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Abstract. In this paper we prove the almost sure invariance principle for pro-

cesses generated by the dynamical system x 7→ 2x mod 1. The proof relies
on two steps; in the first step we divide the Birkhoff sum of the process into

blocks and show that the sum over these blocks can be well approximated by

a martingale. In the second step we use Skorokhod representation theorem to
approximate this martingale by a Brownian motion. We also talk about some

of the applications of the almost sure invariance principle.

1. Preliminaries

Definition 1.1 (Banach space Vα). For ϕ ∈ L1(m) and 0 < α ≤ 1, we define

|ϕ|α = sup
ε>0

1

εα

∫ 1

0

ess supy1,y2∈(x−ε,x+ε) |ϕ(y1)− ϕ(y2)|dx .

The space Vα consists of all ϕ ∈ L1(m) such that |ϕ|α < ∞. On Vα we define the
norm

‖ϕ‖α = |ϕ|α + ‖ϕ‖L1 .

If ϕ is an α−Hölder function, α ≤ 1, then there exists a constant C such that
∀x, y ∈ R |ϕ(x)−ϕ(y)| ≤ C|x−y|α. Hence, it follows immediately that Vα contains
all α-Hölder functions. Further, by [K] (cf. also [S]), the space Vα together with
the norm ‖.‖α is a Banach space. For simplicity, we restrict our considerations to
Hölder continuous functions.

Theorem 1.2 (Exponential decay of correlation). There exists a real number
0<λ<1 and a constant C such that for all g ∈ Vα and all h ∈ L1(m)∣∣∣∣∫ 1

0

g(x)h(fn(x))dx−
∫ 1

0

g(x)dx

∫ 1

0

h(x)dx

∣∣∣∣ ≤ C‖g‖α‖h‖L1λn ∀n ≥ 1

Proof. See, e.g., [AFLV, Appendix C.3 and C.4]. �

Let

σ(ϕ)2 :=

∫ 1

0

ϕ2 + 2
∑
n≥1

∫ 1

0

ϕ(x)ϕ(fn(x))dx.

If ϕ is a α-Hölder function and
∫ 1

0
ϕ = 0 then, by theorem 1.2, we have σ(ϕ)2<∞.

Furthermore, we can write

σ(ϕ)2 = lim
n→∞

1

n

∫ 1

0

(

n∑
i=0

ϕ(f i(x)))2dx,
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from which follows that σ(ϕ)2 ≥ 0. If σ(ϕ)2 = 0, then ϕ is called a co-boundary.
Henceforth, we will always assume that σ(ϕ)2 > 0.

Remark 1.3. We can show that if
∫ 1

0
ϕ 6= 0, then the series

∑
n≥1

∫ 1

0
ϕ(x)ϕ(fn(x))dx

is divergent. So from now we assume that
∫ 1

0
ϕ = 0

Example 1.4. If we take ϕ(x) = cos(2πx) then it is easy to calculate σ(ϕ)2 = 1
2 .

We consider the function

f(x) = 2x mod 1,

which is also called the doubling map.
We also use the big O-notation. We say f = O(g) if there exists a constant C such
that |f | ≤ Cg. Define

ξi(x) = ϕ(f i(x)), i ≥ 1.

Definition 1.5. We say that a sequence of random variables ηi, i ≥ 1, on a
probability space (Ω,F ,P) satisfies an almost sure invariance principle with error
exponent γ < 1/2 and variance σ>0. If there exist a sequence of random variables
η̃i, i ≥ 1, and a Brownian motion B(t), t ≥ 0, on an appropriate probability space

(Ω̃, F̃ , P̃) such that

(i) {ηi}i≥1 and {η̃i}i≥1 have the same distribution;

(ii) P̃ almost surely as n→∞,∣∣∣∣∣B(σn)−
n∑
i=1

η̃i

∣∣∣∣∣ = O(nγ) .

In this article, we will prove that:

Theorem 1.6. ξi satisfies the almost sure invariance principle for all error expo-
nents γ > 2

5 and variance σ2(ϕ).

Remark 1.7. We get an error exponent γ > 2
5 . We can imporve the error exponent

to γ>1
3 using similar techniques. We only have to put smaller blocks of logarithm

size or of very small polynomial size between the large blocks. By applying a
technique by Gouëzel [G], the error exponent could be improved to γ > 1

4 .

The almost sure invariance principle is a very strong property. It implies many
other laws, e.g., the central limit theorem and the law of iterated logarithm.

Corollary 1.8. If ξi, i ≥ 1, satisfy an almost sure invariance principle then 1√
n

∑n
i=1 ξi

converges in distribution to N (0, σ2) and

lim sup
n→∞

1√
2n log log n

n∑
i=1

ξi(x) = σ, for P− a.e. x,

where σ2 is the variance of the related Brownian motion.
In other word, the sequence ξi satisfies the central limit theorem and the law of
iterated logarithm.

Proof. See [PS]. �
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Example 1.9. As the following example by Erdös and Fortet shows, we have to be
careful when leaving the setting of dynamical systems:
If ϕ(x) = cos(2πx)+cos(4πx), then the sequence ξi = ϕ((2i−1)x mod 1) does not
satisfy the central limit theorem (and hence not either the almost sure invariance
principle).

Suppose that rk is the largest integer such that

2rk ≤ k2/α2k, k ≥ 1,

and let Fk be the σ-field generated by all intervals of the form

Ui,k = [i2−rk , (i+ 1)2−rk), 0 ≤ i ≤ 2rk − 1, k ≥ 1.

We define
χk = E[ξk|Fk], k ≥ 1.

Lemma 1.10. There exists a constant C such that |χk − ξk| ≤ Ck−2 for all x
∈ [0, 1), k ≥ 1.

Proof. Let x ∈ Ui,k,

|χk(x)− ξk(x)| = 1

|Ui,k|
|
∫
Ui,k

ϕ(fk(y))− ϕ(fk(x))dy|

≤ 1

|Ui,k|

∫
Ui,k

|ϕ(fk(y))− ϕ(fk(x))|dy

≤ C

|Ui,k|

∫
Ui,k

|fk(y)− fk(x)|αdy ≤ C sup
x,y∈Ui,k

|fk(y)− fk(x)|α

≤ C(2−rk2k)α ≤ C(
1

k2/α
)α =

C

k2
.

�

Observe that Lemma 1.3 implies that
∞∑
k=1

|χk − ξk| ≤ C
∞∑
k=1

k−2 = O(1).

Lemma 1.11. We have for 2j ≥ 2k2/α and k ≥ 0

E[ξk+j |Fk] = E[χk+j |Fk] = 0.

Proof. Since 2j ≥ 2k2/α, it follows that 2k+j ≥ 2rk , i.e. k + j ≥ rk. Let x ∈ Ui,k,
hence

E[E[ξk+j |Fk+j ]Fk](x) = E[ξk+j |Fk](x) =
1

|Ui,k|

∫
Ui,k

ϕ(fk+j(y))dy

=

∫ 1

0

ϕ(fk+j−rk(y))dy = 0.

And
E[χk+j |Fk] = E[E[ξk+j |Fk+j ]Fk].

Therefore we have
E[ξk+j |Fk] = E[χk+j |Fk] = 0.

�
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Fix 0 < κ < 1. Let Ij , j ≥ 1, be the block of integers containing [jκ] consecutive
positive integers and such that there are no gaps between consecutive block.

Set hj := min{ν | ν ∈ Ij}, so that hj =
∑j−1
ν=1[νκ] + 1.

By integration, we obtain that

hj = O(j1+κ).

We define the blocks

yj :=
∑
ν∈Ij

χν and ωj :=
∑
ν∈Ij

ξν .

Let MN be the index of yj containing χN , and we use M short for MN .
Then we have

C−1M1+κ ≤ N ≤ CM1+κ.

Lemma 1.12. There exists a constant C such that |y2j − ω2
j | ≤ Cj−2 for all x

∈ [0, 1).

Proof. Since |ξν | = |ϕ(fν(x))| ≤ ‖ϕ‖∞ and |χν | = |E[ξν |Fν ]| ≤ ‖ξν‖∞ ≤ ‖ϕ‖∞ ,
we have

|yj + ωj | = |
∑
ν∈Ij

χν + ξν | ≤
∑
ν∈Ij

(|χν |+ |ξν |) ≤ 2|Ij |‖ϕ‖∞ ≤ 2jκ‖ϕ‖∞.

Due to Lemma 1.3

|y2j − ω2
j | = |yj − ωj ||yj + ωj | ≤ 2jκ‖ϕ‖∞

∑
ν∈Ij

|χν − ξν | ≤ 2jκ‖ϕ‖∞
∑
ν∈Ij

ν−2

≤ 2jκ‖ϕ‖∞|Ij |h−2j ≤ 2Cjκ‖ϕ‖∞jκj−2−2κ = 2C‖ϕ‖∞j−2.

�

2. Main Estimate

In this section we prove a law of large numbers for the random processes yi. This
allows us to approximate this processes by a martingales in the next section.

Lemma 2.1. For all δ>0 there exists a constant C such that
∫ 1

0
w4
j ≤ C|Ij |2+δ.

Proof. We begin by expanding the sum and use the inequality |{(v1, v2, v3, v4) ∈
S4 : v1 ≤ v2 ≤ v3 ≤ v4, v2 − v1 ≤ |S|δ & v4 − v3 ≤ |S|δ}| ≤ |S|2+δ. So

∫ 1

0

w4
j =

∑
v1,v2,v3,v4∈Ij

∫ 1

0

ξv1ξv2ξv3ξv4

≤ 4
∑

v1≤v2≤v3≤v4∈Ij
v2−v1≥|Ij |δ or v4−v3≥|Ij |δ

|
∫ 1

0

ξv1ξv2ξv3ξv4 |+ 4‖ϕ‖4∞|Ij |2+δ.
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Since the Lebesgue measure is f invariant, it follows that |
∫ 1

0
ξv1ξv2ξv3ξv4 | =

|
∫ 1

0
ϕ(x)ϕ(fv2−v1x)ϕ(fv3−v1x)ϕ(fv4−v1x)dx|. If v2 − v1 ≥ |Ij |δ then by using the-

orem 1.2, we deduce

∣∣∣∣ ∫ 1

0

ϕ(x)ϕ(fv2−v1(x))ϕ(fv3−v1(x))ϕ(fv4−v1(x))

∣∣∣∣
≤
∣∣∣∣∫ 1

0

ϕ(x)dx

∫ 1

0

ϕ(x)ϕ(fv3−v2(x))ϕ(fv4−v2(x))dx

∣∣∣∣
+ C · ‖ϕ‖α‖ϕϕ ◦ fv3−v2ϕ ◦ fv4−v2‖∞λv2−v1

= O(λv2−v1) = O(λI
δ
j ),

where we used that
∫ 1

0
ϕ = 0. If v4 − v3 ≥ |Ij |δ then let r = v3 − v1, so we have

∫ 1

0

ϕ ·ϕ◦fv2−v1 ·ϕ◦fr ·ϕ◦fr+v4−v3 =

2r−1∑
i=0

∫ i+1
2r

i
2r

ϕ ·ϕ◦fv2−v1 ·ϕ◦fr ·ϕ◦fr+v4−v3 .

The function fr is invertible on the interval [ i2r ,
i+1
2r ] so there exist functions gi :

[0, 1] → [ i2r ,
i+1
2r ] such that gi ◦ fr = id, fr ◦ gi = id. So by a change of variables

and theorem 1.2

2r−1∑
i=0

∫ i+1
2r

i
2r

ϕ · ϕ ◦ fv2−v1 · ϕ ◦ fr · ϕ ◦ fr+v4−v3

=

2r−1∑
i=0

1

2r

∫ 1

0

ϕ ◦ gi · ϕ ◦ fv2−v1 ◦ gi · ϕ · ϕ ◦ fv4−v3

≤ CλI
δ
j sup

i
‖ϕ ◦ gi · ϕ ◦ fv2−v1 ◦ gi · ϕ‖α.

Observe that gi and fv2−v1 ◦ gi are contractions. Hence using the definition of the
norm ‖.‖α one can easily see that ‖ϕ ◦ gi ·ϕ ◦ fv2−v1 ◦ gi ·ϕ‖α is bounded uniformly

in i, j. Since |Ij |4λ|Ij |
δ → 0 as j →∞ and ‖ϕ ◦ gi ·ϕ ◦ fv2−v1 ◦ gi ·ϕ‖α is bounded.

we get
∫ 1

0
w4
j = O(|Ij |4λ|Ij |

δ

) +O(|Ij |2+δ) = O(|Ij |2+δ). �

Lemma 2.2. There exists a constant C such that

∣∣∣∣∫ 1

0

w2
jdx− σ(ϕ)2|Ij |

∣∣∣∣ ≤ C, ∀j ≥ 1.
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Proof.

σ(ϕ)2|Ij | −
∫ 1

0

w2
jdx

= σ(ϕ)2|Ij | −
∑
k,l∈Ij

∫ 1

0

ξkξldx

= σ(ϕ)2|Ij | −
∑
k∈Ij

∫ 1

0

ξkξkdx−
∑

k,l∈Ij ,k 6=l

∫ 1

0

ξkξldx

= σ(ϕ)2|Ij | − |Ij |
∫ 1

0

ϕ2dx− 2
∑

0<i≤|Ij |−1

(|Ij | − i)
∫ 1

0

ϕ(x)ϕ(f i(x))dx

= 2

|Ij |−1∑
i=1

(i− |Ij |)
∫ 1

0

ϕ(x)ϕ(f i(x))dx+ 2|Ij |
∑
n≥1

∫ 1

0

ϕ(x)ϕ(f i(x))dx

= 2

|Ij |−1∑
i=1

i

∫ 1

0

ϕ(x)ϕ(f i(x))dx+ 2|Ij |
∞∑

i=|Ij |

∫ 1

0

ϕ(x)ϕ(f i(x))dx.

Using theorem 1.2 we deduce that the first term is a convergent series and the
second term is bounded as j →∞. �

Theorem 2.3 (Gal-Koksma Strong Law of Large Numbers). Let {Zn} be a se-
quence of random variables such that ∀n ≥ 1 E(Zn) = 0, E(Z2

n)<∞. Suppose that
there exists constants σ,C>0 such that for all integers n>0, m ≥ 0

E

m+n∑
j=m

Zj

2

≤ C((m+ n)σ −mσ).

Then for each δ ≥ 0 and a.e ω ∈ Ω∣∣∣∣∣∣
∑
j≤N

Zj

∣∣∣∣∣∣ = O(N
1
2σ log2+δ N)

Proof. See [PS, Theorem A1] �

Lemma 2.4. ∣∣∣∣∫ 1

0

w2
iw

2
j −

∫ 1

0

w2
i

∫ 1

0

w2
j

∣∣∣∣ = O(i−2jκ) ∀i<j − 1

.

Proof. We claim that for j big enough we can find k such that yi is Fk-measurable

and 2r
∫ (s+1)2−r

s2−r
w2
jdx =

∫ 1

0
w2
j for r = rk. If n<m ∈ N then using the change of

variables formula we have 2n
∫ (s+1)2−n

s2−n
ϕ ◦ fmdx = 2n

∫ (s+1)2−n

s2−n
ϕ ◦ fm−n ◦ fndx =∫ 1

0
ϕ ◦ fm, ∀0 ≤ s ≤ 2n − 1. So if r<hj then 2r

∫ (s+1)2−r

s2−r
w2
jdx =

∫ 1

0
w2
j . Since yi

is Fhi+1
measurable we need to make sure that rhi+1

<hj . since rhi+1
≤ rhj−1

≤
hj−1 +

2 log hj−1

α log 2 , hj = O(j1+κ), it follows that rhi+1 ≤ rhj−1<hj for j big enough.
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Hence we can choose k = hi+1. To prove the lemma we have∫ 1

0

(y2i−
∫ 1

0

y2i )(w2
j −

∫ 1

0

w2
j )dx

=

s=2r−1∑
s=0

∫ (s+1)2−r

s2−r
(y2i −

∫ 1

0

y2i )(w2
j −

∫ 1

0

w2
j )dx

=

s=2r−1∑
s=0

2r
∫ (s+1)2−r

s2−r
(y2i −

∫ 1

0

y2i )dx

∫ (s+1)2−r

s2−r
(w2

j −
∫ 1

0

w2
j )

=

s=2r−1∑
s=0

∫ (s+1)2−r

s2−r
(y2i −

∫ 1

0

y2i )dx(2r
∫ (s+1)2−r

s2−r
w2
jdx−

∫ 1

0

w2
j ) = 0.

Hence,

|
∫ 1

0

(w2
i−
∫ 1

0

w2
i )(w

2
j −

∫ 1

0

w2
j )dx|

≤ |
∫ 1

0

(y2i −
∫ 1

0

y2i )(w2
j −

∫ 1

0

w2
j )dx|

+ |
∫ 1

0

(w2
i −

∫ 1

0

w2
i − y2i +

∫ 1

0

y2i )(w2
j −

∫ 1

0

w2
j )dx|

≤ 2 sup
x∈[0,1]

|y2i (x)− w2
i (x)|

∫ 1

0

|w2
j −

∫ 1

0

w2
j |dx = O(i−2jκ).

In the last inequality we used lemma 2.2 and lemma 1.6. �

Remark 2.5. To use the change of variables formula we extend ϕ to the real line
with period 1 and then ϕ(2mx mod 1) = ϕ(2mx).

Proposition 2.6 (Main Estimate). For each δ>0 and for a.e x ∈ [0, 1], there exists
a constant C such that

|σ2N −
M(N)∑
j=1

y2j | ≤ CNmax(1− 1
2+2κ ,

1
1+κ )+δ, ∀N ≥ 1.

Where M = M(N), C−1M1+κ ≤ N ≤ CM1+κ.

Proof. By using Cauchy-Schwartz inequality and lemma 2.1, we have∫ 1

0

w2
j−1w

2
j ≤

√∫ 1

0

w4
j−1

√∫ 1

0

w4
j ≤ C|Ij−1|

2+ δ
κ

2 |Ij |
2+ δ

κ
2 = O(|Ij |2+

δ
κ ) = O(j2κ+δ).

Hence, by lemma 2.4 and for some constant C, we have

∑
m≤i≤j≤n+m

∣∣∣∣∫ 1

0

w2
iw

2
j −

∫ 1

0

w2
i

∫ 1

0

w2
jdx

∣∣∣∣ ≤ C n+m∑
j=m

j2κ+δ

= O((n+m)1+2κ+δ −m1+2κ+δ).
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So we apply theorem 2.3 with Zi = w2
i − E(w2

i ) and σ = 2κ+ δ + 1 which implies
for a.e x ∈ [0, 1]∣∣∣∣∣∣

∑
j≤M(N)

w2
j − Ew2

j

∣∣∣∣∣∣ = O(M(N)
1+2κ+δ

2 log2+δM(N)).

By lemma 2.2 and lemma 1.6∣∣∣∣∣∣σ(ϕ)2N +

M(N)∑
j=1

(w2
j − y2j − Ew2

j )

∣∣∣∣∣∣ ≤
∞∑
j=1

j−2 +O(M(N)).

To finish the proof we note that M(N) = O(N
1

1+κ ), and we conclude,∣∣∣∣∣∣
∑

j≤M(N)

y2j − σ(ϕ)2N

∣∣∣∣∣∣ = O(N1− 1−δ
2+2κ log2+δ N) +O(N

1
1+κ ).

�

3. The martingale representation

Lemma 3.1. Let {yj}∞j=1 be an arbitrary sequence of random variables and let
{Lj}∞j=0 be a nondecreasing sequence of σ-fields such that yj is Lj-measurable(L0

is the trivial σ-field). Suppose that
∞∑
k=0

E|E[yj+k|Lj ]| <∞

for each j ≥ 1. Then for each j ≥ 1

yj = Yj + uj − uj+1

where {Yj}∞j=1 is a {Lj}∞j=1 martingale difference sequence and

uj =

∞∑
k=0

E[yj+k|Lj−1].

Proof. See [PS, Lemma 2.1]. �

Lemma 3.2. Let Lj be the σ-field generated by (y1, y2, ..., yj). Then we can repre-
sent yj by

yj = Yj + uj − uj+1

where {Yj}∞j=1 is a {Lj}∞j=1 martingale difference sequence and

|uj | = O(log j) a.s.

Proof. Firstly, we will proof that
∑∞
k=0 E|E[yj+k|Lj ]| <∞, then we can use Lemma

3.1 to represent yj .
Since

yj =
∑
ν∈Ij

χν =
∑
ν∈Ij

E[ξν |Fν ],

then yj is Fhj+1−1 measurable. Due to lemma 1.11, when k is great enough, i.e.

2hj+k−hj+1+1 ≥ 2(hj+1 − 1)2/α, we have

E[χν |Fhj+1−1] = 0, ν ∈ Ij+k.
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And we obtain

E[yj+k|Lj ] =
∑

ν∈Ij+k

E[χν |Lj ] =
∑

ν∈Ij+k

E[E[χν |Fhj+1−1]|Lj ] = 0.

Then
∑∞
k=0 E|E[yj+k|Lj ]| just has finitely many items, so the sum is finite.

Let J be the smallest number that satisfies 2J ≥ 2h
2/α
j . Then we have J ≤ 2 +

(2/(α log 2)) log hj , i.e. J = O(log hj) = O(log j). For uj defined in Lemma 3.1 we
get

|uj | =
∞∑
k=0

|E[yj+k|Lj−1]| ≤
∞∑
k=0

∑
ν∈Ij+k

|E[E[χν |Fν ]|Lj−1]| =
∑
ν≥hj

|E[E[χν |Fν ]|Lj−1]|

=

hj+J−1∑
ν=hj

|E[E[χν |Fν ]|Lj−1]|+
∑

ν≥hj+J

|E[E[χν |Fν ]|Lj−1]|

=

hj+J−1∑
ν=hj

|E[E[χν |Fν ]|Lj−1]| ≤ J‖ϕ‖∞ = O(log j).

�

Set vj = uj − uj−1. By Lemma 3.2 we have

|vj | = O(log j) a.s.

and yj = Yj + vj .

Lemma 3.3. If γ > max( 2+κ
2+2κ ,

1
1+κ ), then

|
M∑
j=1

Y 2
j − σ2N | = O(Nγ) a.s. as N →∞.

Proof. We have

Y 2
j = (yj − vj)2 = y2j − 2yjvj + v2j .

For each δ we find C such that

M∑
j=1

v2j ≤ C
M∑
j=1

log2 j ≤ CM log2M = O(N
1

1+κ log2N) = O(N
1

1+κ+δ).

Using Cauchy’s inequality and Proposition 2.6. ∀δ and a.e. x ∈ [0, 1) we can find
C so that

|
M∑
j=1

2yjvj | ≤ (

M∑
j=1

y2j )1/2(

M∑
j=1

v2j )1/2 ≤ CN1/2N
1

2+2κ+δ ≤ CN
2+κ
2+2κ+δ.

Hence, we have

|
M∑
j=1

y2j − Y 2
j | ≤

M∑
j=1

(|2yjvj |+ |v2j |) ≤ CNγ .

Then by Proposition 2.6, we get the result. �
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Lemma 3.4. For each γ > 1+2κ
2+2κ ,

|
M∑
j=1

E[Y 2
j |Lj−1]− Y 2

j | = O(Nγ).

Proof. Let Rj = E[Y 2
j |Lj−1] − Y 2

j . Since E[Rj |Lj−1] = 0, then Rj is a Lj−1
martingale difference sequence. Using Lemma 2.1, we obtain ∀δ

E[R2
j ] = E[Y 4

j ]− E[E2[Y 2
j |Lj−1]] ≤ E[Y 4

j ] = E[(yj + vj)
4]

≤ E[y4j ] + E[v4j ] ≤ E[ω4
j ] + E[|ω4

j − y4j |] + E[v4j ]

≤ C|Ij |2+δ + E[|ω2
j − y2j ||ω2

j + y2j |] + C log4 j

≤ Cjκ(2+δ) + E[Cj−2(|ω2
j |+ |y2j |)] + Cjδ

≤ Cj2κ+δ + E[Cj−2|Ij |2] + Cjδ

≤ Cj2κ+δ + Cj−2j2κ + Cjδ = Cj2κ+δ + Cj2κ−2 + Cjδ ≤ Cj2κ+δ.

Then
∞∑
j=1

j−1−2κ−2δE[R2
j ] ≤

∞∑
j=1

j−1−2δ <∞,

Since Rj is a martingale difference sequence, we conclude (see e.g. [C])

∞∑
j=1

j−
1+2κ

2 −δRj

converges a.s. By Kronecker’s lemma, for a.e. x ∈ [0, 1) we find a constant C such
that

∞∑
j=1

Rj(x) ≤ CM
1+2κ

2 +δ ≤ CN
1+2κ
2+2κ+δ.

�

4. Skorokhod representation theorem

We now apply Skorokhod representation theorem.

Theorem 4.1 (Skorokhod representation theorem). Let {Yi}∞i=i be a sequence of
random variables on a probability space (Ω,F ,P) satisfying:

(i) E[Y 2
i ] <∞

(ii) E[Yi|σ(Y1, ...Yi−1)] = 0 P− a.s. for all i ≥ 1.

Then there exists a sequence of random variable {Ỹi}∞i=1 and a Brownian motion
{B(t)}i∈[0,∞) together with a sequence of nonnegative random variable {Ti}∞i=i on

an appropriate probability space (Ω̃, F̃ , P̃) with the following properties.

(1) {Yi}∞i=1 and {Ỹi}∞i=1 have the same distribution.
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(2)
n∑
i=1

Ỹi = B(

n∑
i=1

Ti), P̃− a.s. for any n ∈ N.

(3) Tn is F̃n-measurable and

E[Tn|F̃n−1] = E[Ỹn
2|F̃n−1] , P̃− a.s. n = 1, 2, 3...,

where F̃0 = φ, Ω̃ and F̃n is defined as the σ algebra generated by Ỹ1, Ỹ2, ..., Ỹn
and {B(t)}0≤t≤∑n

i=1 Ti
for n ≥ 1.

Proof. See [HH, Theorem A.1]. �

In what follows, we will use the same notation as in the statement of Skorokhod
representation theorem. But we will skip the ∼ in the notation. So Ln ⊂ Fn and
we have

E(Tj |Fj−1) = E(Y 2
j |Fj−1) = E(Y 2

j |Lj−1)a.s

Lemma 4.2. If

γ>max(
2 + κ

2 + 2κ
,

1

1 + κ
)

then
M(N)∑
j=1

Tj − σ(ϕ)2N = O(Nγ) a.s.

Proof. Using Skorokhod representation theorem, we have

M∑
i=0

Ti − σ(ϕ)2N

=

M∑
i=0

[Ti − E(Ti|Fj−1)] +

M∑
i=0

[E(Y 2
j |Lj−1)− Y 2

j ] +

M∑
i=0

Y 2
j − σ(ϕ)2N a.s.

The last two terms are bounded by O(Nγ) because of Lemma 3.3, 3.4. Write
Rj = Tj −E(Ti|Fj−1) then we can see that this is a martingale difference sequence
satisfying ER2

j = O(EY 4
j ). So doing a similar proof that was used in lemma 3.3 we

deduce that the first term is also bounded by O(Nγ). �

We will define the two new random processes by

S(t) =
∑
k≤t

ξk, and S∗ =

M([t])∑
k=1

Yk.

Lemma 4.3. S(t)− S∗(t) = O(t
κ
κ+1 ) a.s.

Proof. By the definition of S(t), S∗(t) we have

S(t)− S∗(t) =
∑
k≤t

(ξk − χk)−
∑

t<k<hM+1

χk +

M(t)∑
k=1

yk − Yk.

By lemma 1.3 the first term is bounded. The second term contains at most M [t]κ

terms hence it is bounded by ‖ϕ‖∞t
κ
κ+1 . The last sum is equal to u1−uM+1 which

is equal to O(log t) using lemma 3.3, 3.4. �
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Theorem 4.4. Let γ>max( 2+κ
2+2κ ,

1
1+κ ). Then for each δ>0 we have

S∗(t)−B(σ2(ϕ)t) = O(t
γ
2 +δ) a.s.

Proof. Let σ2 = σ2(ϕ) and Pn = nδ+
1

1−γ . Then by Skorokhod representation theo-
rem

(1) max
Pn≤t≤Pn+1

∣∣S∗(t)−B(σ2t)
∣∣ = max

Pn≤t≤Pn+1

∣∣∣∣∣∣B(

M([t])∑
k=1

Tj)−B(σ2t)

∣∣∣∣∣∣ .
By lemma 4.2 and the mean value theorem we have for Pn ≤ t ≤ Pn+1, n large
enough

(2) σ2Pn−1 ≤ σ2Pn +O(P γn+1) ≤
M([t])∑
k=1

Tk ≤ σ2Pn+1 +O(P γn+1) ≤ σ2Pn+2 a.s.

For a ≤ b, let

R(a, b) = max
a≤s,t≤b

|B(s)−B(t)| .

So for n large enough using (1),(2), we obtain

max
Pn≤t≤Pn+1

∣∣S∗(t)−B(σ2t)
∣∣ ≤ R(σ2Pn−1, σ

2Pn+2) a.s.

Now, again using the mean value theorem and the basic properties of Brownian
motion we get for n large enough

P
(
R(σ2Pn−1, σ

2Pn+2) ≥ P
1
2 (γ+δ)
n

)
= P

R(0, 1) ≥

(
P

1
2 (γ+δ)
n

σ2(Pn+2 − Pn−1)

) 1
2


We will denote

(
P

1
2
(γ+δ)

n

σ2Pn+2−σ2Pn−1

) 1
2

by a to simplify the next equations. So since

R(0, 1) ≤ max0≤t≤1 |B(t)| . Hence we can continue the chain of inequalities by
P (R(0, 1) ≥ a) ≤ P

(
max0≤t≤1 |B(t)| ≥ 1

2a
)
. Using Levy’s theorem on Brownian

motion we get

P
(
R(σ2Pn−1, σ

2Pn+2) ≥ P
1
2 (γ+δ)
n

)
≤ P

(
|B(1)| ≥ 1

2
a

)
= O(exp(−nc)),

where c ≤ 1 is a constant. So by Borel Cantelli lemma it follows that a.s.

R(σ2Pn−1, σ
2Pn+2) ≥ P

1
2 (γ+δ)
n

happens for finitely many n only. So this proves the lemma. �

It follows from lemma 4.3 and 4.4 that we need to minimize max( 2+κ
4+4κ ,

1
2+2κ ,

κ
1+κ ).

The minimum value is at κ = 2
3 . Lemma 4.3 says that for δ>0, we have S∗(t) −

B(σ2(ϕ)t) = O(t
2
5+δ) and using lemma 4.3. We deduce that

S(t)−B(σ2(ϕ)t) = O(t
2
5+δ) ∀δ>0.

This concludes the proof of theorem 1.6.
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Remark 4.5. We can also deduce a slightly better estimate by doing double block
partitioning and using similar arguments like above. Where each two consecutive
blocks, the first is of size [jκ] and the second block is of size log j. This gives us less
correlation between big blocks which gives better estimates. Recall remark 1.7.
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