ALMOST SURE INVARIANCE PRINCIPLE FOR THE DOUBLING MAP

OMAR MOHSEN AND RUXI SHI

Abstract

In this paper we prove the almost sure invariance principle for processes generated by the dynamical system $x \mapsto 2 x \bmod 1$. The proof relies on two steps; in the first step we divide the Birkhoff sum of the process into blocks and show that the sum over these blocks can be well approximated by a martingale. In the second step we use Skorokhod representation theorem to approximate this martingale by a Brownian motion. We also talk about some of the applications of the almost sure invariance principle.

1. Preliminaries

Definition 1.1 (Banach space V_{α}). For $\varphi \in L^{1}(m)$ and $0<\alpha \leq 1$, we define

$$
|\varphi|_{\alpha}=\sup _{\epsilon>0} \frac{1}{\epsilon^{\alpha}} \int_{0}^{1} \operatorname{ess} \sup _{y_{1}, y_{2} \in(x-\epsilon, x+\epsilon)}\left|\varphi\left(y_{1}\right)-\varphi\left(y_{2}\right)\right| d x .
$$

The space V_{α} consists of all $\varphi \in L^{1}(m)$ such that $|\varphi|_{\alpha}<\infty$. On V_{α} we define the norm

$$
\|\varphi\|_{\alpha}=|\varphi|_{\alpha}+\|\varphi\|_{L^{1}}
$$

If φ is an α-Hölder function, $\alpha \leq 1$, then there exists a constant C such that $\forall x, y \in \mathbb{R}|\varphi(x)-\varphi(y)| \leq C|x-y|^{\alpha}$. Hence, it follows immediately that V_{α} contains all α-Hölder functions. Further, by $[\mathrm{K}]$ (cf. also $[\mathrm{S}]$), the space V_{α} together with the norm $\|\cdot\|_{\alpha}$ is a Banach space. For simplicity, we restrict our considerations to Hölder continuous functions.
Theorem 1.2 (Exponential decay of correlation). There exists a real number $0<\lambda<1$ and a constant C such that for all $g \in V_{\alpha}$ and all $h \in L^{1}(m)$

$$
\left|\int_{0}^{1} g(x) h\left(f^{n}(x)\right) d x-\int_{0}^{1} g(x) d x \int_{0}^{1} h(x) d x\right| \leq C\|g\|_{\alpha}\|h\|_{L^{1}} \lambda^{n} \quad \forall n \geq 1
$$

Proof. See, e.g., [AFLV, Appendix C. 3 and C.4].
Let

$$
\sigma(\varphi)^{2}:=\int_{0}^{1} \varphi^{2}+2 \sum_{n \geq 1} \int_{0}^{1} \varphi(x) \varphi\left(f^{n}(x)\right) d x
$$

If φ is a α-Hölder function and $\int_{0}^{1} \varphi=0$ then, by theorem 1.2 , we have $\sigma(\varphi)^{2}<\infty$. Furthermore, we can write

$$
\sigma(\varphi)^{2}=\lim _{n \rightarrow \infty} \frac{1}{n} \int_{0}^{1}\left(\sum_{i=0}^{n} \varphi\left(f^{i}(x)\right)\right)^{2} d x
$$

Date: June 12, 2013.
Supervision: Daniel Schnellmann.
from which follows that $\sigma(\varphi)^{2} \geq 0$. If $\sigma(\varphi)^{2}=0$, then φ is called a co-boundary. Henceforth, we will always assume that $\sigma(\varphi)^{2}>0$.

Remark 1.3. We can show that if $\int_{0}^{1} \varphi \neq 0$, then the series $\sum_{n>1} \int_{0}^{1} \varphi(x) \varphi\left(f^{n}(x)\right) d x$ is divergent. So from now we assume that $\int_{0}^{1} \varphi=0$

Example 1.4. If we take $\varphi(x)=\cos (2 \pi x)$ then it is easy to calculate $\sigma(\varphi)^{2}=\frac{1}{2}$.
We consider the function

$$
f(x)=2 x \bmod 1,
$$

which is also called the doubling map.
We also use the big O-notation. We say $f=O(g)$ if there exists a constant C such that $|f| \leq C g$. Define

$$
\xi_{i}(x)=\varphi\left(f^{i}(x)\right), \quad i \geq 1
$$

Definition 1.5. We say that a sequence of random variables $\eta_{i}, i \geq 1$, on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ satisfies an almost sure invariance principle with error exponent $\gamma<1 / 2$ and variance $\sigma>0$. If there exist a sequence of random variables $\widetilde{\eta}_{i}, i \geq 1$, and a Brownian motion $B(t), t \geq 0$, on an appropriate probability space $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{\mathbb{P}})$ such that
(i) $\left\{\eta_{i}\right\}_{i \geq 1}$ and $\left\{\widetilde{\eta}_{i}\right\}_{i \geq 1}$ have the same distribution;
(ii) $\widetilde{\mathbb{P}}$ almost surely as $n \rightarrow \infty$,

$$
\left|B(\sigma n)-\sum_{i=1}^{n} \widetilde{\eta}_{i}\right|=O\left(n^{\gamma}\right) .
$$

In this article, we will prove that:
Theorem 1.6. ξ_{i} satisfies the almost sure invariance principle for all error exponents $\gamma>\frac{2}{5}$ and variance $\sigma^{2}(\varphi)$.
Remark 1.7. We get an error exponent $\gamma>\frac{2}{5}$. We can imporve the error exponent to $\gamma>\frac{1}{3}$ using similar techniques. We only have to put smaller blocks of logarithm size or of very small polynomial size between the large blocks. By applying a technique by Gouëzel [G], the error exponent could be improved to $\gamma>\frac{1}{4}$.

The almost sure invariance principle is a very strong property. It implies many other laws, e.g., the central limit theorem and the law of iterated logarithm.

Corollary 1.8. If $\xi_{i}, i \geq 1$, satisfy an almost sure invariance principle then $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \xi_{i}$ converges in distribution to $\mathcal{N}\left(0, \sigma^{2}\right)$ and

$$
\limsup _{n \rightarrow \infty} \frac{1}{\sqrt{2 n \log \log n}} \sum_{i=1}^{n} \xi_{i}(x)=\sigma, \quad \text { for } \mathbb{P}-\text { a.e. } x,
$$

where σ^{2} is the variance of the related Brownian motion.
In other word, the sequence ξ_{i} satisfies the central limit theorem and the law of iterated logarithm.

Proof. See [PS].

Example 1.9. As the following example by Erdös and Fortet shows, we have to be careful when leaving the setting of dynamical systems:
If $\varphi(x)=\cos (2 \pi x)+\cos (4 \pi x)$, then the sequence $\xi_{i}=\varphi\left(\left(2^{i}-1\right) x \bmod 1\right)$ does not satisfy the central limit theorem (and hence not either the almost sure invariance principle).

Suppose that r_{k} is the largest integer such that

$$
2^{r_{k}} \leq k^{2 / \alpha} 2^{k}, \quad k \geq 1
$$

and let \mathcal{F}_{k} be the σ-field generated by all intervals of the form

$$
U_{i, k}=\left[i 2^{-r_{k}},(i+1) 2^{-r_{k}}\right), \quad 0 \leq i \leq 2^{r_{k}}-1, \quad k \geq 1
$$

We define

$$
\chi_{k}=\mathbb{E}\left[\xi_{k} \mid \mathcal{F}_{k}\right], \quad k \geq 1
$$

Lemma 1.10. There exists a constant C such that $\left|\chi_{k}-\xi_{k}\right| \leq C k^{-2}$ for all x $\in[0,1), k \geq 1$.

Proof. Let $x \in U_{i, k}$,

$$
\begin{aligned}
\left|\chi_{k}(x)-\xi_{k}(x)\right| & =\frac{1}{\left|U_{i, k}\right|}\left|\int_{U_{i, k}} \varphi\left(f^{k}(y)\right)-\varphi\left(f^{k}(x)\right) d y\right| \\
& \leq \frac{1}{\left|U_{i, k}\right|} \int_{U_{i, k}}\left|\varphi\left(f^{k}(y)\right)-\varphi\left(f^{k}(x)\right)\right| d y \\
& \leq \frac{C}{\left|U_{i, k}\right|} \int_{U_{i, k}}\left|f^{k}(y)-f^{k}(x)\right|^{\alpha} d y \leq C \sup _{x, y \in U_{i, k}}\left|f^{k}(y)-f^{k}(x)\right|^{\alpha} \\
& \leq C\left(2^{-r_{k}} 2^{k}\right)^{\alpha} \leq C\left(\frac{1}{k^{2 / \alpha}}\right)^{\alpha}=\frac{C}{k^{2}}
\end{aligned}
$$

Observe that Lemma 1.3 implies that

$$
\sum_{k=1}^{\infty}\left|\chi_{k}-\xi_{k}\right| \leq C \sum_{k=1}^{\infty} k^{-2}=O(1)
$$

Lemma 1.11. We have for $2^{j} \geq 2 k^{2 / \alpha}$ and $k \geq 0$

$$
\mathbb{E}\left[\xi_{k+j} \mid \mathcal{F}_{k}\right]=\mathbb{E}\left[\chi_{k+j} \mid \mathcal{F}_{k}\right]=0
$$

Proof. Since $2^{j} \geq 2 k^{2 / \alpha}$, it follows that $2^{k+j} \geq 2^{r_{k}}$, i.e. $k+j \geq r_{k}$. Let $x \in U_{i, k}$, hence

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{E}\left[\xi_{k+j} \mid \mathcal{F}_{k+j}\right] \mathcal{F}_{k}\right](x) & =\mathbb{E}\left[\xi_{k+j} \mid \mathcal{F}_{k}\right](x)=\frac{1}{\left|U_{i, k}\right|} \int_{U_{i, k}} \varphi\left(f^{k+j}(y)\right) d y \\
& =\int_{0}^{1} \varphi\left(f^{k+j-r_{k}}(y)\right) d y=0
\end{aligned}
$$

And

$$
\mathbb{E}\left[\chi_{k+j} \mid \mathcal{F}_{k}\right]=\mathbb{E}\left[\mathbb{E}\left[\xi_{k+j} \mid \mathcal{F}_{k+j}\right] \mathcal{F}_{k}\right]
$$

Therefore we have

$$
\mathbb{E}\left[\xi_{k+j} \mid \mathcal{F}_{k}\right]=\mathbb{E}\left[\chi_{k+j} \mid \mathcal{F}_{k}\right]=0
$$

Fix $0<\kappa<1$. Let $I_{j}, j \geq 1$, be the block of integers containing $\left[j^{\kappa}\right]$ consecutive positive integers and such that there are no gaps between consecutive block.

Set $h_{j}:=\min \left\{\nu \mid \nu \in I_{j}\right\}$, so that $h_{j}=\sum_{\nu=1}^{j-1}\left[\nu^{\kappa}\right]+1$.
By integration, we obtain that

$$
h_{j}=O\left(j^{1+\kappa}\right) .
$$

We define the blocks

$$
y_{j}:=\sum_{\nu \in I_{j}} \chi_{\nu} \text { and } \omega_{j}:=\sum_{\nu \in I_{j}} \xi_{\nu}
$$

Let M_{N} be the index of y_{j} containing χ_{N}, and we use M short for M_{N}.
Then we have

$$
C^{-1} M^{1+\kappa} \leq N \leq C M^{1+\kappa}
$$

Lemma 1.12. There exists a constant C such that $\left|y_{j}^{2}-\omega_{j}^{2}\right| \leq C j^{-2}$ for all x $\in[0,1)$.

Proof. Since $\left|\xi_{\nu}\right|=\left|\varphi\left(f^{\nu}(x)\right)\right| \leq\|\varphi\|_{\infty}$ and $\left|\chi_{\nu}\right|=\left|\mathbb{E}\left[\xi_{\nu} \mid \mathcal{F}_{\nu}\right]\right| \leq\left\|\xi_{\nu}\right\|_{\infty} \leq\|\varphi\|_{\infty}$, we have

$$
\left|y_{j}+\omega_{j}\right|=\left|\sum_{\nu \in I_{j}} \chi_{\nu}+\xi_{\nu}\right| \leq \sum_{\nu \in I_{j}}\left(\left|\chi_{\nu}\right|+\left|\xi_{\nu}\right|\right) \leq 2\left|I_{j}\right|\|\varphi\|_{\infty} \leq 2 j^{\kappa}\|\varphi\|_{\infty}
$$

Due to Lemma 1.3

$$
\begin{aligned}
\left|y_{j}^{2}-\omega_{j}^{2}\right| & =\left|y_{j}-\omega_{j}\left\|y_{j}+\omega_{j}\left|\leq 2 j^{\kappa}\|\varphi\|_{\infty} \sum_{\nu \in I_{j}}\right| \chi_{\nu}-\xi_{\nu} \mid \leq 2 j^{\kappa}\right\| \varphi \|_{\infty} \sum_{\nu \in I_{j}} \nu^{-2}\right. \\
& \leq 2 j^{\kappa}\|\varphi\|_{\infty}\left|I_{j}\right| h_{j}^{-2} \leq 2 C j^{\kappa}\|\varphi\|_{\infty} j^{\kappa} j^{-2-2 \kappa}=2 C\|\varphi\|_{\infty} j^{-2}
\end{aligned}
$$

2. Main Estimate

In this section we prove a law of large numbers for the random processes y_{i}. This allows us to approximate this processes by a martingales in the next section.

Lemma 2.1. For all $\delta>0$ there exists a constant C such that $\int_{0}^{1} w_{j}^{4} \leq C\left|I_{j}\right|^{2+\delta}$.
Proof. We begin by expanding the sum and use the inequality $\mid\left\{\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \in\right.$ $\left.S^{4}: v_{1} \leq v_{2} \leq v_{3} \leq v_{4}, v_{2}-v_{1} \leq|S|^{\delta} \& v_{4}-v_{3} \leq|S|^{\delta}\right\}\left|\leq|S|^{2+\delta}\right.$. So

$$
\begin{aligned}
\int_{0}^{1} w_{j}^{4}=\sum_{v_{1}, v_{2}, v_{3}, v_{4} \in I_{j}} \int_{0}^{1} \xi_{v_{1}} \xi_{v_{2}} \xi_{v_{3}} \xi_{v_{4}} \\
\leq 4 \sum_{\substack{v_{1} \leq v_{2} \leq v_{3} \leq v_{4} \in I_{j} \\
v_{2}-v_{1} \geq\left|I_{j}\right|^{\delta} \text { or } v_{4}-v_{3} \geq\left|I_{j}\right|^{\delta}}}\left|\int_{0}^{1} \xi_{v_{1}} \xi_{v_{2}} \xi_{v_{3}} \xi_{v_{4}}\right|+4\|\varphi\|_{\infty}^{4}\left|I_{j}\right|^{2+\delta}
\end{aligned}
$$

Since the Lebesgue measure is f invariant, it follows that $\left|\int_{0}^{1} \xi_{v_{1}} \xi_{v_{2}} \xi_{v_{3}} \xi_{v_{4}}\right|=$ $\left|\int_{0}^{1} \varphi(x) \varphi\left(f^{v_{2}-v_{1}} x\right) \varphi\left(f^{v_{3}-v_{1}} x\right) \varphi\left(f^{v_{4}-v_{1}} x\right) d x\right|$. If $v_{2}-v_{1} \geq\left|I_{j}\right|^{\delta}$ then by using theorem 1.2, we deduce

$$
\begin{aligned}
\mid \int_{0}^{1} \varphi(x) \varphi & \left(f^{v_{2}-v_{1}}(x)\right) \varphi\left(f^{v_{3}-v_{1}}(x)\right) \varphi\left(f^{v_{4}-v_{1}}(x)\right) \mid \\
\leq & \left|\int_{0}^{1} \varphi(x) d x \int_{0}^{1} \varphi(x) \varphi\left(f^{v_{3}-v_{2}}(x)\right) \varphi\left(f^{v_{4}-v_{2}}(x)\right) d x\right| \\
& +C \cdot\|\varphi\|_{\alpha}\left\|\varphi \varphi \circ f^{v_{3}-v_{2}} \varphi \circ f^{v_{4}-v_{2}}\right\|_{\infty} \lambda^{v_{2}-v_{1}} \\
= & O\left(\lambda^{v_{2}-v_{1}}\right)=O\left(\lambda^{I_{j}^{\delta}}\right)
\end{aligned}
$$

where we used that $\int_{0}^{1} \varphi=0$. If $v_{4}-v_{3} \geq\left|I_{j}\right|^{\delta}$ then let $r=v_{3}-v_{1}$, so we have

$$
\int_{0}^{1} \varphi \cdot \varphi \circ f^{v_{2}-v_{1}} \cdot \varphi \circ f^{r} \cdot \varphi \circ f^{r+v_{4}-v_{3}}=\sum_{i=0}^{2^{r}-1} \int_{\frac{i}{2^{r}}}^{\frac{i+1}{2^{r}}} \varphi \cdot \varphi \circ f^{v_{2}-v_{1}} \cdot \varphi \circ f^{r} \cdot \varphi \circ f^{r+v_{4}-v_{3}}
$$

The function f^{r} is invertible on the interval $\left[\frac{i}{2^{r}}, \frac{i+1}{2^{r}}\right]$ so there exist functions g_{i} : $[0,1] \rightarrow\left[\frac{i}{2^{r}}, \frac{i+1}{2^{r}}\right]$ such that $g_{i} \circ f^{r}=i d, f^{r} \circ g_{i}=i d$. So by a change of variables and theorem 1.2

$$
\begin{aligned}
& \sum_{i=0}^{2^{r}-1} \int_{\frac{i}{2^{r}}}^{\frac{i+1}{2^{r}}} \varphi \cdot \varphi \circ f^{v_{2}-v_{1}} \cdot \varphi \circ f^{r} \cdot \varphi \circ f^{r+v_{4}-v_{3}} \\
& =\sum_{i=0}^{2^{r}-1} \frac{1}{2^{r}} \int_{0}^{1} \varphi \circ g_{i} \cdot \varphi \circ f^{v_{2}-v_{1}} \circ g_{i} \cdot \varphi \cdot \varphi \circ f^{v_{4}-v_{3}} \\
& \leq C \lambda^{I_{j}^{\delta}} \sup _{i}\left\|\varphi \circ g_{i} \cdot \varphi \circ f^{v_{2}-v_{1}} \circ g_{i} \cdot \varphi\right\|_{\alpha} .
\end{aligned}
$$

Observe that g_{i} and $f^{v_{2}-v_{1}} \circ g_{i}$ are contractions. Hence using the definition of the norm $\|\cdot\|_{\alpha}$ one can easily see that $\left\|\varphi \circ g_{i} \cdot \varphi \circ f^{v_{2}-v_{1}} \circ g_{i} \cdot \varphi\right\|_{\alpha}$ is bounded uniformly in i, j. Since $\left|I_{j}\right|^{4} \lambda^{\left|I_{j}\right|^{\delta}} \rightarrow 0$ as $j \rightarrow \infty$ and $\left\|\varphi \circ g_{i} \cdot \varphi \circ f^{v_{2}-v_{1}} \circ g_{i} \cdot \varphi\right\|_{\alpha}$ is bounded. we get $\int_{0}^{1} w_{j}^{4}=O\left(\left|I_{j}\right|^{4} \lambda^{\left|I_{j}\right|^{\delta}}\right)+O\left(\left|I_{j}\right|^{2+\delta}\right)=O\left(\left|I_{j}\right|^{2+\delta}\right)$.

Lemma 2.2. There exists a constant C such that

$$
\left|\int_{0}^{1} w_{j}^{2} d x-\sigma(\varphi)^{2}\right| I_{j}| | \leq C, \quad \forall j \geq 1
$$

Proof.

$$
\begin{aligned}
& \sigma(\varphi)^{2}\left|I_{j}\right|-\int_{0}^{1} w_{j}^{2} d x \\
&=\sigma(\varphi)^{2}\left|I_{j}\right|-\sum_{k, l \in I_{j}} \int_{0}^{1} \xi_{k} \xi_{l} d x \\
&=\sigma(\varphi)^{2}\left|I_{j}\right|-\sum_{k \in I_{j}} \int_{0}^{1} \xi_{k} \xi_{k} d x-\sum_{k, l \in I_{j}, k \neq l} \int_{0}^{1} \xi_{k} \xi_{l} d x \\
&=\sigma(\varphi)^{2}\left|I_{j}\right|-\left|I_{j}\right| \int_{0}^{1} \varphi^{2} d x-2 \sum_{0<i \leq I I_{j} \mid-1}\left(\left|I_{j}\right|-i\right) \int_{0}^{1} \varphi(x) \varphi\left(f^{i}(x)\right) d x \\
&=2 \sum_{i=1}^{\left|I_{j}\right|-1}\left(i-\left|I_{j}\right|\right) \int_{0}^{1} \varphi(x) \varphi\left(f^{i}(x)\right) d x+2\left|I_{j}\right| \sum_{n \geq 1} \int_{0}^{1} \varphi(x) \varphi\left(f^{i}(x)\right) d x \\
&=2 \sum_{i=1}^{\left|I_{j}\right|-1} i \int_{0}^{1} \varphi(x) \varphi\left(f^{i}(x)\right) d x+2\left|I_{j}\right| \sum_{i=\left|I_{j}\right|}^{\infty} \int_{0}^{1} \varphi(x) \varphi\left(f^{i}(x)\right) d x .
\end{aligned}
$$

Using theorem 1.2 we deduce that the first term is a convergent series and the second term is bounded as $j \rightarrow \infty$.

Theorem 2.3 (Gal-Koksma Strong Law of Large Numbers). Let $\left\{Z_{n}\right\}$ be a sequence of random variables such that $\forall n \geq 1 E\left(Z_{n}\right)=0, E\left(Z_{n}^{2}\right)<\infty$. Suppose that there exists constants $\sigma, C>0$ such that for all integers $n>0, m \geq 0$

$$
E\left(\sum_{j=m}^{m+n} Z_{j}\right)^{2} \leq C\left((m+n)^{\sigma}-m^{\sigma}\right)
$$

Then for each $\delta \geq 0$ and a.e $\omega \in \Omega$

$$
\left|\sum_{j \leq N} Z_{j}\right|=O\left(N^{\frac{1}{2} \sigma} \log ^{2+\delta} N\right)
$$

Proof. See [PS, Theorem A1]
Lemma 2.4.

$$
\left|\int_{0}^{1} w_{i}^{2} w_{j}^{2}-\int_{0}^{1} w_{i}^{2} \int_{0}^{1} w_{j}^{2}\right|=O\left(i^{-2} j^{\kappa}\right) \quad \forall i<j-1
$$

Proof. We claim that for j big enough we can find k such that y_{i} is F_{k}-measurable and $2^{r} \int_{s 2^{-r}}^{(s+1) 2^{-r}} w_{j}^{2} d x=\int_{0}^{1} w_{j}^{2}$ for $r=r_{k}$. If $n<m \in \mathbb{N}$ then using the change of variables formula we have $2^{n} \int_{s 2^{-n}}^{(s+1) 2^{-n}} \varphi \circ f^{m} d x=2^{n} \int_{s 2^{-n}}^{(s+1) 2^{-n}} \varphi \circ f^{m-n} \circ f^{n} d x=$ $\int_{0}^{1} \varphi \circ f^{m}, \forall 0 \leq s \leq 2^{n}-1$. So if $r<h_{j}$ then $2^{r} \int_{s 2^{-r}}^{(s+1)^{-r}} w_{j}^{2} d x=\int_{0}^{1} w_{j}^{2}$. Since y_{i} is $F_{h_{i+1}}$ measurable we need to make sure that $r_{h_{i+1}}<h_{j}$. since $r_{h_{i+1}} \leq r_{h_{j-1}} \leq$ $h_{j-1}+\frac{2 \log h_{j-1}}{\alpha \log 2}, h_{j}=O\left(j^{1+\kappa}\right)$, it follows that $r_{h_{i+1}} \leq r_{h_{j-1}}<h_{j}$ for j big enough.

Hence we can choose $k=h_{i+1}$. To prove the lemma we have

$$
\begin{aligned}
\int_{0}^{1}\left(y_{i}^{2}-\right. & \left.\int_{0}^{1} y_{i}^{2}\right)\left(w_{j}^{2}-\int_{0}^{1} w_{j}^{2}\right) d x \\
& =\sum_{s=0}^{s=2^{r}-1} \int_{s 2^{-r}}^{(s+1) 2^{-r}}\left(y_{i}^{2}-\int_{0}^{1} y_{i}^{2}\right)\left(w_{j}^{2}-\int_{0}^{1} w_{j}^{2}\right) d x \\
& =\sum_{s=0}^{s=2^{r}-1} 2^{r} \int_{s 2^{-r}}^{(s+1) 2^{-r}}\left(y_{i}^{2}-\int_{0}^{1} y_{i}^{2}\right) d x \int_{s 2^{-r}}^{(s+1) 2^{-r}}\left(w_{j}^{2}-\int_{0}^{1} w_{j}^{2}\right) \\
& =\sum_{s=0}^{s=2^{r}-1} \int_{s 2^{-r}}^{(s+1) 2^{-r}}\left(y_{i}^{2}-\int_{0}^{1} y_{i}^{2}\right) d x\left(2^{r} \int_{s^{-r}}^{(s+1) 2^{-r}} w_{j}^{2} d x-\int_{0}^{1} w_{j}^{2}\right)=0 .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left|\int_{0}^{1}\left(w_{i}^{2}-\int_{0}^{1} w_{i}^{2}\right)\left(w_{j}^{2}-\int_{0}^{1} w_{j}^{2}\right) d x\right| \\
& \quad \leq\left|\int_{0}^{1}\left(y_{i}^{2}-\int_{0}^{1} y_{i}^{2}\right)\left(w_{j}^{2}-\int_{0}^{1} w_{j}^{2}\right) d x\right| \\
& \\
& \quad+\left|\int_{0}^{1}\left(w_{i}^{2}-\int_{0}^{1} w_{i}^{2}-y_{i}^{2}+\int_{0}^{1} y_{i}^{2}\right)\left(w_{j}^{2}-\int_{0}^{1} w_{j}^{2}\right) d x\right| \\
& \quad \leq 2 \sup _{x \in[0,1]}\left|y_{i}^{2}(x)-w_{i}^{2}(x)\right| \int_{0}^{1}\left|w_{j}^{2}-\int_{0}^{1} w_{j}^{2}\right| d x=O\left(i^{-2} j^{\kappa}\right)
\end{aligned}
$$

In the last inequality we used lemma 2.2 and lemma 1.6.

Remark 2.5. To use the change of variables formula we extend φ to the real line with period 1 and then $\varphi\left(2^{m} x \bmod 1\right)=\varphi\left(2^{m} x\right)$.

Proposition 2.6 (Main Estimate). For each $\delta>0$ and for a.e $x \in[0,1]$, there exists a constant C such that

$$
\left|\sigma^{2} N-\sum_{j=1}^{M(N)} y_{j}^{2}\right| \leq C N^{\max \left(1-\frac{1}{2+2 \kappa}, \frac{1}{1+\kappa}\right)+\delta}, \quad \forall N \geq 1
$$

Where $M=M(N), C^{-1} M^{1+\kappa} \leq N \leq C M^{1+\kappa}$.
Proof. By using Cauchy-Schwartz inequality and lemma 2.1, we have

$$
\int_{0}^{1} w_{j-1}^{2} w_{j}^{2} \leq \sqrt{\int_{0}^{1} w_{j-1}^{4}} \sqrt{\int_{0}^{1} w_{j}^{4}} \leq C\left|I_{j-1}\right|^{\frac{2+\frac{\delta}{\kappa}}{2}}\left|I_{j}\right|^{\frac{2+\frac{\delta}{\kappa}}{2}}=O\left(\left|I_{j}\right|^{2+\frac{\delta}{\kappa}}\right)=O\left(j^{2 \kappa+\delta}\right)
$$

Hence, by lemma 2.4 and for some constant C, we have

$$
\begin{aligned}
\sum_{m \leq i \leq j \leq n+m}\left|\int_{0}^{1} w_{i}^{2} w_{j}^{2}-\int_{0}^{1} w_{i}^{2} \int_{0}^{1} w_{j}^{2} d x\right| & \leq C \sum_{j=m}^{n+m} j^{2 \kappa+\delta} \\
& =O\left((n+m)^{1+2 \kappa+\delta}-m^{1+2 \kappa+\delta}\right)
\end{aligned}
$$

So we apply theorem 2.3 with $Z_{i}=w_{i}^{2}-E\left(w_{i}^{2}\right)$ and $\sigma=2 \kappa+\delta+1$ which implies for a.e $x \in[0,1]$

$$
\left|\sum_{j \leq M(N)} w_{j}^{2}-E w_{j}^{2}\right|=O\left(M(N)^{\frac{1+2 \kappa+\delta}{2}} \log ^{2+\delta} M(N)\right)
$$

By lemma 2.2 and lemma 1.6

$$
\left|\sigma(\varphi)^{2} N+\sum_{j=1}^{M(N)}\left(w_{j}^{2}-y_{j}^{2}-E w_{j}^{2}\right)\right| \leq \sum_{j=1}^{\infty} j^{-2}+O(M(N))
$$

To finish the proof we note that $M(N)=O\left(N^{\frac{1}{1+\kappa}}\right)$, and we conclude,

$$
\left|\sum_{j \leq M(N)} y_{j}^{2}-\sigma(\varphi)^{2} N\right|=O\left(N^{1-\frac{1-\delta}{2+2 \kappa}} \log ^{2+\delta} N\right)+O\left(N^{\frac{1}{1+\kappa}}\right)
$$

3. The martingale representation

Lemma 3.1. Let $\left\{y_{j}\right\}_{j=1}^{\infty}$ be an arbitrary sequence of random variables and let $\left\{\mathcal{L}_{j}\right\}_{j=0}^{\infty}$ be a nondecreasing sequence of σ-fields such that y_{j} is \mathcal{L}_{j}-measurable $\left(\mathcal{L}_{0}\right.$ is the trivial σ-field). Suppose that

$$
\sum_{k=0}^{\infty} \mathbb{E}\left|\mathbb{E}\left[y_{j+k} \mid \mathcal{L}_{j}\right]\right|<\infty
$$

for each $j \geq 1$. Then for each $j \geq 1$

$$
y_{j}=Y_{j}+u_{j}-u_{j+1}
$$

where $\left\{Y_{j}\right\}_{j=1}^{\infty}$ is a $\left\{\mathcal{L}_{j}\right\}_{j=1}^{\infty}$ martingale difference sequence and

$$
u_{j}=\sum_{k=0}^{\infty} \mathbb{E}\left[y_{j+k} \mid \mathcal{L}_{j-1}\right] .
$$

Proof. See [PS, Lemma 2.1].
Lemma 3.2. Let \mathcal{L}_{j} be the σ-field generated by $\left(y_{1}, y_{2}, \ldots, y_{j}\right)$. Then we can represent y_{j} by

$$
y_{j}=Y_{j}+u_{j}-u_{j+1}
$$

where $\left\{Y_{j}\right\}_{j=1}^{\infty}$ is a $\left\{\mathcal{L}_{j}\right\}_{j=1}^{\infty}$ martingale difference sequence and

$$
\left|u_{j}\right|=O(\log j) \text { a.s. }
$$

Proof. Firstly, we will proof that $\sum_{k=0}^{\infty} \mathbb{E}\left|\mathbb{E}\left[y_{j+k} \mid \mathcal{L}_{j}\right]\right|<\infty$, then we can use Lemma 3.1 to represent y_{j}.

Since

$$
y_{j}=\sum_{\nu \in I_{j}} \chi_{\nu}=\sum_{\nu \in I_{j}} \mathbb{E}\left[\xi_{\nu} \mid \mathcal{F}_{\nu}\right],
$$

then y_{j} is $\mathcal{F}_{h_{j+1}-1}$ measurable. Due to lemma 1.11, when k is great enough, i.e. $2^{h_{j+k}-h_{j+1}+1} \geq 2\left(h_{j+1}-1\right)^{2 / \alpha}$, we have

$$
\mathbb{E}\left[\chi_{\nu} \mid \mathcal{F}_{h_{j+1}-1}\right]=0, \quad \nu \in I_{j+k}
$$

And we obtain

$$
\mathbb{E}\left[y_{j+k} \mid \mathcal{L}_{j}\right]=\sum_{\nu \in I_{j+k}} \mathbb{E}\left[\chi_{\nu} \mid \mathcal{L}_{j}\right]=\sum_{\nu \in I_{j+k}} \mathbb{E}\left[\mathbb{E}\left[\chi_{\nu} \mid \mathcal{F}_{h_{j+1}-1}\right] \mid \mathcal{L}_{j}\right]=0
$$

Then $\sum_{k=0}^{\infty} \mathbb{E}\left|\mathbb{E}\left[y_{j+k} \mid \mathcal{L}_{j}\right]\right|$ just has finitely many items, so the sum is finite.
Let J be the smallest number that satisfies $2^{J} \geq 2 h_{j}^{2 / \alpha}$. Then we have $J \leq 2+$ $(2 /(\alpha \log 2)) \log h_{j}$, i.e. $J=O\left(\log h_{j}\right)=O(\log j)$. For u_{j} defined in Lemma 3.1 we get

$$
\begin{aligned}
\left|u_{j}\right| & =\sum_{k=0}^{\infty}\left|\mathbb{E}\left[y_{j+k} \mid \mathcal{L}_{j-1}\right]\right| \leq \sum_{k=0}^{\infty} \sum_{\nu \in I_{j+k}}\left|\mathbb{E}\left[\mathbb{E}\left[\chi_{\nu} \mid \mathcal{F}_{\nu}\right] \mid \mathcal{L}_{j-1}\right]\right|=\sum_{\nu \geq h_{j}}\left|\mathbb{E}\left[\mathbb{E}\left[\chi_{\nu} \mid \mathcal{F}_{\nu}\right] \mid \mathcal{L}_{j-1}\right]\right| \\
& =\sum_{\nu=h_{j}}^{h_{j}+J-1}\left|\mathbb{E}\left[\mathbb{E}\left[\chi_{\nu} \mid \mathcal{F}_{\nu}\right] \mid \mathcal{L}_{j-1}\right]\right|+\sum_{\nu \geq h_{j}+J}\left|\mathbb{E}\left[\mathbb{E}\left[\chi_{\nu} \mid \mathcal{F}_{\nu}\right] \mid \mathcal{L}_{j-1}\right]\right| \\
& =\sum_{\nu=h_{j}}^{h_{j}+J-1}\left|\mathbb{E}\left[\mathbb{E}\left[\chi_{\nu} \mid \mathcal{F}_{\nu}\right] \mid \mathcal{L}_{j-1}\right]\right| \leq J\|\varphi\|_{\infty}=O(\log j) .
\end{aligned}
$$

Set $v_{j}=u_{j}-u_{j-1}$. By Lemma 3.2 we have

$$
\left|v_{j}\right|=O(\log j) \text { a.s. }
$$

and $y_{j}=Y_{j}+v_{j}$.
Lemma 3.3. If $\gamma>\max \left(\frac{2+\kappa}{2+2 \kappa}, \frac{1}{1+\kappa}\right)$, then

$$
\left|\sum_{j=1}^{M} Y_{j}^{2}-\sigma^{2} N\right|=O\left(N^{\gamma}\right) \text { a.s. } \quad \text { as } \quad N \rightarrow \infty
$$

Proof. We have

$$
Y_{j}^{2}=\left(y_{j}-v_{j}\right)^{2}=y_{j}^{2}-2 y_{j} v_{j}+v_{j}^{2}
$$

For each δ we find C such that

$$
\sum_{j=1}^{M} v_{j}^{2} \leq C \sum_{j=1}^{M} \log ^{2} j \leq C M \log ^{2} M=O\left(N^{\frac{1}{1+\kappa}} \log ^{2} N\right)=O\left(N^{\frac{1}{1+\kappa}+\delta}\right)
$$

Using Cauchy's inequality and Proposition 2.6. $\forall \delta$ and a.e. $x \in[0,1)$ we can find C so that

$$
\left|\sum_{j=1}^{M} 2 y_{j} v_{j}\right| \leq\left(\sum_{j=1}^{M} y_{j}^{2}\right)^{1 / 2}\left(\sum_{j=1}^{M} v_{j}^{2}\right)^{1 / 2} \leq C N^{1 / 2} N^{\frac{1}{2+2 \kappa}+\delta} \leq C N^{\frac{2+\kappa}{2+2 \kappa}+\delta}
$$

Hence, we have

$$
\left|\sum_{j=1}^{M} y_{j}^{2}-Y_{j}^{2}\right| \leq \sum_{j=1}^{M}\left(\left|2 y_{j} v_{j}\right|+\left|v_{j}^{2}\right|\right) \leq C N^{\gamma}
$$

Then by Proposition 2.6, we get the result.

Lemma 3.4. For each $\gamma>\frac{1+2 \kappa}{2+2 \kappa}$,

$$
\left|\sum_{j=1}^{M} \mathbb{E}\left[Y_{j}^{2} \mid \mathcal{L}_{j-1}\right]-Y_{j}^{2}\right|=O\left(N^{\gamma}\right)
$$

Proof. Let $R_{j}=\mathbb{E}\left[Y_{j}^{2} \mid \mathcal{L}_{j-1}\right]-Y_{j}^{2}$. Since $\mathbb{E}\left[R_{j} \mid \mathcal{L}_{j-1}\right]=0$, then R_{j} is a \mathcal{L}_{j-1} martingale difference sequence. Using Lemma 2.1, we obtain $\forall \delta$

$$
\begin{aligned}
\mathbb{E}\left[R_{j}^{2}\right] & =\mathbb{E}\left[Y_{j}^{4}\right]-\mathbb{E}\left[\mathbb{E}^{2}\left[Y_{j}^{2} \mid \mathcal{L}_{j-1}\right]\right] \leq \mathbb{E}\left[Y_{j}^{4}\right]=\mathbb{E}\left[\left(y_{j}+v_{j}\right)^{4}\right] \\
& \leq \mathbb{E}\left[y_{j}^{4}\right]+\mathbb{E}\left[v_{j}^{4}\right] \leq \mathbb{E}\left[\omega_{j}^{4}\right]+\mathbb{E}\left[\left|\omega_{j}^{4}-y_{j}^{4}\right|\right]+\mathbb{E}\left[v_{j}^{4}\right] \\
& \leq C\left|I_{j}\right|^{2+\delta}+\mathbb{E}\left[\left|\omega_{j}^{2}-y_{j}^{2}\right|\left|\omega_{j}^{2}+y_{j}^{2}\right|\right]+C \log ^{4} j \\
& \leq C j^{\kappa(2+\delta)}+\mathbb{E}\left[C j^{-2}\left(\left|\omega_{j}^{2}\right|+\left|y_{j}^{2}\right|\right)\right]+C j^{\delta} \\
& \leq C j^{2 \kappa+\delta}+\mathbb{E}\left[C j^{-2}\left|I_{j}\right|^{2}\right]+C j^{\delta} \\
& \leq C j^{2 \kappa+\delta}+C j^{-2} j^{2 \kappa}+C j^{\delta}=C j^{2 \kappa+\delta}+C j^{2 \kappa-2}+C j^{\delta} \leq C j^{2 \kappa+\delta} .
\end{aligned}
$$

Then

$$
\sum_{j=1}^{\infty} j^{-1-2 \kappa-2 \delta} \mathbb{E}\left[R_{j}^{2}\right] \leq \sum_{j=1}^{\infty} j^{-1-2 \delta}<\infty
$$

Since R_{j} is a martingale difference sequence, we conclude (see e.g. [C])

$$
\sum_{j=1}^{\infty} j^{-\frac{1+2 \kappa}{2}-\delta} R_{j}
$$

converges a.s. By Kronecker's lemma, for a.e. $x \in[0,1)$ we find a constant C such that

$$
\sum_{j=1}^{\infty} R_{j}(x) \leq C M^{\frac{1+2 \kappa}{2}+\delta} \leq C N^{\frac{1+2 \kappa}{2+2 \kappa}+\delta}
$$

4. SKOROKHOD REPRESENTATION THEOREM

We now apply Skorokhod representation theorem.
Theorem 4.1 (Skorokhod representation theorem). Let $\left\{Y_{i}\right\}_{i=i}^{\infty}$ be a sequence of random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ satisfying:
(i) $\mathbb{E}\left[Y_{i}^{2}\right]<\infty$
(ii) $\mathbb{E}\left[Y_{i} \mid \sigma\left(Y_{1}, \ldots Y_{i-1}\right)\right]=0 \mathbb{P}-$ a.s. for all $i \geq 1$.

Then there exists a sequence of random variable $\left\{\tilde{Y}_{i}\right\}_{i=1}^{\infty}$ and a Brownian motion $\{B(t)\}_{i \in[0, \infty)}$ together with a sequence of nonnegative random variable $\left\{T_{i}\right\}_{i=i}^{\infty}$ on an appropriate probability space $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{\mathbb{P}})$ with the following properties.
(1) $\left\{Y_{i}\right\}_{i=1}^{\infty}$ and $\left\{\widetilde{Y}_{i}\right\}_{i=1}^{\infty}$ have the same distribution.

$$
\begin{equation*}
\sum_{i=1}^{n} \widetilde{Y}_{i}=B\left(\sum_{i=1}^{n} T_{i}\right), \quad \widetilde{\mathbb{P}}-\text { a.s. for any } n \in \mathbb{N} . \tag{2}
\end{equation*}
$$

(3) T_{n} is $\tilde{\mathcal{F}}_{n}$-measurable and

$$
\mathbb{E}\left[T_{n} \mid \widetilde{\mathcal{F}}_{n-1}\right]=\mathbb{E}\left[\tilde{Y}_{n}^{2} \mid \widetilde{\mathcal{F}}_{n-1}\right], \quad \widetilde{\mathbb{P}}-\text { a.s. } n=1,2,3 \ldots
$$

where $\widetilde{\mathcal{F}}_{0}=\phi, \widetilde{\Omega}$ and $\widetilde{\mathcal{F}}_{n}$ is defined as the σ algebra generated by $\tilde{Y}_{1}, \tilde{Y}_{2}, \ldots, \tilde{Y}_{n}$ and $\{B(t)\}_{0 \leq t \leq \sum_{i=1}^{n} T_{i}}$ for $n \geq 1$.

Proof. See [HH, Theorem A.1].
In what follows, we will use the same notation as in the statement of Skorokhod representation theorem. But we will skip the \sim in the notation. So $\mathcal{L}_{n} \subset \mathcal{F}_{n}$ and we have

$$
E\left(T_{j} \mid \mathcal{F}_{j-1}\right)=E\left(Y_{j}^{2} \mid \mathcal{F}_{j-1}\right)=E\left(Y_{j}^{2} \mid \mathcal{L}_{j-1}\right) \text { a.s }
$$

Lemma 4.2. If

$$
\gamma>\max \left(\frac{2+\kappa}{2+2 \kappa}, \frac{1}{1+\kappa}\right)
$$

then

$$
\sum_{j=1}^{M(N)} T_{j}-\sigma(\varphi)^{2} N=O\left(N^{\gamma}\right) \text { a.s. }
$$

Proof. Using Skorokhod representation theorem, we have

$$
\begin{aligned}
& \sum_{i=0}^{M} T_{i}-\sigma(\varphi)^{2} N \\
& =\sum_{i=0}^{M}\left[T_{i}-E\left(T_{i} \mid \mathcal{F}_{j-1}\right)\right]+\sum_{i=0}^{M}\left[E\left(Y_{j}^{2} \mid \mathcal{L}_{j-1}\right)-Y_{j}^{2}\right]+\sum_{i=0}^{M} Y_{j}^{2}-\sigma(\varphi)^{2} N \quad \text { a.s. }
\end{aligned}
$$

The last two terms are bounded by $O\left(N^{\gamma}\right)$ because of Lemma 3.3, 3.4. Write $R_{j}=T_{j}-E\left(T_{i} \mid \mathcal{F}_{j-1}\right)$ then we can see that this is a martingale difference sequence satisfying $E R_{j}^{2}=O\left(E Y_{j}^{4}\right)$. So doing a similar proof that was used in lemma 3.3 we deduce that the first term is also bounded by $O\left(N^{\gamma}\right)$.

We will define the two new random processes by

$$
S(t)=\sum_{k \leq t} \xi_{k}, \quad \text { and } \quad S^{*}=\sum_{k=1}^{M([t])} Y_{k}
$$

Lemma 4.3. $S(t)-S^{*}(t)=O\left(t^{\frac{\kappa}{\kappa+1}}\right)$ a.s.
Proof. By the definition of $S(t), S^{*}(t)$ we have

$$
S(t)-S^{*}(t)=\sum_{k \leq t}\left(\xi_{k}-\chi_{k}\right)-\sum_{t<k<h_{M+1}} \chi_{k}+\sum_{k=1}^{M(t)} y_{k}-Y_{k}
$$

By lemma 1.3 the first term is bounded. The second term contains at most $M[t]^{\kappa}$ terms hence it is bounded by $\|\varphi\|_{\infty} t^{\frac{\kappa}{\kappa+1}}$. The last sum is equal to $u_{1}-u_{M+1}$ which is equal to $O(\log t)$ using lemma 3.3, 3.4.

Theorem 4.4. Let $\gamma>\max \left(\frac{2+\kappa}{2+2 \kappa}, \frac{1}{1+\kappa}\right)$. Then for each $\delta>0$ we have

$$
S^{*}(t)-B\left(\sigma^{2}(\varphi) t\right)=O\left(t^{\frac{\gamma}{2}+\delta}\right) \text { a.s. }
$$

Proof. Let $\sigma^{2}=\sigma^{2}(\varphi)$ and $P_{n}=n^{\delta+\frac{1}{1-\gamma}}$. Then by Skorokhod representation theorem

$$
\begin{equation*}
\max _{P_{n} \leq t \leq P_{n+1}}\left|S^{*}(t)-B\left(\sigma^{2} t\right)\right|=\max _{P_{n} \leq t \leq P_{n+1}}\left|B\left(\sum_{k=1}^{M([t])} T_{j}\right)-B\left(\sigma^{2} t\right)\right| \tag{1}
\end{equation*}
$$

By lemma 4.2 and the mean value theorem we have for $P_{n} \leq t \leq P_{n+1}, n$ large enough
(2) $\quad \sigma^{2} P_{n-1} \leq \sigma^{2} P_{n}+O\left(P_{n+1}^{\gamma}\right) \leq \sum_{k=1}^{M([t])} T_{k} \leq \sigma^{2} P_{n+1}+O\left(P_{n+1}^{\gamma}\right) \leq \sigma^{2} P_{n+2} \quad$ a.s.

For $a \leq b$, let

$$
R(a, b)=\max _{a \leq s, t \leq b}|B(s)-B(t)| .
$$

So for n large enough using (1),(2), we obtain

$$
\max _{P_{n} \leq t \leq P_{n+1}}\left|S^{*}(t)-B\left(\sigma^{2} t\right)\right| \leq R\left(\sigma^{2} P_{n-1}, \sigma^{2} P_{n+2}\right) \quad \text { a.s. }
$$

Now, again using the mean value theorem and the basic properties of Brownian motion we get for n large enough

$$
\mathbb{P}\left(R\left(\sigma^{2} P_{n-1}, \sigma^{2} P_{n+2}\right) \geq P_{n}^{\frac{1}{2}(\gamma+\delta)}\right)=\mathbb{P}\left(R(0,1) \geq\left(\frac{P_{n}^{\frac{1}{2}(\gamma+\delta)}}{\sigma^{2}\left(P_{n+2}-P_{n-1}\right)}\right)^{\frac{1}{2}}\right)
$$

We will denote $\left(\frac{P_{n}^{\frac{1}{2}(\gamma+\delta)}}{\sigma^{2} P_{n+2}-\sigma^{2} P_{n-1}}\right)^{\frac{1}{2}}$ by a to simplify the next equations. So since $R(0,1) \leq \max _{0 \leq t \leq 1}|B(t)|$. Hence we can continue the chain of inequalities by $\mathbb{P}(R(0,1) \geq a) \leq \mathbb{P}\left(\max _{0 \leq t \leq 1}|B(t)| \geq \frac{1}{2} a\right)$. Using Levy's theorem on Brownian motion we get

$$
\mathbb{P}\left(R\left(\sigma^{2} P_{n-1}, \sigma^{2} P_{n+2}\right) \geq P_{n}^{\frac{1}{2}(\gamma+\delta)}\right) \leq \mathbb{P}\left(|B(1)| \geq \frac{1}{2} a\right)=O\left(\exp \left(-n^{c}\right)\right)
$$

where $c \leq 1$ is a constant. So by Borel Cantelli lemma it follows that a.s.

$$
R\left(\sigma^{2} P_{n-1}, \sigma^{2} P_{n+2}\right) \geq P_{n}^{\frac{1}{2}(\gamma+\delta)}
$$

happens for finitely many n only. So this proves the lemma.
It follows from lemma 4.3 and 4.4 that we need to minimize $\max \left(\frac{2+\kappa}{4+4 \kappa}, \frac{1}{2+2 \kappa}, \frac{\kappa}{1+\kappa}\right)$. The minimum value is at $\kappa=\frac{2}{3}$. Lemma 4.3 says that for $\delta>0$, we have $S^{*}(t)-$ $B\left(\sigma^{2}(\varphi) t\right)=O\left(t^{\frac{2}{5}+\delta}\right)$ and using lemma 4.3. We deduce that

$$
S(t)-B\left(\sigma^{2}(\varphi) t\right)=O\left(t^{\frac{2}{5}+\delta}\right) \quad \forall \delta>0
$$

This concludes the proof of theorem 1.6.

Remark 4.5. We can also deduce a slightly better estimate by doing double block partitioning and using similar arguments like above. Where each two consecutive blocks, the first is of size $\left[j^{\kappa}\right]$ and the second block is of size $\log j$. This gives us less correlation between big blocks which gives better estimates. Recall remark 1.7.

References

[AFLV] J.F. Alves, J. M. Freitas, S. Luzzatto, and S. Vaienti. From rates of mixing to recurrence times via large deviations. Advances in Mathematics 228 (2011), 1203-1236.
[C] Y.S. Chow. Local convergence of martingales and the law of large number. The Annals of Mathematical Statistics 36 (1965), 552-558.
[G] S. Gouëzel. Almost sure invariance principle for dynamical systems by spectral methods. The Annals of Probability 38 (2010), 1639-1671.
[HH] P. Hall and C.C. Heyde. Martingale Limit Theory and its Application. Academic Press, New York, 1980.
[HK] F. Hofbauer, G. Keller. Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180 (1982), 119-140.
[K] G. Keller. Generalized bounded variation and application to piecewise monotonic transformations. Z. Wahrscheinlichkeitstheorie verw. Gebiete 69 (1985), 461-478.
[PS] W. Philipp and W.F. Stout. Almost sure invariance principles for partial sums of weakly dependent random variables. Mem. of the Amer. Math. Soc. 161 (1975)
[S] B. Saussol. Absolutely continuous invariant measures for multidimensional expanding maps. Israel journal of mathematics 116 (2000), 223-248.
[C] Y.S.Chow. Local convergence of martingales and the law of large number. The Annals of Mathematical Statistics 36 (1965), 552-558.
E-mail address: mohsen@clipper.ens.fr
E-mail address: ruxi@clipper.ens.fr

