

�pMq

:

“

?

⌘pMq´1
?

⌘pMq`1
† 1

⌘pMq

:

“ max

i,j,k,l

M

i,k

M

j,l

M

j,k

M

i,l

i.e M is a strict contraction on the cone of positive vectors.

This fundamental theorem was proved by [Birkhoff, 1957].

Theorem 2 (Convergence of Sinkhorn’s algorithm). Regarding Sinkhorn’s itera-
tion, we have puplq, vplq

q Ñ pu?, v?q with rates of convergence (measured through the
Hilbert metric)

dHpuplq, u?

q “ Op�pKq

2l
q, dHpvplq, v?q “ Op�pKq

2l
q

And denoting P plq
:

“ diagpuplq
qK diagpvplq

q, we also have

dHpuplq, u?

q §

dHpP plq
m

, aq

1 ´ �pKq

dHpvplq, v?q §

dHpP plqT
n

, bq

1 ´ �pKq

Proof. We notice that, for any vectors u, v P Rn

`,˚ ˆ Rn

`,˚ we have

dHpu, vq “ dHpu{v,
n

q “ dHp

n

{u,
n

{vq

17



In fact, for any w P Rn

`,˚ we have dHpu, vq “ dH pw ✓ u, w ✓ vq. Thus, we have
thanks to Theorem 1

dHpupl`1q, u?

q “ dH
´ a

Kvplq ,
a

Kv?

¯

“ dH
`

Kvplq, Kv?
˘

§ �pKqdH
`

vplq, v?
˘

Similarly, we have

dHpvplq, v?q “ dH

ˆ

b

KTuplq ,
b

KTu?

˙

“ dH
`

KTuplq, KTu?

˘

§ �pKT

qdH
`

uplq, u?

˘

and since �pKT

q “ �pKq we end up with

dHpupl`1q, u?

q § �pKq

2dH
`

uplq, u?

˘

and dHpvplq, v?q § �pKq

2dH
`

vpl´1q, v?
˘

By iterating these inequalities, we establish the theorem’s first claim. Moreover,
using the triangle inequality we have

dHpuplq, u?

q § dH
`

upl`1q, uplq˘
` dH

`

upl`1q, u?

˘

§ dH
´ a

Kvplq , u
plq

¯

` �pKqdH
`

uplq, u?

˘

“ dH
`

a, uplq ✓
`

Kvplq˘˘

` �pKqdH
`

uplq, u?

˘

and since uplq ✓
`

Kvplq˘
“ P plq

n

rearranging the inequality gives the second part
of the theorem (the second inequality is obtained similarly)

Although the convergence is geometrical, the multiplication of matrices is here
very costly. An idea is to use the semi-dual problem and a stochastic averaged
method, which will allow us to tackle the semidiscrete problem later on.

2.3 Illustration Of Sinkhorn’s Method
In this section, we illustrate the previous method with examples taken from our
codes.
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Figure 2.1: Two discrete mass distributions

The figure above shows two discrete mass distributions, let a be the blue and
b the red, we want to solve the optimal transportation problem with these two
measures.

Figure 2.2: The mapping of the optimal coupling computed through Sinkhorn

Each segment is placed where the mass transported between its extremities is
not negligible, dashed segments represent smaller mass movement.
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Chapter 3

Semi-discrete Optimal Transport

In this, chapter, we consider the optimal transport problem between a discrete
measure and an arbitrary one, especially one having a density with respect to the
Lebesgue measure. This leads to interesting geometrical interpretations in small
dimensions and falls within the scope of application of stochastic optimization al-
gorithms in higher dimensions. We first need to introduce the notion of c-transform
which is crucial for what follows.

3.1 c-transform and c-transform, semi-dual prob-
lem

We define the indicator function for a constraint given as a set C as

◆Cpxq “

#

0 if x P C
`8 otherwise

this will be used, in constrained optimization problems, to incorporate the con-
straint into the function being optimized as an infinite penalization as soon as the
constraint is violated.

In the first chapter, proposition 7 we introduced the dual problem for arbitrary
measures ↵, � :

L
C

p↵, �q “ max

"

ª

X

fd↵ `

ª

Y

gd� : pf, gq P Rp↵, �q

*

which we can reformulate thanks to the indicator function as

max

pf,gq
Epf, gq

:

“

ª

X
fpxqd↵pxq `

ª

Y
gpyqd�pyq ´ ◆Rp↵,�qpf, gq

where Rp↵, �q “

 

pf, gq P RX
ˆ RY measurable : @px, yq, fpxq ` gpyq § cpx, yq

(

The idea of c-transform is to define new functions by minimizing over f and g
alternatively as follows

@y P Y , f c

pyq

:

“ inf

xPX
cpx, yq ´ fpxq
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@x P X , gcpxq

:

“ inf

yPY
cpx, yq ´ gpyq

where cpy, xq

:

“ cpx, yq. So that

f c

P argmax

g

Epf, gq and gc P argmax

f

Epf, gq

i.e fixing g, gc is optimal for the problem, and vice versa the other way around.
Given two function pf, gq within the constraint set, replacing them by pf c, gcq

improves the solution, but we have

f ccc

“ f c and gccc “ gc

which means that this improvement does not continue by repeating the procedure.
However, the c-tranform allows us to reformulate the problem, once more, as follows

L
c

p↵, �q “ max

fPCpX q

ª

X
fpxqd↵pxq `

ª

Y
f c

pyqd�pyq

“ max

gPCpYq

ª

X
gcpxqd↵pxq `

ª

Y
gpyqd�pyq

which is certainly more convenient since it is an optimization on a single potential
now. It is the semidual problem.

3.2 Semi-discrete problem
In the context of semi-discrete OT, where � is discrete i.e � “

∞

j

b
j

�
y

j

, with b P ⌃

m

it’s distribution vector, in this case, the dual problem reads :

L
c

p↵, �q “ max

"

ª

X

fd↵ ` xg, by : pf, gq P Rp↵, �q

*

We can use the definition of c-transform on g only needing to consider the
support of � :

@x P X , gcpxq

:

“ min

1§j§m

cpx, y
j

q ´ g
j

We have, as seen previously :

L
c

p↵, �q “ max

gPRm

Epgq

where

Epgq “

ÿ

j

g
j

b
j

`

ª

X
gcpxqd↵pxq

This is thus an optimization in finite dimension, named the semi-dual problem.
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Remark that in this case, @x P X , gcpxq “ min

j

pcpx, y
j

q ´ g
j

q, hence, if c is
continuous, the j P t1, ...,mu minimizing cpx, y

j

q ´ g
j

is locally constant.
This leads to the definition of the Laguerre cells :

L
g

py
j

q

:

“ tx P X : @k ‰ j, cpx, y
j

q ´ g
j

§ cpx, y
k

q ´ g
k

u

which induces a disjoint decomposition of X , enabling us to rewrite

Epgq “

ÿ

j

ª

L
g

py
j

q
pcpx, y

j

q ´ g
j

q d↵pxq ` xg, by

Computing the gradient of this function we have

@1 § j § m, rEpgq

j

“ b
j

´

ª

L
g

py
j

q
d↵pxq

For an optimal g, the gradient is zero and every x P L
g

py
j

q is mapped into y
j

agreeing with the previous remark.
The Laguerre cells (also called power diagrams) represent the regions into which

the points of the support of the discrete distribution are mapped. The mass con-
servation constraint imposes that each region encloses as much mass for ↵ as that
of the point from � it is mapped into.

3.3 Entropic Semi-discrete Formulation
Proposition 13. The min operator for vectors z P Rn can be smoothely approxi-
mated by :

min

✏

z “ ´✏ log
ÿ

i

e´z

i

{✏

for ✏ ° 0, and we have min

✏

z
✏Ñ0
››Ñ min z

Proof. Let i
min

“ argmin

i

z
i

(pick a random index that accomplishes the minimum
if not unique) and let A “ ti | z

i

“ min zu and k “ #A we suppose k ‰ n (the
result is otherwise clear), we write :
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min

✏

z “ ´✏ log
ÿ

i

e´z

i

{✏
“ ´✏ log

˜

e´min z{✏
˜

k `

ÿ

iRA
epmin z´z

i

q{✏
¸¸

“ min z ´ ✏ log

˜

k

˜

1 `

1

k

ÿ

iRA
epmin z´z

i

q{✏
¸¸

“ min z ´ ✏ logpkq

loomoon

✏Ñ0
››Ñ0

´ ✏ log

˜

1 `

1

k

ÿ

iRA
epmin z´z

i

q{✏
¸

looooooooooooooooomooooooooooooooooon

„
✏Ñ0 ✏

1

k

ÿ

iRA
epmin z´z

i

q{✏

looooooooomooooooooon

✏Ñ0
››Ñ0

Because min z ´ z
i

† 0 for i R A

Proposition 14. Let f be a continuous coercive convex function of Rn

“ X , then
inf f can be smoothly approximated by :

inf f “ lim

✏Ñ0
´✏ log

ˆ

ª

X
e´fpxq{✏dx

˙

Proof. We give a proof for the case n “ 1, the other cases can be treated similarly.

´✏ log

ˆ

ª

R
e´fpxq{✏dx

˙

“ ´✏ log

ˆ

e´ inf f{✏
ª

R
epinf f´fpxqq{✏dx

˙

“ inf f ´✏ log

ˆ

ª

R
epinf f´fpxqq{✏dx

˙

loooooooooooooooomoooooooooooooooon

:“⇠

✏

also

⇠✏ “ lim

⌘Ñ0
´✏ log

ÿ

kPZ
⌘ef

⌘

k

{✏

Where we defined f ⌘

k

“ sup

xPrk⌘,pk`1q⌘r inf f ´ fpxq

For some k0 we have f ⌘

k0
“ 0 therefore

⇠✏ “ lim

⌘Ñ0
´✏ log

˜

⌘

˜

1 `

ÿ

k‰k0

ef
⌘

k

{✏
¸¸

„

✏Ñ0 lim

⌘Ñ0
´✏ logp⌘q ´ ✏

ÿ

k‰k0

ef
⌘

k

{✏
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Remembering that, thanks to the function’s properties, the sum on the right is
finite and tends to 0 as ✏ tends to 0, by carefully making ✏ tend to 0 faster than ⌘,
we get that ⇠✏ ›Ñ 0 and the result follows.

The dual of the entropic problem between two arbitrary measures is:

L✏

c

p↵, �q

:

“ max

pf,gqPCpX qˆCpYq

ª

X
fpxqd↵pxq`

ª

Y
gpyqd�pyq´✏

ª

XˆY
e

fpxq`gpyq´cpx,yq
✏ d↵pxqd�pyq

As previously, we can effectuate a c-transform on one of the two variables, which
can be smoothed, minimizing explicitly while fixing one of the two variables:

@y P Y , f c,✏

pyq

:

“ ´✏ log

ˆ

ª

X
e

fpxq´cpx,yq
✏ d↵pxq

˙

@x P X , gc,✏pxq

:

“ ´✏ log

ˆ

ª

Y
e

gpyq´cpx,yq
✏ d�pyq

˙

In the semi-discrete case described previously, we have a simplified expression
of gc:

@x P X , gc,✏pxq

:

“ ´✏ log

˜

ÿ

j

e
g

j

´cpx,y
j

q
✏ b

j

¸

Hence, the quantity we want to minimize is:

E✏

pgq

:

“

ª

X
gc,✏pxqd↵pxq ´ xg, by

Which gradient can be computed as follows :

@1 § j § n,
BE✏

pgq

Bg
j

“ ´

ª

X
�✏

j

pxqd↵pxq ` b
j

where

�✏

j

pxq “

e
g

j

´cpx,y
j

q
✏

∞

k

e
g

k

´cpx,y
k

q
✏

is the smoothed indicator of the previously defined Laguerre cells.
Having brought the problem to the form of a function optimization, we can use

stochastic algorithms (see appendix) to solve it. The Laguerre cells start out as
a Voronoi tessellation with respect to the discrete measure’s support and whose
boundaries are progressively moved at each iteration until they match the solution
of the semi-discrete problem.
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3.4 Illustration
For now, let the spaces X and Y be R2, and the cost function the euclidean distance.
� is a discrete measure (which support is in r0, 1s

2, to simplify), and ↵ is the
probability measure which density is the sum of two Gaussian functions, centered
respectively in p0.2, 0.2q and p0.8, 0.8q with variance �2

“ 0.1.
The energy E we want to minimize is (in the dual problem, or the entropic

dual one) in the form Epxq

:

“ E
Y

pfpx, Y qq, which corresponds to what is described
in Appendix 1 . Hence, gradient descent methods can be used, which need the
computation of rE, done in the two previous sections.

Let’s take the " • 0 for the following example, the problem being the smoothed
one if " ° 0, and the semi dual one if " “ 0.

In either case,

@1 § j § n,
BE✏

pgq

Bg
j

“ ´

ª

X
�✏

j

pxqd↵pxq ` b
j

where

�✏

j

pxq “

e
g

j

´cpx,y
j

q
✏

∞

k

e
g

k

´cpx,y
k

q
✏

,

an expression still valid for " “ 0.
The computation of this gradient can thus be done with a method that is similar

to Monte-Carlo ones.

The initialization is done with a null vector g, giving us what is called the
Voronoi’s cells of the points defining the support of � (let’s name them py

j

q. Indeed,
the Laguerre cells (Voronoi cells in this particular case) map each point of R2 to
the closest y

j

This can be illustrated as follows:

Figure 3.1: Voronoi cells
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It is here clear that the entropic regularization is the smoothed semi-dual prob-
lem, becoming less and less smooth for small ", and for " ›Ñ 0 it becomes the
semi-dual problem.

With the two gaussians, instead of having Voronoi configuration, each cell is
modified so as to compensate for the accumulation of mass at the center of each
Gaussian.

Figure 3.2: Laguerre cells, corresponding to Voronoi cells above

Note that the cells color is not changed from Figure 3.1 to 3.2 for ✏ “ 0.01, so
that the evolution of each cell can be shown : mass tends to concentrate at the
center of each Gaussian.

We give another example where � is not uniformly distributed and where ↵ is
uniform over r0, 1s

2 so as to show how the cells adapt by shrinking or expand to
contain a mass corresponding to that of the dirac that is mapped into them.
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Figure 3.3: Voronoi and Laguerre cells for a non uniform � and uniform ↵

We can estimate the amount of mass in each cell by it’s size because we have
chosen ↵ to be uniform. One can see that the cells are in different sizes and this
gives a clue which dirac is being mapped into them.
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Chapter 4

Stochastic Optimization for Discrete
Optimal Transport

In chapter 2, we saw how the discrete optimal transport problem could be solved
thanks to Sinkhorn’s algorithm. Remember that each iteration of the said algorithm
requires matrix vector product which can be very costly, especially in large scale
problems where dimensions are high. We now introduce a stochastic approach to
the same problem as presented in [Aude et al., 2016].

Definition 7. Let P and K be two coupling matrices, we define the Kullback-Leibler
divergence between them as

KLpP |Kq

:

“

ÿ

i,j

P
i,j

ˆ

log

ˆ

P
i,j

K
i,j

˙

´ 1

˙

The Kullback-Leibler divergence intuitively measures the difference between the
two distributions, however, one should note that it is not symmetric and can not
be thought of as a distance.

We give a new formulation of the regularized dual that uses the Kullback-Leibler
divergence instead of the entropy

L✏

C

pa, bq :“ min

PPUpa,bq
xP,Cy ` ✏KLpP |a ✏ bq (4.1)

This new formulation is equivalent to the previous one, the Kullback-Leibler
divergence quantifies the difference between two couplings and a✏ b is the coupling
that maximizes entropy, so this formulation penalizes distance from maximum en-
tropy solutions as well and leads to the same solution as the formulation using
entropy.

Using the same tricks as in the previous chapter, we define the constraint set :

U
c

:

“ tpf, gq P Rn

ˆ Rm

: @ 1 § i § n 1 § j § m, f
i

` g
j

§ C
i,j

u

It follows from this that we have an indicator function ◆
U

c

for this constraint set
and we can define a smoothe approximation for it

◆✏
U

c

pf, gq

:

“

#

◆
U

c

pf, gq if ✏ “ 0

✏
∞

ij

exp

f

i

`g

j

´C

ij

✏

if ✏ ° 0
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For any g P Rm, we define it’s c-transform and it’s smoothed approximation

@1 § 1 § n gc,✏
i

:

“

#

min

j

C
ij

´ g
j

if ✏ “ 0

´✏
∞

j

exp

g

j

´C

ij

✏

if ✏ ° 0

We can now give the Dual and semi-dual formulation of the previous problem,
the dual reads

max

pf,gqPU
c

xf, ay ` xg, by ´ ◆✏
U

c

pf, gq

and we use the c-tranform to obtain the semi-dual formulation, replacing f by gc,✏

max

gPRm

H
✏

pgq

:

“ xgc,✏, ay ` xg, by ´ ✏

Now H
✏

can be expressed as an expectation H
✏

pgq “ E
I

ph
✏

pI, gqq where I is
a random variable on t1, . . . , nu distributed according to a and h

✏

is defined by
h
✏

pi, vq

:

“ xg, by ` gc,✏
i

´ ✏, which is justified since a is a probability distribution.
Now that the problem has taken such a shape, a stochastic optimization is

possible to perform gradient ascent on the semi-dual problem. Indeed, the gradient
of h

✏

can be computed as

r
g

h
✏

pi, gq

k

“ b
k

´

exp

g

k

´C

ik

✏

∞

j

exp

g

j

´C

ij

✏

Solving this problem yields g from which we recover a solution to the dual
problem though f “ gc,✏ and from there the coupling matrix P can be found as
P
ij

“ a
i

exp

´

f

i

`g

j

´C

ij

✏

¯

b
j

.
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Appendix A

Stochastic Optimization Algorithms

We consider a function E : Rp

Ñ R for some p P N that is expressed as

Epxq “

1

n

n

ÿ

i“1

f
i

pxq

which is a very common form in various optimization contexts like machine learning
for example, the functions f

i

would often represent distances to a large set of
samples.

To find a minimum for this function (assuming appropriate hypotheses), one
can consider the usual gradient descent iteration which would read

w
k`1 “ w

k

´ ⌧
k

rEpw
k

q

for an appropriate choice of the sequence of step sizes p⌧
k

q, the gradient would be
computed as

rEpxq “

1

n

n

ÿ

i“1

rf
i

pxq

This algorithm is also called Batch Gradient Descent where the whole gradient
is computed at each step, however, as n is often very large, each step is very costly.
The idea of stochastic gradient descent is to alleviate this burden by only computing
a single term of the previous sum at each iteration.

A.1 Stochastic Gradient Descent
Let E be as previously defined, the SGD iteration is defined as

w
k`1 “ w

k

´ ⌧
k

rf
ipkqpwk

q

where ipkq is uniformly drawn at random from t1, . . . , nu at each step. The validity
of this method can be justified by the fact that uniformly drawing the index ipkq

makes this estimation of the gradient unbiased i.e E
I

rf
I

pxq “ rEpxq for I a
random variable uniformly distributed on t1, . . . , nu. Moreover, this can be seen as
exploiting the redundancy of the many samples over each other (when applicable).
This can be very beneficial to complexity for a large n.
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The choice of the step sizes ⌧
k

is important to ensure convergence, it must tend
to 0 so as to cancel the noise induced by the random sampling while remaining non
negligible to allow progress. A typical rate that satisfies both conditions is to have
⌧
l

„8 l´1, so, given an initial step size ⌧0 and the number of iterations l0 serving
as a “warmup” phase, one can choose :

⌧
l

:

“

⌧0
1 ` l{l0

Note that, beyond improving the complexity, the stochastic approach allows us
to optimize functions that are formulated as expectations, i.e of the form:

Epxq

:

“ E
Y

pfpx, Y qq

where Y is a random variable. Thanks to Monte Carlo methods, we are also enabled
to optimize functions that take the form of an integral

Epxq

:

“

ª

Y
fpx, yqdµpyq

as long as µ is a distribution we can sample from.

A.2 Stochastic Gradient Descent with Averaging
It is possible to improve SGD’s convergence rate by outputting the average of the
iterates, that is, consider the iteration over auxiliary variables

w̃
k`1 “ w̃

k

´ ⌧
k

rEpw̃
k

q

and output the average

w
k

:

“

1

k

k

ÿ

i“1

w̃
i

it is also possible to avoiding storing all previous iterates by computing a running
average at each iteration as

w
k`1 “

1

k
w̃

k

`

k ´ 1

k
w

k

In this method, the step size can more advantageously be chosen to have a rate
of l´1{2 like

⌧
l

:

“

⌧0

1 `

a

l{l0

A.3 Stochastic Averaged Gradient Descent
Assuming sufficient memory ressources, it is possible to improve the stochastic
method further by memorizing all previously computed gradients.

The gradients are stored in pG
i

q

iPt1,...,nu (simply 0 if not yet calculated), where
n is the total size of the dataset (or number of terms defining the optimized func-
tion) which requires a memory space in Opnpq. This allows us to have a better
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approximation g of the actual gradient that is enhanced along the iteration. The
algorithm reads

h – rf
ipkqpwk

q

g – g ´ G
ipkq ` h

G
ipkq – h

w
k`1 – w

k

´ ⌧g

observe that, this time, the step size is fixed as in BGD, it must be chosen to be
of the order of 1{L where L is the optimized function’s Lipschitz constant. This
algorithm improves over the two previous stochastic methods and has the same
convergence rate as BGD. This improvement comes from exploiting the fact that
n is finite, thus making it unviable for optimizing expectations.
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