ALMOST SURE INVARIANCE PRINCIPLE FOR THE
DOUBLING MAP

OMAR MOHSEN AND RUXI SHI

Abstract. In this paper we prove the almost sure invariance principle for pro-
cesses generated by the dynamical system x — 2x mod 1. The proof relies
on two steps; in the first step we divide the Birkhoff sum of the process into
blocks and show that the sum over these blocks can be well approximated by
a martingale. In the second step we use Skorokhod representation theorem to
approximate this martingale by a Brownian motion. We also talk about some
of the applications of the almost sure invariance principle.

1. PRELIMINARIES

Definition 1.1 (Banach space V,). For ¢ € L'(m) and 0 < a < 1, we define
1

1
l¢la = SUD 5 | €5 SUPy acamcart) lp(y1) — @(y2)ldz .
€

The space V,, consists of all ¢ € L'(m) such that |p|, < co. On V,, we define the
norm
lella = lela + Il -

If ¢ is an a—Holder function, a@ < 1, then there exists a constant C' such that
Vz,y € R |p(z)—p(y)| < Clr—y|*. Hence, it follows immediately that V,, contains
all a-Holder functions. Further, by [K] (cf. also [S]), the space V, together with
the norm |.||, is a Banach space. For simplicity, we restrict our considerations to
Holder continuous functions.

Theorem 1.2 (Exponential decay of correlation). There exists a real number
0<A<1 and a constant C such that for all g € V,, and all h € L*(m)

1 1 1
/ g(2)h(f"(2))d — / o(z)dx / h(x)de
0 0 0
Proof. See, e.g., [AFLV, Appendix C.3 and C.4]. O
Let

< CllgllallallzrA™  ¥n > 1

o(¢)? = / P23 / (@) (™ () de

n>1

If ¢ is a a-Holder function and fol © = 0 then, by theorem 1.2, we have o(y)?<oo.
Furthermore, we can write

o(p)? = lim / (> ol (2)))de,
1=0
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from which follows that o()? > 0. If o(¢)? = 0, then ¢ is called a co-boundary.
Henceforth, we will always assume that o(¢)? > 0.

Remark 1.3. We can show that if fol ¢ # 0, then the series ) -, fol o(z)p(f™(z))dz

is divergent. So from now we assume that fol =0

Example 1.4. If we take o(x) = cos(2nx) then it is easy to calculate o(p)? =

(SIS

We consider the function
f(x) = 22 mod 1,
which is also called the doubling map.

We also use the big O-notation. We say f = O(g) if there exists a constant C' such
that |f] < Cg. Define

Gi(z) =o(f'(x), i>1.

Definition 1.5. We say that a sequence of random variables 7n;, i > 1, on a
probability space (Q, F,P) satisfies an almost sure invariance principle with error
exponent v < 1/2 and variance 0>0. If there exist a sequence of random variables
7i, © > 1, and a Brownian motion B(t), t > 0, on an appropriate probability space
(Q, F,P) such that

(1) {mi}i>1 and {7;};>1 have the same distribution;

(ii) P almost surely as n — oo,

B(on) — Z i

In this article, we will prove that:

=0(n").

Theorem 1.6. &; satisfies the almost sure invariance principle for all error expo-
nents v > % and variance o2(p).

Remark 1.7. We get an error exponent y > % We can imporve the error exponent
to 'y>% using similar techniques. We only have to put smaller blocks of logarithm
size or of very small polynomial size between the large blocks. By applying a
technique by Gouézel [G], the error exponent could be improved to v > i.

The almost sure invariance principle is a very strong property. It implies many
other laws, e.g., the central limit theorem and the law of iterated logarithm.

Corollary 1.8. If&;,1 > 1, satisfy an almost sure invariance principle then ﬁ Z?zl &
converges in distribution to N'(0,0?) and

n

. 1
hrrlri)solip Tonlosloan ;&(x) =0, forP—ae. z,

where o2 is the variance of the related Brownian motion.
In other word, the sequence &; satisfies the central limit theorem and the law of
iterated logarithm.

Proof. See [PS]. O
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Example 1.9. As the following example by Erdds and Fortet shows, we have to be
careful when leaving the setting of dynamical systems:
If p(x) = cos(2mx) + cos(4nx), then the sequence & = p((2° — 1)z mod 1) does not
satisfy the central limit theorem (and hence not either the almost sure invariance
principle).
Suppose that ry is the largest integer such that
ok < 2ok k> 1,
and let Fj be the o-field generated by all intervals of the form
Ugp=1[22"",@+1)27), 0<i<2™ -1, k>1.

We define
Xk = Bl Fk], k=1

Lemma 1.10. There exists a constant C such that |xx — &| < Ck™2 for all x
€[0,1),k > 1.

Proof. Let x € U; .,

1
u(e) = (o)) = 15| /U ) e

< g 160 = ol @l
C k _ rk )| " & o e
C
< <ot =5

Observe that Lemma 1.3 implies that

d b —&l<C) k2 =0(1).
k=1 k=1

Lemma 1.11. We have for 27 > 2k%/* and k>0
E[§k+51Fr] = E[xx+;1Fx] = 0.
Proof. Since 27 > 2162/0‘7 it follows that 28+7 > 27 je. k +j > Let x € Uy,

hence

Uik

E[E[Ek+ ] Frs 5] Fr](2) = Eléps 5] Fr](x) = - /U o(f (y))dy

1
:/0 o(fHI7 (y))dy = 0.
And
E[Xk+j|Fk] = E[E[€k4 ] Frt 5] Fk]-

Therefore we have
E[&k+1Fk] = E[xk+;|Fk] = 0.
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Fix 0 < k < 1. Let I, j > 1, be the block of integers containing [j*] consecutive
positive integers and such that there are no gaps between consecutive block.

Set h; == min{v | v € I;}, so that h; = ST [v"] + 1.

By integration, we obtain that

hy = 0(**)

We define the blocks

Yj = Z Xy and wj = Z &

Velj VEIJ'

Let My be the index of y; containing xn, and we use M short for My.
Then we have

C MM < N < OMM-,

Lemma 1.12. There exists a constant C such that |yj2 - o.)?| < Cj72 for all x
€10,1).

Proof. Since |€,] = [¢(f"(2))] < [¢llo and |xo| = [E[&|F]] < |6l < l@lloo
we have

g +wil = 1Y xe + &1 <D (Il + 16 < 21516l < 255 0lloo-
vel; vel;

Due to Lemma 1.3

192 — w2l = Iy — willy; + w5l <207 1lloe I I — &l <257 lIlloe Y v
vel; vel;

< 25"l lLh;? < 205" [lplloof™i 27 = 20 pllo0i 2.

2. MAIN ESTIMATE

In this section we prove a law of large numbers for the random processes y;. This
allows us to approximate this processes by a martingales in the next section.

Lemma 2.1. For all §>0 there exists a constant C' such that fol w;* < C|L;|**°.

Proof. We begin by expanding the sum and use the inequality |{(v1,v2,v3,v4) €
5% :ivy vy <wvg <wg,ve — vy <SP & vy — vz < [SP}H < [S]2F. So

/O Wi Y /0 e onusan

v1,v2,v3,04€1;

1
<4 3 | / Eonorunbis] + Al L.

v1SvpSwg<vg €l
vg—v1>|I;|% or vg—vg>|I;|%
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. . . . . 1
Since the Lebesgue measure is f invariant, it follows that | [ v, &u,&us&us] =

| fol o(@)p(frera)p(fr v a)p(fre v a)de|. If vo — vy > |1;|° then by using the-
orem 1.2, we deduce

\Aaﬂquwvwwnm#3“uwwwmv%mﬁ

<

1 1
| et@s [ owetr e @yetr @y
0 0

+ C - [lellallpp o fr27 2@ 0 fra7v2][ A2
= O™ = O(AD),

where we used that fol p=0.Ifvy—vg> |Ij|5 then let r = v3 — vy, so we have

1 2" 1 it}
/ ‘P-(pofvzfm ~(pof’”~(pof’”+ﬂ4*”3 — Z 2 (p~(,00fv27v1 '@Ofr-goofrﬂj‘l*”-*.
0 i

=0 v 27

The function f” is invertible on the interval [=, Z:1] so there exist functions g; :

[0,1] — [QL, i;',,,l] such that g; o f" = id, f" o g; = id. So by a change of variables
and theorem 1.2

T _ i 1
2"—1 %%,

T
i=0 Y3

2"—1

1/t N _
:Zy/ pogi-po f? M ogi-p-po frTYs
i=0 0

< CAE supllpogi- 9o [ 0 g ¢lla.
i

Observe that g; and fY271 o g; are contractions. Hence using the definition of the

norm ||.||, one can easily see that || og;-@o f27" o g; - ¢|, is bounded uniformly

in 4, 7. Since |Ij\4)\|lﬂ'|ts —0asj—ooand |[pog;-po f27 Y og,; - v, is bounded.
1 8

we get [o w} = O(IL[*A1) + O(|I;|*+2) = O(|L;[*+). O

Lemma 2.2. There exists a constant C such that

1
’/0 widr — a(p)?|L]| < C, Vi > 1.
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Proof.

1
o()|1;] —/ widz
0

= o()’I;1 = / E&rda

k,lel;
= o(0)?|1;| — Eképdr — Ek&id

kezl/ o kle;k;él/ =

2 /1 2 Z /1 ;
=o(@)°|;| = |I;] | ¢ dz—2 (1] =) [ p(x)p(f(z))dx
’ "o 0<i<|I;|-1 ’ 0
11;]-1

:22 z—|I\/ o(2)o(fi( dx+2|]\2/ 2))d

p(a)o(fi(@))dz + 21, Z/ 2))da.
i=1 70 i=|1;]

Using theorem 1.2 we deduce that the first term is a convergent series and the
second term is bounded as j — oo. O

Theorem 2.3 (Gal-Koksma Strong Law of Large Numbers). Let {Z,} be a se-
quence of random variables such that ¥n > 1 E(Z,) =0, E(Z2)<oco. Suppose that
there exists constants o, C>0 such that for all integers n>0, m >0

2
m—+n

Y Zj| <C((m+n)” —m°).
Then for each § > 0 and a.e w € §)
> Z;| = O(N271og”™ N)

J<N

Proof. See [PS, Theorem Al] O

1 1
2 2 2 2
j—/wi/w
0 0

Proof. We claim that for j big enough we can find k& such that y; is Fi-measurable

Lemma 2.4.

=03 %j") Vi<j—1

and 27 f(s—H) wide = fo w? for r = . If n<m € N then uslng the change of
variables formula we have 2" f(;+,})2 po fMdy = 2" f(§+1)2 po fMm "o fidr =

Jo o f7¥0 < s <27 — 1. Soif r<h; then 27 [V T wide = [ w?. Since y,
is F},,, measurable we need to make sure that rp, , <hj;. since rp, ., < rp,_, <

hj—1+ 212%0’;"2’1, hj = O(j***), it follows that ry, , < r4,_,<h; for j big enough.
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Hence we can choose k = h;y1. To prove the lemma we have

/01<y3/01yl><w /Olwbdx

s=2"-1

Z /(Stmr(yf_/lyl)(w _/lw?)dx
s=0

s=2"-1

g
(s+1)27" (s+1)27" 1
227/ /yldx/ /wJQ)
0
s=2"—-1 .(s4+1)2~ (s4+1)27" 1
> | (yf—/ a2 [ wjdx—/ w?) = 0.
s=0 s2—T 0 s27T 0

|/01<w§—/01w?><w?—/01w?>dx|
< |/1<y3/01yf><w§/1w§>dx
ol [ —/w S I T

<2 suwp 2 |/ jw? —/ w?lde = O(~25").
z€[0,1]

In the last inequality we used lemma 2.2 and lemma 1.6. (]

Hence,

Remark 2.5. To use the change of variables formula we extend ¢ to the real line
with period 1 and then ¢(2™x mod 1) = ¢(2™x).

Proposition 2.6 (Main Estimate). For each 6>0 and for a.e x € [0, 1], there exists
a constant C' such that

M(N)
0N = 37 4F < ONmSU s YN > 1
j=1

Where M = M(N),C~*M™* < N < CMM™*.

Proof. By using Cauchy-Schwartz inequality and lemma 2.1, we have

24 +% o
wa2 1wy < \// \// L™= |I\ = O(|L;]**7%) = 0(j*"+7).

Hence, by lemma 2.4 and for some constant C', we have
n+m

S| [t [t [wta] <0y g

m<i<j<n+m j=m

— O((n + m)1+2n+6 o m1+25+§).
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So we apply theorem 2.3 with Z; = w? — E(w?) and 0 = 2k + & + 1 which implies
for a.e x € [0, 1]

S° w? - Bw?| = O(M(N) "5 log? M(N)).
J<M(N)

By lemma 2.2 and lemma 1.6

M(N) 0o
o(©)’N+ > (w? -y} — Bw?)| <> 2+ O(M(N)).
Jj=1 j=1
To finish the proof we note that M (N) = O(NIJ%N), and we conclude,
3" 42— o(9)?N| = O(N'~ 77 1og?* N) + O(N ).
JSM(N)

3. THE MARTINGALE REPRESENTATION

Lemma 3.1. Let {y;}32, be an arbitrary sequence of random variables and let
{Lj};?‘;o be a nondecreasing sequence of o-fields such that y; is Lj-measurable(Lo
is the trivial o-field). Suppose that

> E[E[y;j+klL;]] < oo
k=0

for each j > 1. Then for each j > 1
yj =Y +uj —ujn

where {Y;}52, is a {L£;}52, martingale difference sequence and

uj =Y ElyjrlLia].
k=0

Proof. See [PS, Lemma 2.1]. O

Lemma 3.2. Let L; be the o-field generated by (y1,Yy2,...,y;). Then we can repre-
sent y; by

yj =Yj +uj —ujp
where {Y;}52, is a {L£;}52, martingale difference sequence and

luj| = O(log j) a.s.
Proof. Firstly, we will proof that >~ E|E[y,+x|L;]| < 0o, then we can use Lemma
3.1 to represent y;.
Since

yi= xw=y E&IF]

vel; vel;
then y; is Fp,,,—1 measurable. Due to lemma 1.11, when k is great enough, i.e.
2hitr=hititl > 9(h .y —1)2/% we have

E[XU|‘Fh_j+1—l} = 07 IS Ij+k
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And we obtain
ElyxlLi] = Y Ewlll= > EEMw|Fn,,-1lL;] =0
veljig veljig

Then Y7 E[E[yj1x|L;]| just has finitely many items, so the sum is finite.
Let J be the smallest number that satisfies 27 > 2h2/a. Then we have J < 2 +

(2/(alog2))logh;, i.e. J=O(logh;) = O(logj). For u; defined in Lemma 3.1 we
get

|UJ|*Z|Eyj+k‘£J 1|<Z Z Elo|F L]l = Z IE[E[xo | F] L5l

k=0vel; v>h;
h_7‘+J—1
= > [EBENIFIL A+ D] [EENXFL -]
v=h; v>h;+J
hj+J—1
= > [EBENJIFIL ] < Tll¢lleo = Olog ).
v=h;

Set v; = u; — uj—1. By Lemma 3.2 we have
lvj| = O(log j) a.s.
and y; = Y; +v;.

Lemma 3.3. If v > max( 2212’2, 1_%5), then

M
|ZYj2—02N\:O(N7) a.s. as N — oo.

Proof. We have
Y = (y; — ) = y] 2yv; + v?.
For each ¢ we find C such that

M M
302 <Y log?j < CMlog? M = O(NT log? N) = O(N == +9).
j=1 j=1

Using Cauchy’s inequality and Proposition 2.6. V§ and a.e. x € [0,1) we can find
C so that

M
ZQy]UJ| < Z )1/2(Zv]2)1/2 < CN1/2Nﬁ+5 < CN%+5
j=1
Hence, we have
M M
|Z Z ‘23/J”J|+\U [) <CN".
=1 =

Then by Proposition 2.6, we get the result. (]
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142k

Lemma 3.4. For each v > 5755,

M
| 2 EIVPIL ) = Y7 = O(N7).

Proof. Let R; = E[Yf\ﬁj,l] - sz. Since E[R;|£;-1] = 0, then R; is a £L;_
martingale difference sequence. Using Lemma 2.1, we obtain V9
E[R}] = E[Y}'] - E[E*[Y?|£;1]] < E[Y}'] = E[(y; +v;)"]
< Elyj] + E[vj] < Elwj] + E[lwj — y;] + E[v]]
< CILI**° + Ellw] — yillw] + 431+ Clogj
< ) L E[C 2 (1WF] + |y3 D] + C°
< 0§30 L E[C5 2| + C5°
< O L O8O0 = 020 4 022 4 00 < O,
Then

oo

Z.]_l 2k— 25ER2 Si —1— 26

j=1
Since R; is a martingale difference sequence, we conclude (see e.g. [C])

o0

142 g
> iR
j=1

converges a.s. By Kronecker’s lemma, for a.e. z € [0,1) we find a constant C such
that

o0

3" Rj(x) < OMTEIH < ON TR,

4. SKOROKHOD REPRESENTATION THEOREM
We now apply Skorokhod representation theorem.

Theorem 4.1 (Skorokhod representation theorem). Let {Y;}32, be a sequence of
random variables on a probability space (2, F,P) satisfying:

(i) B[Y?] <
(ii) E[Yilo(Y1,..Yi—1)] =0 P —a.s. for all i > 1.

Then there exists a sequence of random variable {Y} 21 and a Brownian motion
{B(t)}icpo,00) together with a sequence of nonnegative random variable {T;}52; on

an appropriate probability space (ﬁ,]?, @) with the following properties.

(1) {Yi}2, and {Y} . have the same distribution.
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(2)

n

Z}Z‘:B(ZTi), P—a.s. for any n € N.
i=1

i=1

(3) T, is Fn-measurable and
E[T,|Fo 1] = E[Y, | Fart], P—as.n=1,23..,
where ]?0 =9, Q and .}En is defined as the o algebra generated by Y1,Ys, ..., Yy,
and {B(t)}ogtgzg;l 1, forn > 1.
Proof. See [HH, Theorem A.1]. O
In what follows, we will use the same notation as in the statement of Skorokhod
representation theorem. But we will skip the ~ in the notation. So £,, C F,, and

we have
E(Tj|Fj—1) = B(Y?|Fj—1) = E(Y}|Lj-1)a.s

Lemma 4.2. If

> max( o, L)
max(——, ——
T o T+
then

M(N)

> T;—o(9)’N =O(N") a.s

j=1

Proof. Using Skorokhod representation theorem, we have

M
Z T; — o(p)’N
i=0

M M M
=Y [T = B(TIF-)) + Y [EYILi) = Y7+ Y Y —0(9)* N as.
i=0 i=0 i=0

The last two terms are bounded by O(N7) because of Lemma 3.3, 3.4. Write
R; =T, — E(T;|F;-1) then we can see that this is a martingale difference sequence
satisfying ER? = O(EYj‘l). So doing a similar proof that was used in lemma 3.3 we

deduce that the first term is also bounded by O(N7). O
We will define the two new random processes by
M([#])
S(t)=> &, and S*= Y.
k<t k=1
Lemma 4.3. S(t) — S*(t) = O(t=+1) a.s.
Proof. By the definition of S(t), S*(t) we have
M(t)
S =S )= (G —xu)— Y, Xkt Y, u—Ye
k<t t<k<hpr41i k=1

By lemma 1.3 the first term is bounded. The second term contains at most M [t]*
terms hence it is bounded by HapHoot%H. The last sum is equal to u; —ups41 which
is equal to O(logt) using lemma 3.3, 3.4. O
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Theorem 4.4. Let v> max( 22_;*2’2, H%K) Then for each 6>0 we have

S*(t) — B(o?(p)t) = O(t2 %) a.s.

Proof. Let 0% = 02(p) and P, = n’*t75 . Then by Skorokhod representation theo-
rem

* o 2 — N 2
(1) Pngntlg)lgnﬂw (t) — B(o”t)| Pngr?gﬁnﬂ B( T;) — B(o7t)|.

By lemma 4.2 and the mean value theorem we have for P, <t < P,y1, n large
enough
M([t])
(2) 0°Po1 <0°Py+O(P] ) < Y Ti 0 Pay1 +O(Py) S 0°Poysy as.
k=1
For a < b, let
R(a,b) = max |B(s) — B(t)].

a<s,t<b

So for n large enough using (1),(2), we obtain

max  |S*(t) — B(0?t)| < R(6°Pn—1,0°Pay2) as.

P, <t<Ppi1

Now, again using the mean value theorem and the basic properties of Brownian
motion we get for n large enough

3(v+9) POt :
P R 2Pn— QPn > Pni v ) — P R 0 1) > -
( (o 1,0°Pai2) > 0,1) = 02(Ppi2 — Pn_1)

1
3 (7 +9) 2

We will denote by a to simplify the next equations. So since

UQPn-:Q_‘72Pn—1
R(0,1) < maxg<¢<1|B(t)|. Hence we can continue the chain of inequalities by
P(R(0,1) > a) < P (maxo<¢<1 |B(t)| > 3a). Using Levy’s theorem on Brownian
motion we get

1 1
P (R(O’zpn_l, 02Py12) > P? W*‘”) <P <|B(1)| > 2a) = O(exp(—n°)),
where ¢ < 1 is a constant. So by Borel Cantelli lemma it follows that a.s.

1
R(U2Pn—17 Uan—i—Q) Z Pnz (r+8)
happens for finitely many n only. So this proves the lemma. (I

24K 1 K )
444K 242K 1+K/"

The minimum value is at £ = 2. Lemma 4.3 says that for §>0, we have S*(t) —

B(o%(@)t) = O(t51%) and using lemma 4.3. We deduce that

It follows from lemma 4.3 and 4.4 that we need to minimize max(

S(t) — B(o2(p)t) = O(t3 %) ¥5>0.

This concludes the proof of theorem 1.6.
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Remark 4.5. We can also deduce a slightly better estimate by doing double block
partitioning and using similar arguments like above. Where each two consecutive
blocks, the first is of size [j*] and the second block is of size log j. This gives us less
correlation between big blocks which gives better estimates. Recall remark 1.7.
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