Analyse fonctionnelle et EDP, Partiel, mars 2010 ENS, FIMFA, première année.

Exercice 1 Injections de Sobolev H^s

1. Expliquer pourquoi $H^0(\mathbb{R}^d) = L^2(\mathbb{R}^d)$, $H^1(\mathbb{R}^d) = \{u \in L^2 : \nabla u \in L^2\}$. Donner de même une interprétation de $H^m(\mathbb{R}^d)$ pour $m \in \mathbb{N}$.

Soit $s \in [0, d/2[$. On souhaite démontrer que $H^s(\mathbb{R}^d) \subset L^{\frac{2d}{d-2s}}(\mathbb{R}^d)$ (avec injection continue). Étant donné $u \in \mathcal{S}(\mathbb{R}^d)$ et A > 0, on note

$$u_A^1 = \mathcal{F}^{-1}(1_{B(0,A)}\hat{u}), \quad et \quad u_A^2 = \mathcal{F}^{-1}(1_{B(0,A)^c}\hat{u}).$$

2. Montrer que :

$$||u||_{L^p}^p = p \int_0^\infty \lambda^{p-1} \mu\{x : |u(x)| > \lambda\} d\lambda \ (\mu : mesure \ de \ Lebesgue \ sur \ \mathbb{R}^d).$$

3. Montrer que $\|u_A^1\|_{L^{\infty}} \leq CA^{d/2-s}\|u\|_{H^s}$. En déduire que $\mu\{x \mid u_{A_{\lambda}}^1(x)| > \lambda/2\} = 0$, où $A_{\lambda} = (\lambda/2C\|u\|_{H^s})^{\frac{1}{d/2-s}}$, et enfin que :

$$||u||_{L^p}^p \le p \int_0^\infty \lambda^{p-1} \mu\{x : |u_{A_\lambda}^2(x)| \ge \lambda/2\} d\lambda.$$

- 4. Montrer que $\lambda^2 \mu\{x : |u_{A_{\lambda}}^2(x)| \ge \lambda/2\} \le 4 \|u_{A_{\lambda}}^2\|_{L^2}^2$ et conclure.
- 5. On suppose maintenant que $s \in]d/2, d/2 + 1[$. Montrer que pour tout $\alpha \in [0, 1]$ et x, y, ξ :

$$|e^{ix\xi} - e^{iy\xi}| \le 2|x - y|^{\alpha}|\xi|^{\alpha}.$$

En déduire que pour tout $\alpha \in]0, s-d/2[$, il existe $C(\alpha)$ tel que :

$$\forall x, y \in \mathbb{R}^d, \quad \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le C(\alpha) ||u||_{H^s}.$$

Conclure que $H^s(\mathbb{R}^d)$ s'injecte continûment dans $C^{\alpha}(\mathbb{R}^d)$, ensemble des fonctions α -Holderiennes bornées.

Exercice 2 Espaces en dualité. Soit E et F deux \mathbb{R} -ev et soit a une forme bilinéaire sur $E \times F$ séparante c'est à dire que si $x \in E$ vérifie a(x,y) = 0 pour tout $y \in F$ alors x = 0 et si $y \in F$ vérifie a(x,y) = 0 pour tout $x \in E$ alors y = 0. On munit E de la topologie d'evtle définie par la famille de semi-normes $(p_y)_{y \in F}$ avec $p_y(x) := |a(x,y)|$, pour tout $(x,y) \in E \times F$. Soit f une forme linéaire sur E, continue pour la topologie définie précédemment. Montrer qu'il existe un unique $y \in F$ tel que f = a(.,y).

Exercice 3 Bases de Schauder. Soit $(E, \|.\|)$ un espace de Banach, on dit que la famille $\{e_n, n \in \mathbb{N}\}$ est une base de Schauder de E, si pour tout $x \in E$ il existe une unique suite de réels $(x_n)_n$ telle que $x = \sum_{n=0}^{\infty} x_n e_n$ (en particulier, la série converge!). On suppose désormais que E possède une base de Schauder $\{e_n\}_{n\in\mathbb{N}}$ et pour $x \in E$, $x = \sum_{n=0}^{\infty} x_n e_n$ et $N \in \mathbb{N}$, on pose $P_N(x) := \sum_{n=0}^N x_n e_n$ et $\|x\|_1 := \sup_N \|P_N x\|$.

- 1. Montrer que $\|.\|_1$ est une norme équivalente à $\|.\|$.
- 2. Montrer que chaque P_N est linéaire et continu et que $\sup_N \|P_N\| < +\infty$.
- 3. Soit $T \in K(E)$, montrer que T est limite d'opérateurs de rang fini.

Exercice 4 Résoudre l'équation

$$\Delta u + u = 0$$

dans $S'(\mathbb{R}^d)$. Montrer que toutes ses solutions sont de classe C^{∞} . En existe-il de non triviales qui soient à support compact?