Le théorème de De Giorgi-Nash-Moser et le XIXème problème de Hilbert

Loïc Pujet Hao Song Mehdi Trense

Sous la supervision de Cyril Imbert ${\rm Juin}\ 2016$

Table des matières

Introduction				2
1				3
2				4
3	La preuve de Moser de l'inégalité de Harnack			7
	3.1	Borne	pour les solutions faibles et estimations de u^p	7
		3.1.1	Inégalités de Caccioppoli et de Sobolev	8
		3.1.2	Principe d'itération de Moser	11
		3.1.3	Borne pour les solutions faibles	11
		3.1.4	Estimations pour u^p	12
	3.2	Estim	ations de $\log(u)$ et $M(\epsilon, D) \leq C_2 M(-\epsilon, u)$	13
		3.2.1	Début de la démonstration du théorème 3.2	14
		3.2.2	Introduction de la fonction V	14
		3.2.3	Équation sur V	15
		3.2.4	Élimination de la renormalisation	16
		3.2.5	Fin de la démonstration du théorème 3.2	17
	3.3	Preuv	e de l'inégalité de Harnack	17
	3.4		of the main lemma	18
		3.4.1	Outline	18
		3.4.2	Notations	18
		3.4.3	Step 1	18
		3.4.4	Step 2	19
		3.4.5	Step 3	22
Bibliographie				23

Introduction

Le but de cet exposé est d'étudier la preuve donnée par Jürgen Moser en 1964 du théorème suivant, établi de manière indépendante par Ennio De Giorgi et John Forbes Nash quelques années plus tôt :

Théorème 0.1 (De Giorgi-Nash-Moser). Soit $A = (a_{ij}(t,x))$ une matrice symétrique positive $n \times n$, dépendant de $x \in \mathbb{R}^n$ et $t \in \mathbb{R}_+$. Supposons que A est uniformément elliptique, soit

$$\forall \xi \in \mathbb{R}^n, \quad \frac{1}{\lambda} ||\xi||^2 \le \sum_{i,j=1}^n a_{ij}(t,x)\xi_i \xi_j \le \lambda ||\xi||^2$$

où λ est une constante strictement positive. Soit $u(t,x) \in H^1$ une solution faible positive de l'équation parabolique linéaire

$$Lu := \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial u}{\partial x_j} \right) = \frac{\partial u}{\partial t}$$
 (1)

définie pour $0 < t < \tau$ et $|x_k| < \rho$, où τ et ρ sont des constantes positives. C'est-à-dire que pour x, t dans le domaine considéré (noté Ω) et toute fonction ϕ de classe C^{∞} à support compact, on a

$$\iint_{\Omega} (\langle \nabla u | A \nabla \phi \rangle + \phi \, \partial_t u) \, dx \, dt = \iint_{\Omega} \left(\sum_{i,j} \frac{\partial u}{\partial x_i} a_{ij} \frac{\partial \phi}{\partial x_j} + \phi \frac{\partial u}{\partial t} \right) = 0$$

Alors il existe $\alpha>0$ tel que sup $\frac{|u(t,x)-u(s,y)|}{(|t-s|+|x-y|)^{\alpha}}<\infty$. On dit que u est α -hölderienne et on note $u\in C^{0,\alpha}$.

Remarquons qu'on ne fait aucune hypothèse de régularité sur les coefficients $a_{ij}(t,x)$ excepté leur mesurabilité, ce qui rend le résultat spectaculaire. On peut comparer ce résultat à l'effet régularisant de l'équation de la chaleur, qui correspond au cas particulier où les coefficients sont constants. Mais dans ce dernier cas les solutions peuvent facilement être calculées explicitement, alors qu'ici nous ne disposons d'aucune information sur les a_{ij} permettant d'envisager une telle démarche.

Le théorème de De Giorgi-Nash-Moser est particulièrement célèbre pour deux raisons. D'abord parce qu'il clôt la résolution du XIX $^{\rm e}$ problème de Hilbert, qui traite de la régularité des solutions de problèmes variationnels, et ensuite parce que le peu d'hypothèses sur la matrice (a_{ij}) permet d'attaquer des versions non linéaires de cette équation. Les techniques mises en œuvre par De Giorgi, Nash et Moser sont par conséquent toujours d'actualité dans certains domaines de la recherche contemporaine sur les équations aux dérivées partielles.

1 Le XIXème problème de Hilbert

Le XIXème problème de Hilbert traite de la régularité des distributions uminimisant une fonctionnelle de la forme

$$\int_{\Omega} \mathcal{L}(x, u, \nabla u) dx. \tag{2}$$

La question posée par Hilbert est alors la suivante : si le lagrangien \mathcal{L} est C^{∞} (resp. analytique), est-ce que toute solution u est également C^{∞} (resp. analytique)?

Pour simplifier le problème, on va supposer que le lagrangien \mathcal{L} ne dépend que de ∇u . Plus précisément, on va demander à Ω d'être un domaine borné de \mathbb{R}^n et à $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}$ d'être une fonction de classe C^{∞} vérifiant les conditions suivantes : il existe des constantes $K < \infty, \lambda > 0$ telles que pour tout $p = (p_1, ...p_n) \in \mathbb{R}^n$

(i)
$$|\partial_{p_i}\mathcal{L}(p)| \leq K|p|$$
 (i = 1,...n)
(ii) $\frac{1}{\lambda}||\xi||^2 \leq \sum_{i,j=1}^n \partial_{p_i p_j}\mathcal{L}(p)\xi_i\xi_j \leq \lambda||\xi||^2 \quad \forall \xi \in \mathbb{R}^n$
On considère alors $u \in H^1(\omega)$ minimisant le problème variationnel

$$I[v] := \int_{\Omega} \mathcal{L}(\nabla v(x)) dx$$

i.e. $I[u] \leq I[u+\phi]$ pour tout $\phi \in H_0^1(\Omega)$.

Remarque 1.1. La condition (i) implique qu'il existe des constantes c_1 et c_2 telles que $|\mathcal{L}(p)| \leq c_1 + c_2|p|^2$. Comme Ω est supposé borné, cela veut dire que $I(v) < \infty$ pour tout $v \in H^1(\Omega)$. Il est donc justifié de vouloir minimiser I dans $H^1(\Omega)$.

Le lemme suivant montre que l'équation d'Euler-Lagrange associée à notre problème variationnel correspond aux équations elliptiques $L(\partial_k u) = 0$ pour $k = 1, ..., n \text{ avec } a_{ij}(x) = \partial^2_{p_i p_j} \mathcal{L}(\nabla u).$

Lemme 1.1 (Euler-Lagrange). Si $u \in H^1(\Omega)$ minimise I[v], alors on a pour tout $\phi \in H_0^1(\Omega)$:

$$\int_{\Omega} \sum_{i=1}^{n} \partial_{p_i} \mathcal{L}(\nabla u) \partial_{x_i} \phi = 0.$$
 (3)

Démonstration. La condition (i) donne

$$\int_{\Omega} \sum_{i=1}^{n} \partial_{i} \mathcal{L}(\nabla v) \partial_{i} \phi \leq nK \int_{\Omega} ||\nabla v|| ||\nabla \phi|| \leq nK ||\nabla v||_{L^{2}(\Omega)} ||\nabla \phi||_{L^{2}(\Omega)}.$$

La quantité à droite est finie pour ϕ , $v \in H^1(\Omega)$. On peut donc correctement dériver sous le signe intégral et obtenir, pour toute fonction ϕ de classe C^{∞} sur Ω ,

$$\frac{d}{dt}I[u+t\phi] = \int_{\Omega} \sum_{i=1}^{n} \partial_{t}(\partial_{p_{i}}\mathcal{L}(\nabla u + t\nabla \phi)\partial_{x_{i}}\phi) = \int_{\Omega} \sum_{i=1}^{n} \partial_{p_{i}}\mathcal{L}(\nabla u)\partial_{x_{i}}\phi.$$

Si u minimise I[v], alors $\frac{d}{dt}I[u+t\phi]|_{t=0}=0$. On obtient effectivement l'équation d'Euler-Lagrange.

 $u\in H^1(\Omega)$ est donc une solution faible de l'équation d'Euler-Lagrange $\sum_{i=1}^n \partial_{x_i}\left(\partial_{p_i}\mathcal{L}(\nabla u)\right)=0$. En prenant la dérivée partielle par rapport à la direction x_k , obtient pour k = 1, ..., n:

$$\sum_{i=1}^{n} \partial_{x_i} \left(\partial_{p_i p_j}^2 \mathcal{L}(\nabla u) \partial_{x_j x_k}^2 u \right) = 0.$$

On pose alors $a_{ij}(x) = \partial^2_{p_i p_j} \mathcal{L}(\nabla u)$. La condition (ii) nous assure que la matrice $(a_{ij}(x))$ vérifie les hypothèses du théorème 0.1. Ce dernier nous dit alors $\partial_k u \in$ $C^{0,\alpha}$ pour k=1,...,n. Comme le lagrangien est supposé C^{∞} , on en déduit que les coefficients $a_{ij}(x) = \partial^2_{p_i p_j} \mathcal{L}(\nabla u)$ sont également $C^{0,\alpha}$.

On conclut grâce au théorème suivant, dû à Schauder, qui permet de transférer des propriétés de régularités des coefficients d'une équation elliptique aux solutions.

Théorème 1.1 (Schauder). On suppose $a_{ij}(x) \in C^{k,\alpha}$. Si u vérifie Lu = 0, alors $u \in C^{k+1,\alpha}$

La preuve peut être trouvée dans [4]. Une fois que l'on a montré avec le théorème de De Giorgi-Nash-Moser 0.1 que $u \in C^{0,\alpha}$, on peut donc amorcer un processus de bootstrap :

$$u \in C^{0,\alpha} \Rightarrow a_{ij}(x) \in C^{0,\alpha} \Rightarrow u \in C^{1,\alpha} \Rightarrow \dots \Rightarrow u \in C^{k,\alpha}$$
$$\Rightarrow a_{ij}(x) \in C^{k,\alpha} \Rightarrow u \in C^{k+1,\alpha}.$$
 (4)

On obtient $u \in C^{k,\alpha}$ pour tout $k \in \mathbb{N}$, d'où $u \in C^{\infty}$.

$\mathbf{2}$ L'inégalité de Harnack

Dans son article [1] A Harnack inequality for parabolic differential equations, Moser présente une très jolie preuve du théorème 0.1, fondée sur l'inégalité suivante, dont on notera la similitude avec l'inégalité de Harnack pour les fonctions harmoniques:

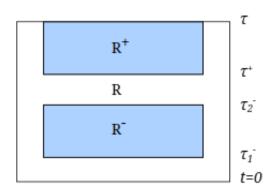
Théorème 2.1 (Harnack). Soient R, R^+ et R^- les rectangles définis par

 $\begin{array}{ll} -R &= \{|x|<\rho, \quad 0< t<\tau\}\\ -R^- &= \{|x|<\rho', \quad \tau_1^- < t<\tau_2^-\}\\ -R^+ &= \{|x|<\rho', \quad \tau^+ < t<\tau\}\\ où \ 0<\rho'<\rho \ et \ 0<\tau_1^- <\tau_2^- <\tau^+ <\tau. \ (cf \ figure \ 1)\\ Si \ u \in H^1(R) \ est \ une \ solution \ faible \ positive \ sur \ R, \ alors \ il \ existe \ une \end{array}$ constante γ ne dépendant que de n, λ , et des rectangles R^+ et R^- telle que

$$\max_{R^-} u \le \gamma \min_{R^+} u.$$

Avant d'attaquer le cœur de la démonstration de l'inégalité de Harnack par Moser, montrons comment il obtient la continuité hölderienne des solutions faibles à partir de cette dernière. Moser utilise la méthode des oscillations bornées, qui lui avait été suggérée par F. John et L. Nirenberg.

FIGURE 1 – Rectangles utilisés



Preuve de la continuité Höldérienne à partir de l'inégalité de Harnack

Démonstration. Soit u une solution de (1) sur R. On note M le maximum essentiel de u, m son minimum essentiel, et μ sa valeur moyenne sur le rectangle R. Ces mêmes lettres avec un exposant + (respectivement -) sont prises sur R^+ (respectivement R^-).

Alors le théorème 2.1 donne

$$m^+ \ge \gamma^{-1}\mu^-. \tag{5}$$

Notons maintenant que M-u et u-m restent des solutions positives de l'équation, dont les valeurs moyennes sur R^- sont $M-\mu^-$ et μ^--m respectivement. En leur appliquant (5), il vient :

$$M - M^+ \ge \gamma^{-1} \left(M - \mu^- \right)$$

$$m^+ - m \ge \gamma^{-1} (\mu^- - m).$$

En faisant la somme, on obtient une inégalité sur les amplitudes moyennes d'oscillations notées $\omega := M - m$ et $\omega^+ := M^+ - m^+$:

$$\omega - \omega^+ \ge \gamma^{-1} \omega$$
.

On peut l'écrire

$$\omega^{+} \le \theta \, \omega \tag{6}$$

où $\theta=1-\gamma^{-1}$ est strictement compris entre 0 et 1 et ne dépend que de n et λ . On introduit une pseudo-norme sur l'ensemble des vecteurs d'espace-temps (qui seront notés avec un prime pour les distinguer des vecteurs d'espace), définie par

$$|x'| = \begin{cases} \max\{\sqrt{-t}, |x_1|, \dots, |x_n|\} \text{ si } t \leq 0\\ \infty \text{ sinon} \end{cases}$$

Remarquons maintenant que (1) est invariante par les transformations

$$t \to \alpha^2 t + a_0$$

$$x_k \to \alpha x_k + a_k$$
.

Cette remise à l'échelle est le point centrale de cette partie de la preuve. En appliquant ces transformations à (6), on en déduit que si l'oscillation de u est bornée par ω sur l'ensemble $\{|x'-y'| \leq d\}$ alors l'oscillation de u est bornée par θ ω sur $\{|x'-y|' \leq d/4\}$. On itère ce raisonnement : l'oscillation dans l'ensemble $\{|x'-y'| \leq d/4^{\nu}\}$ sera bornée par θ^{ν} ω pour un entier ν bien choisi (voir plus bas). Cela correspond exactement à de la continuité höldérienne. En effet, si l'on considère deux points x' et y' vérifiant |x'-y'| < d, on peut choisir un entier ν tel que

$$\frac{d}{4^{\nu+1}} \le |x' - y'| < \frac{d}{4^{\nu}}.$$

On a alors, pour tout x' et y' tels que |x' - y| < d:

$$|u(x') - u(y')| \le \theta^{\nu} \omega \le \left(\frac{1}{4}\right)^{\alpha \nu} \omega \le \left(\frac{4}{d}|x' - y'|\right)^{\alpha} \omega \le A|x' - y'|^{\alpha}$$

où on a posé $\alpha = -\frac{\log \theta}{\log 4}$ et $A = \left(\frac{4}{d}\right)^{\alpha} \omega.$

Si $|x'-y'| \ge d$, alors on utilise simplement la majoration par l'oscillation :

$$|u(t,x) - u(s,y)| \le \omega \le \frac{\omega}{d^{\alpha}} |x' - y'|^{\alpha} \le A|x' - y'|^{\alpha}.$$

Si l'on permute x' et y' de manière à ce que $|x'-y'|<\infty$, on peut écrire cela

$$|u(t,x) - u(s,y)| \le A(||x-y||_1 + \sqrt{s-t})^{\alpha}.$$

Ce qui correspond bien à de la continuité höldérienne.

Cette inégalité de Harnack permet également de montrer, de la même manière que pour les fonctions harmoniques, un principe du maximum fort pour l'équation elliptique Lu=0.

Proposition 2.1 (principe du maximum). Soit $u \in H^1(\Omega)$ une solution faible de l'équation elliptique Lu = 0. S'il existe une boule $B(y,r) \subsetneq \Omega$ telle que

$$\sup_{B(y,r)} u = \sup_{\Omega} u$$

alors u est constante.

Démonstration. u étant α -hölderienne donc continue, $M := \sup_{B(u,r)} u < \infty$ et u.

L'ensemble $x \in \Omega$, u(x) = M est fermé car u est continue. Il est aussi ouvert : M-u est une solution faible positive, donc d'après l'inégalité de Harnack 2.1 on a $\max_{B(y,r)} M-u \leq \gamma \min_{B(y,r)} M-u=0$, donc u=M sur B(y,r). La connexité de Ω implique alors que u est constante. \square

3 La preuve de Moser de l'inégalité de Harnack

Stratégie On va étudier le comportement de $M(p,D) := (\frac{1}{|D|} \int_D |u|^p)^{\frac{1}{p}}$ quand p tend vers $+\infty$ et $-\infty$. Il est bien connu que $M(+\infty,D)$ sont $M(-\infty,D)$ sont respectivement le maximum et le minimum essentiel de u. L'idée est de contrôler $M(p_2,R')$ par $M(p_1,R)$ lorsqu'on se donne $p_1 < p_2$ ainsi qu'un rectangle R, le rectangle R' à déterminer étant légèrement plus petit que R. On itérera ensuite ce procédé.

Selon le signe de p, trois cas différents sont à considérer :

$$M(+\infty, R') \le C_1 M(\epsilon, R)$$
$$M(\epsilon, R') \le C_2 M(-\epsilon, R)$$
$$M(-\epsilon, R') \le C_3 M(-\infty, R).$$

Une fois le premier cas traité, on y ramènera aisément le troisième. On se concentrera donc sur les deux premières inégalités, qui feront l'objet des sections 3.1 puis 3.2 respectivement.

La première inégalité se montre avec un argument d'itération, le principal problème étant de conserver certaines propriétés importantes lorsqu'on passe de u à u^{κ} pour $\kappa > 1$. Heureusement, si u^{κ} n'est pas nécessairement une solution quand u en est une, elle garde les propriétés nécessaires à notre procédé. On établit alors une inégalité qui contrôle $M(\kappa p_1, u)$ en fonction $M(p_1, u)$ lorsque $\kappa > 1$ est une constante fixée et u une solution, puis on l'applique à u^{κ} , u^{κ^2} , ..., ce qui permet d'aboutir à l'inégalité désirée.

L'estimation $M(\kappa p_1, u) \leq CM(p_1, u)$ s'obtient en combinant plusieurs inégalités connues. On utilise d'abord une inégalité de Sobolev pour contrôler u^{κ} par les dérivées de u, puis on utilise l'inégalité de Caccioppoli pour contrôler les dérivées des sous-solutions par la solution originale, ce qui concrètement fait sortir κ de l'intégrale.

La deuxième estimation $M(\epsilon,u) \leq C_2 M(-\epsilon,u)$ est très technique. Le fait que $M(\epsilon,u)$ tende vers $e^{\frac{1}{|D|}\int_D log(u)}$ lorsque $\epsilon \to 0$ nous incite à étudier $\log u$. Le point crucial est le main lemma, qui donne une estimation pour e^f lorsque f vérifie certaines conditions précises. Sa démonstration sera donnée ultérieurement, dans 3.4.

3.1 Borne pour les solutions faibles et estimations de u^p

On considère une solution faible u sur le rectangle

$$R = \{ |x| < \rho, -\tau < t < 0 \}$$

et on veut donner une borne pour u sur le sous rectangle (avec $\rho'<\rho$ et $\tau'<\tau)$

$$R' = \{ |x| < \rho', -\tau' < t < 0 \}.$$

Par translation et dilatation de ces rectangles (en appliquant de nouveau les techniques de remise à l'échelle que l'on a déjà introduites), on obtiendra le caractère borné des solutions faibles sur un domaine quelconque.

Définition 3.1. Une fonction v(t,x) est dite sous-solution si $\partial_t v$ et ∇v sont de carré intégrable sur R et si pour tout $\phi \geq 0$ régulier s'annulant sur la frontière de R sauf peut-être sur le côté t=0,

$$\iint\limits_{\mathcal{D}} \left(\phi \,\partial_t v + \langle \nabla \phi | A \nabla v \rangle\right) dt \, dx \le 0 \tag{7}$$

v est dite sur-solution si -v est une sous-solution.

Le but de cette partie est de montrer l'estimation suivante, dont un corollaire est le caractère borné des solutions faibles de (1), et qui permettra surtout d'obtenir les inégalités $M(+\infty, R') \leq C_1 M(\epsilon, R)$ et $M(-\epsilon, R') \leq C_3 M(-\infty, R)$.

Proposition 3.1. Si v > 0 est une sous-solution de (7) dans R, alors pour $p \ge p' > 1$,

$$\max_{R'} v \le \gamma M(p, R)$$

où γ ne dépend que de R', de R et de p'.

Corollaire 3.1. Toute solution u de (7) dans R est bornée dans R'.

Il nous faut d'abord établir deux inégalités importantes.

3.1.1 Inégalités de Caccioppoli et de Sobolev

Lemme 3.1 (inégalité de Caccioppoli). Soit v une sous-solution positive. Alors on a les deux inégalités suivantes (où c est une constante qui ne dépend que de n et $de \lambda$):

$$\iint\limits_{\mathbf{P}'} |\nabla v|^2 \, dx \, dt \le c \left(\frac{1}{(\rho - \rho')^2} + \frac{1}{\tau - \tau'} \right) \iint\limits_{\mathbf{P}} v^2 \, dx \, dt \tag{8}$$

$$\max_{-\tau' \le t \le 0} \int v^2 dx \le c \left(\frac{1}{(\rho - \rho')^2} + \frac{1}{\tau - \tau'} \right) \iint_R v^2 dx dt. \tag{9}$$

 $D\acute{e}monstration$. Dans (7), choisissons $\phi = v \, \psi^2(t,x)$ où ψ est C^1 par morceaux et s'annule sur le bord de R sauf peut-être lorsque t=0. Cela donne

$$\iint\limits_{R} \frac{1}{2} \, \partial_{t}(v^{2}) \, \psi^{2} \, dx \, dt + \iint\limits_{R} \langle \nabla v | A \nabla v \rangle \, \psi^{2} \, dx \, dt \leq - \iint\limits_{R} 2 \, \langle \nabla \psi | A \nabla v \rangle \, v \psi \, dx \, dt.$$

D'après Cauchy-Schwarz et l'inégalité arithmético-géométrique, on a :

$$|\langle \nabla \psi | A \nabla v \rangle v \psi| \le (\langle \nabla v | A \nabla v \rangle \psi^{2} \langle \nabla \psi | A \nabla \psi \rangle v^{2})^{\frac{1}{2}}$$

$$\le \frac{1}{4} \langle \nabla v | A \nabla v \rangle \psi^{2} + v^{2} \cdot \langle \nabla \psi | A \nabla \psi \rangle$$
(10)

d'où en substituant :

$$\iint\limits_{R} \frac{1}{2} \, \partial_t(v^2) \, \psi^2 \, dx \, dt + \iint\limits_{R} \frac{1}{2} \langle \nabla v | A \nabla v \rangle \, \psi^2 \, dx \, dt \leq 2 \iint\limits_{R} v^2 \, \langle \nabla \psi | A \nabla \psi \rangle \, dx \, dt$$

On sait que les valeurs propres de A sont comprises dans $[\frac{1}{\lambda}, \lambda]$, on peut donc minorer et majorer les termes quadratiques. On rajoute aussi $v^2 \psi \psi_t$ des deux côtés. Cela donne :

$$\iint \frac{1}{2} \,\partial_t(v^2 \,\psi^2) \,dx \,dt + \frac{1}{2 \,\lambda} \iint |\nabla v|^2 \,\psi^2 \,dx \,dt$$

$$\leq 2 \,\lambda \iint v^2 \,\left(|\nabla \psi|^2 + |\psi \,\partial_t \psi|\right) \,dx \,dt.$$

On va intégrer sur le rectangle $R_{\sigma}=\{(x,t): |x|\leq \sigma, -\tau\leq t\leq -\sigma<0\}$. Remarquons que ψ peut être non nulle sur le bord $t=-\sigma$. On choisit $\psi=1$ sur R' et σ tel que $\frac{1}{2}\max_{-\tau\leq t\leq -\sigma<0}\int_{|x|<\rho'}v^2\,dx\,dt\leq \int_{|x|<\rho'}v^2\,dx\,dt|_{t=\sigma}$. Alors, en utilisant $(\ref{eq:tau})$, on obtient :

$$\max_{-\tau \le t \le -\sigma < 0} \int_{|x| < \rho'} v^2 dx dt \le 2 \int_{|x| < \rho'} v^2 dx dt|_{t=\rho} \le \iint_{R_{\sigma}} \partial_t (v^2 \psi^2) dx dt$$

$$\le 8\lambda \iint v^2 \left(|\nabla \psi|^2 + |\psi \partial_t \psi| \right) dx dt.$$

D'autre part, en appliquant (??) avec $\sigma = 0$ on a aussi :

$$\iint\limits_{R'} |\nabla v|^2 \, dx \, dt \le 4\lambda \iint v^2 \, \left(|\nabla \psi|^2 + |\psi \, \partial_t \psi| \right) \, dx \, dt.$$

On va déduire (8) et (9) de ces deux inégalités. Choisissons :

$$\psi(t,x) = \psi_1(t) \, \psi_2(|x|)$$

où ψ_1 et ψ_2 sont des interpolations linéaires vérifiant $\psi_2(r) = 1$ si $r < \rho'$ et 0 si $r > \rho$; $\psi_1(t) = 1$ si $-\tau' < t < 0$ et 0 si $t \le -\tau$. Il vient alors :

$$|\nabla \psi|^2 + |\psi \, \partial_t \psi| \le c \left(\frac{1}{(\rho - \rho')^2} + \frac{1}{\tau - \tau'} \right)$$

ce qui montre (8) et (9).

Remarque 3.1. (8) et (9) restent vraies lorsque v est une solution faible de (1) de signe quelconque, puisque la contrainte $\phi \geq 0$ disparaît alors.

Les inégalités restent vraies dans certains cas si on remplace une sur-solution ou une sous-solution par une de ses puissances (la constante c est alors modifiée).

Remarque 3.2. Les inégalités (8) et (9) restent vraies dans les cas suivants :

- $-v=u^{\frac{p}{2}}$, où u est une sous-solution positive et p>1.
- $-v(t,x) = u(-t,x)^{\frac{p}{2}}$, où u est une sur-solution positive et 0 .
- $-v=u^{\frac{p}{2}}$, où u est une sur-solution positive et p<0.

Justification. On montre uniquement le cas $0 . On pose <math>\phi(-t,x) = p u(-t,x)^{p-1} \psi^2$. Alors,

$$-v \partial_t v \psi^2 + v \langle \nabla \psi^2 | A \nabla v \rangle - 2 \frac{1-p}{p} \psi^2 \langle \nabla v | A \nabla v \rangle = \phi \partial_t u + \langle \nabla \phi | A \nabla u \rangle$$

Comme u est une sur-solution, il vient :

$$\iint_{R} v \, v_t \, \psi^2 \, dx \, dt + 2 \frac{1-p}{p} \iint_{R} \psi^2 \left(v_x | a \, v_x \right) \, dx \, dt \le 2 \iint_{R} \left(\psi_x | a v_x \right) \psi \, v \, dx \, dt$$

De là on suit la démonstration du lemme 3.1 partir de (??). □

On montre à présent un lemme de Sobolev pour w définie sur R.

Lemme 3.2 (inégalité de Sobolev).

$$\iint w^{2\kappa} \le c \left(\rho^{-n} \max_{t} \int w^2\right)^{\kappa - 1} \left(\iint w^2 + \rho^2 \iint |\nabla w|^2\right) \tag{11}$$

où c est une constante qui ne dépend que de n, et $\kappa=1+\frac{2}{n}$ pour n>2 et $\kappa=\frac{5}{3}$ pour n=1,2.

Démonstration. On le montre pour n>2. Par homogénéité on peut supposer que $\rho=1$ et on peut supposer w continue. En appliquant l'inégalité de Hölder avec $\alpha=\frac{n}{n-2}>1$ et $\beta=\frac{n}{2}$ on obtient :

$$\int w^{2(1+\frac{2}{n})} dx = \int w^2 w^{\frac{4}{n}} dx \le \left(\int w^{2\alpha} dx\right)^{\frac{1}{\alpha}} \left(\int w^2 dx\right)^{\frac{2}{n}}$$

$$\le \left(\int w^{2\alpha} dx\right)^{\frac{1}{\alpha}} \left(\max_t \int w^2 dx\right)^{\frac{2}{n}}$$
(12)

Une inégalité classique de Sobolev nous donne :

$$\left(\int w^{2\alpha} dx\right)^{\frac{1}{\alpha}} \le c \int (w^2 + |\nabla w|^2) dx$$

D'où:

$$\int w^{2(1+\frac{2}{n})} \, dx \le c \int (w^2 + |\nabla w|^2) \, dx \cdot \left(\max_t \int w^2 dx \right)^{\frac{2}{n}}$$

On intègre enfin par rapport à t pour conclure le cas n > 2. Les cas n = 1, 2 sont inclus dans le cas n = 3 en ignorant une ou deux variables ce qui donne alors $\kappa = 1 + \frac{2}{3} = \frac{5}{3}$.

3.1.2 Principe d'itération de Moser

On combine les inégalités de Caccioppoli 3.1 et de Sobolev 3.2 pour obtenir une inégalité que l'on pourra itérer (γ est une constante qui dépend de n, λ , ρ , ρ' , τ , et τ'):

$$\iint_{R'} v^{\kappa} \le \gamma \left(\iint_{R} v \right)^{\kappa}, \quad \kappa = 1 + \frac{2}{n} \text{ pour } n > 2.$$
 (13)

Cela montre que si v > 0 est une sous-solution de carré intégrable sur R, alors v^{κ} est de carré intégrable sur R'. Comme v^{κ} est aussi une sous-solution, on peut réitérer cet argument. C'est le *principe d'itération de Moser*, et c'est par ce procédé qu'on montre la proposition 3.1.

Démonstration de la proposition 3.1. Soit v une sous-solution positive sur R et posons $v_{\nu} = v^{\frac{p\nu}{2}}$ avec $p_{\nu} = p_0 \kappa^{\nu}$ pour $\nu = 0, 1, 2, ...$ avec $p_{\nu} \geq p_0 \geq p' > 1$. La taille du rectangle diminue à chaque itération. On définit donc la suite de rectangles $R_{\nu} : |x| < \rho_{\nu}, \ -\tau_{\nu} < t < 0$ où $\rho_{\nu} = \rho \frac{1+\rho'\nu}{1+\rho\nu}, \ \tau_{\nu} = \tau \frac{1+\tau'\nu}{1+\tau\nu}$. On a alors $R_0 = R$ et $R_{\nu} \to R'$ lorsque $\nu \to \infty$.

On applique alors (13) à $v = v_{\nu}$ dans R_{ν} , ce qui donne :

$$\iint_{R_{\nu+1}} v^{p_0\kappa^{\nu+1}} \leq \gamma_1 (\nu+1)^4 \left(\iint_{R_{\nu}} v^{p_0\kappa^{\nu}} \right)^{\kappa} \leq \gamma_2^{\nu+1} \left(\iint_{R_{\nu}} v^{p_0\kappa^{\nu}} \right)^{\kappa}$$

où γ_1 et γ_2 ne dépendent que de R, R' et p'.

En itérant on obtient :

$$\iint_{R_{\nu}} v^{p_0 \kappa^{\nu}} \leq \gamma_2^{\nu + (\nu - 1)\kappa + \ldots + \kappa^{\nu - 1}} \left(\iint_{R} v^{p_0} \right)^{\kappa^{\nu}} \leq \gamma_3^{\kappa^{\nu}} \left(\iint_{R} v^{p_0} \right)^{\kappa^{\nu}} d$$
'où :

$$\left(\iint_{R_{\nu}} v^{p_0 \kappa^{\nu}}\right)^{\kappa^{-\nu}} \le \gamma_3 \iint_{R} v^{p_0}$$

où γ_3 ne dépend que de R, R' et p'. Lorsque $\nu \to \infty$, on obtient finalement :

$$\max_{R'} v^{p_0} \le \gamma_3 \iint_R v^{p_0} \, dx \, dt$$

ce qui achève la démonstration de 3.1.

3.1.3 Borne pour les solutions faibles

Propriété 3.1. Si u est une solution faible, et $g \in C^2(R)$ est une fonction convexe à dérivée bornée, alors v = g(u) est une sous-solution.

Démonstration. Si $\psi \geq 0$, nulle sur le bord de R (sauf peut être en t = 0, alors en posant $\phi = g'(u)\psi$ avec $g'' \geq 0$ on a :

$$\iint (\psi v_t + \langle \nabla \psi | A \nabla v \rangle \, dx \, dt = \iint (g' \, \psi \, \partial_t u + g' \, \langle \nabla \psi | A \nabla u \rangle) \, dx \, dt$$
$$= \iint \langle \phi \, \partial_t u + \nabla \phi | A \nabla u \rangle) \, dx \, dt - g'' \, \psi \, \langle \nabla u | A \nabla u \rangle \, dx \, dt \le 0.$$

Si u est une solution faible u, alors en appliquant la propriété ci-dessus nous dit que $\sqrt{1+u^2}$ est une sous-solution positive, que l'on peut donc borner par l'estimation de la proposition 3.1. Cela permet d'obtenir une borne sur u^2 .

3.1.4 Estimations pour u^p

Le théorème suivant est l'aboutissement du travail précédent : il montre les estimations $M(+\infty,u) \leq C_1 M(\epsilon,u)$ et $M(-\epsilon,u) \leq C_3 M(-\infty,u)$ que nous recherchions. Il ne nous restera alors plus que l'estimation $M(\epsilon,u) \leq C_2 M(-\epsilon,u)$, qui sera l'objet de la section suivante 3.2.

Théorème 3.1. Soit R^* un rectangle strictement inclus dans R. On a alors :

$$M(-\epsilon, R) \le \gamma' M(-\infty, R') = \gamma' \min_{R'} u$$
 (14)

$$\max_{R_*} u = M(\infty, R^*) \le \gamma^* M(\epsilon, R) \tag{15}$$

où γ' ne dépend que R, R' et $\lambda, \epsilon > 0$.

Démonstration. On montre d'abord (14). Soit u une solution positive de (1) sur R, et $\epsilon > 0$. Alors $v = u^{-\epsilon}$ est une sous-solution positive car $u \mapsto u^{-\epsilon}$ est convexe. La proposition 3.1 nous dit alors que :

$$\max_{R'} u^{-\epsilon} \le \gamma \left(\iint_R u^{-p\epsilon} \, dx \, dt \right)^{\frac{1}{p}}.$$

Pour p = 2 cela donne :

$$\min_{R'} u \ge \gamma^{-\frac{1}{\epsilon}} \left(\iint_{R} u^{-2\epsilon} \, dx \, dt \right)^{\frac{1}{2\epsilon}} \tag{16}$$

l'inégalité (14) s'obtient en remplaçant 2ϵ par ϵ .

Montrons à présent (15). On considère un rectangle R^+ contenant R^* et qui commence au même temps. D'après la proposition 3.1, on a

$$M(+\infty, R^*) < \gamma M(p', R^+)$$
 pour $p' > 1$.

Comme l'inégalité de Caccioppoli (9) peut s'appliquer à la solution positive $v=u^{\frac{p}{2}}(t,x)$ pour 0< p<1, de la même manière qu'on obtient l'inégalité (13) à partir des inégalités de Caccioppoli et de Sobolev, on peut obtenir :

$$\left(\iint_R u^{p^{\kappa}}(-t,x) \, dx \, dt\right)^{\frac{1}{p^{\kappa}}} \le \gamma_1 \left(\iint_R u^p(-t,x) \, dx \, dt\right)^{\frac{1}{p}}.$$

On choisit alors $p'=\frac{\kappa+1}{2}$ et $p_{\nu}=\kappa^{-\nu}\frac{\kappa+1}{2}$ pour $\nu=0,1,2,...$ En itérant un nombre fini de fois l'inégalité ci-dessus on a :

$$M(p', R^+) \le \gamma' M(p_{\nu}, R).$$

On choisit alors ν comme étant le plus petit entier pour lequel $p_{\nu} < \epsilon$, ce qui donne alors (avec γ' constante dépendant de R, R^+ et de ϵ):

$$M(p', R^+) \le \gamma' M(\epsilon, R)$$

ce qui conclut en posant $\gamma^* = \gamma \gamma'$.

3.2 Estimations de $\log(u)$ et $M(\epsilon, D) \leq C_2 M(-\epsilon, u)$

Il est facile de montrer que $M(\epsilon,D)$ tend vers $e^{\frac{1}{|D|}\int_D log(u)}$ lorsque $\epsilon \to 0$. On étudiera donc la fonction $\log(u)$ dans la suite. Le théorème fondamental que l'on souhaite prouver est le suivant.

Théorème 3.2. Soit u une sur-solution de 0.1 sur le rectangle délimité par |x| < 2 et |t| < 1. Il existe des constantes strictement positives α et c dépendant de λ et n uniquement, telles que

$$\int_{-1}^{-1/2} \int_{D} u^{\alpha} \, dx \, dt \le \int_{1/2}^{1} \int_{D} u^{-\alpha} \, dx \, dt \tag{17}$$

où D est le domaine d'espace défini par |x| < 1.

On aura besoin de deux lemmes pour prouver ce théorème. Le premier est une variante de l'inégalité de Poincaré, tandis que le second est le *main lemma*, dont la démonstration sera détaillée dans la section 3.4.

Le premier lemme s'énonce de la manière suivante :

Lemme 3.3. Soit p une fonction continue sur un support compact de diamètre B (pour « breadth »), telle que les parties définies par $\{p(x) \ge k\}$ soient convexes pour tout k. Soit f telle que f et ∇f soient intégrables une fois mises au carré et multipliées par p. Alors

$$\min_{k} \int (f(x) - k)^2 p(x) \, dx \le cB^2 \int |\nabla f(x)|^2 p(x) \, dx$$

avec
$$c = \frac{\max p(x)}{2 \int p(x) dx} \int_{p>0} dx$$
.

Le minimum est de plus atteint pour $k = \frac{\int fp}{\int p}$.

On rappelle également l'énoncé du main lemma :

Lemme 3.4 (main lemma). Soit ϕ une fonction continue à valeurs réelles qui vaut 0 sur \mathbb{R}_{-} , est strictement croissante sur \mathbb{R}_{+} , et tend vers $+\infty$ en l'infini. Soit f une fonction mesurable à valeurs réelles sur un domaine U pour laquelle

$$\frac{1}{|C^+||C^-|} \int\limits_{x' \in C^+} \int\limits_{y' \in C^-} \phi(f(x') - f(y'))_+ \, dy' \, dx' \le 1$$

est vrai pour tous rectangles C^+ et C^- dans U. Alors

$$\frac{1}{|D^+||D^-|} \int_{x' \in D^+} \int_{y' \in D^-} \Phi(f(x') - f(y')) \, dy' \, dx' \le 1$$

est également vrai pour les rectangles définis par $D^{\pm} = \{|x| < 1, \quad 1/2 < \pm t < 1\}$, où $\Phi(s) = c^{-1}e^{\alpha s}$ pour des constantes α et c dépendant uniquement de n et ϕ .

3.2.1 Début de la démonstration du théorème 3.2

Démonstration. On travaillera dans le cas $u \ge \epsilon > 0$ et on s'efforcera d'obtenir des constantes indépendantes de ϵ . Ensuite, on fera tendre ϵ vers 0 pour conclure.

On introduit v définie par $v=-\log(u)$. On fondera notre raisonnement sur l'observation que v vérifie l'inéquation aux dérivées partielles non-linéaire $\partial_t v \leq \nabla . (A\nabla v) - \langle \nabla v | A\nabla v \rangle$. L'argument qui va suivre est basé sur l'observation que le terme $\langle \nabla v | A\nabla v \rangle$ va dominer $\nabla . (A\nabla v)$, et ainsi contrôler la croissance de v avec le temps.

Formalisons cela en utilisant la formulation faible : puisque u est une sursolution, on peut écrire pour toute fonction ϕ positive à support spatial compact :

$$\iint \phi \,\partial_t u + \langle \nabla \phi | A \nabla u \rangle \, dx \, dt \ge 0.$$

On prend maintenant $\phi(t,x) = \psi(x)^2 u^{-1}$ où ψ est indépendante du temps et à support spatial compact. On obtient :

$$\iint \left(\psi^2 \, \partial_t v + \langle \nabla \psi^2 | A \nabla v \rangle + \psi^2 \cdot \langle \nabla v | A \nabla v \rangle \right) \, dx \, dt \le 0$$

on intègre alors sur le segment $t_1 \le t \le t_2$ pour avoir

$$\left[\int \psi^2 v \right]_{t_1}^{t_2} + \int_{t_1}^{t_2} \int \left(2\psi \cdot \langle \nabla \psi | A \nabla v \rangle + \psi^2 \cdot \langle \nabla v | A \nabla v \rangle \right) \, dx \, dt \le 0.$$

On applique ensuite l'inégalité de Cauchy-Schwarz suivie de l'inégalité arithmético-géométrique au second terme :

$$\iint \psi \cdot \langle \nabla \psi | A \nabla v \rangle \, dx \, dt \le \left(\iint \psi^2 \cdot \langle v | A \nabla v \rangle \, dx \, dt \iint \langle \nabla \psi | A \nabla \psi \rangle \, dx \, dt \right)$$
$$\le \frac{1}{4} \iint \psi^2 \cdot \langle \nabla v | A \nabla v \rangle \, dx \, dt + \iint \langle \nabla \psi | A \nabla \psi \rangle \, dx \, dt$$

ce qui nous permet d'écrire

$$\left[\int \psi^2 v \, dx \right]_{t_1}^{t_2} + \frac{1}{2} \iint \psi^2 \cdot \langle \nabla v | A \nabla v \rangle \, dx \, dt \le 2 \iint \langle \nabla \psi | A \nabla \psi \rangle \, dx \, dt. \tag{18}$$

3.2.2 Introduction de la fonction V

On utilise maintenant l'encadrement des valeurs propres de A par $\frac{1}{\lambda}$ et λ pour écrire

$$\frac{1}{2\lambda} \iint \psi^2 |\nabla v|^2 dx dt \le \frac{1}{2} \iint \psi^2 \cdot \langle \nabla v | A \nabla v \rangle dx dt$$

qui va remplacer le second terme dans l'inéquation obtenue. Mais avant, on va utiliser le lemme 3.3 pour minorer cette quantité. Pour ce faire, on choisira pour fonction p notre ψ^2 , il faut donc qu'elle aie des surfaces de niveau convexes (cf

énoncé du lemme 3.3). On prend donc $\psi(x) = \prod_{\nu=1}^{n} \chi_{\nu}(x_{\nu})$, où

$$\chi_{\nu}(x_{\nu}) = \begin{cases} 1 \text{ pour } |x_{\nu}| \le 1\\ 0 \text{ pour } |x_{\nu}| \ge 1 \end{cases}$$

qu'on interpole linéairement pour les valeurs entre 1 et 2.

On a donc obtenu une fonction, qu'on nommera Q dans la suite, dont le support est inclus dans $\{|x| \leq 2\}$ et qui vaut 1 sur le cube $\{|x| \leq 1\}$. Il est clair que ψ^2 a des surfaces de niveau convexes. Le diamètre du support est ici égal à 4n, ce qui nous donne, en appliquant le lemme 3.3,

$$\left[\int v\psi^2 \, dx \right]_{t_1}^{t_2} + c_1^{-1} \iint (v(t, x) - V(t))^2 \psi^2 \, dx \, dt \le c_2 \int_{t_1}^{t_2} \int_Q \, dx \, dt = c_2 |Q| \, (t_2 - t_1)$$

où on a posé

$$V(t) := \frac{\int v(t,x) \, \psi^2 \, dx}{\int \psi^2 \, dx}.$$

Or, ψ vaut 1 sur Q et on peut majorer $\int \psi^2 dx$ par $|Q| \cdot 3^n$. On peut donc obtenir, en posant $c_3 = 3^n c_1$,

$$\frac{V(t_2) - V(t_1)}{t_2 - t_1} + \frac{c_3^{-1}}{|Q|(t_2 - t_1)} \int_{t_1}^{t_2} \int_{Q} (v(t, x) - V(t))^2 dx dt \le c_2.$$

On va alors supposer que V est dérivable. 1 En faisant tendre t_1 vers t_2 , on obtient

$$\frac{dV}{dt} + \frac{c_3^{-1}}{|Q|} \int_Q (v(t, x) - V(t))^2 dx \le c_2$$
 (19)

qui est vrai pour tout $|t| \le 1$ et $|x| \le 1$. Dans la suite, on nommera U le rectangle $\{|t| \le 1, \quad |x| < 1\}$.

3.2.3 Équation sur V

On remarque que l'inéglité (19) n'est pas modifiée si on remplace v par v+k pour n'importe quelle constante k. On peut donc choisir V(0) = 0. Prouvons maintenant que suite à cette renormalisation, on obtient

$$\iint\limits_{U^+\cap\{v>0\}} \sqrt{v} \, dx \, dt \le c_3 \tag{20}$$

où U^+ représente la moitié supérieure de U (c'est-à-dire la partie où $t \geq 0$). Pour ce faire, on remplace v par $w(t,x) = v(t,x) - c_2 t$ et V par $W = V - c_2 t$, ce qui nous donne

$$\frac{dW}{dt} + \frac{c_3^{-1}}{|Q|} \int_Q (w(t, x) - W(t))^2 dx \le 0.$$
 (21)

^{1.} Il est possible de s'affranchir de cette supposition, mais ce ne sera pas traité ici.

On remarque que $\sqrt{v} \leq \sqrt{c_2} + \sqrt{w}$ pour $0 \leq t \leq 1$, on en déduit qu'il suffit de prouver (20) pour w. On appelle $Q_s(t)$ l'ensemble des $x \in Q$ pour lesquels w(t,x) > s. Alors, pour s > 0, on a $w - W \geq s - W > 0$ pour $0 \leq t \leq 1$. En effet, $W(t) \leq 0$ pour 0 < t < 1. Donc en restreignant l'intégration à Q_s dans (21), on obtient

$$\frac{dW}{dt} + c_3^{-1} \frac{|Q_s|}{|Q|} (s - W)^2 \le 0$$

ce qu'on peut réécrire

$$c_3(s-W)^{-2} \frac{d(s-W)}{dt} \ge \frac{|Q_s|}{|Q|}.$$

En intégrant pour $0 \le t \le 1$, on a (puisque W(0) = 0)

$$\frac{c_3}{s} \ge \frac{1}{|Q|} \int_0^1 |Q_s(t)| \, dt = \frac{1}{|Q|} \int_0^1 \int_{w > s} \, dx \, dt.$$

Si l'on appelle m(s) la mesure de Lebesgue de $\{(t,x)\in U^+\mid w(t,x)>s\},$ on peut donc écrire

$$m(s) \leq \frac{c_3}{s}|Q|.$$

Enfin, on l'utilise pour majorer l'intégrale de \sqrt{w} :

$$\iint_{U^+ \cap w > 1} \sqrt{w} \, dx \, dt = \iint_{U^+ \cap w > 1} \left(\int_{\mathbb{R}_+} \frac{1}{2\sqrt{s}} 1_{s < w} \, ds \right) \, dx \, dt = \int_1^\infty \frac{1}{2\sqrt{s}} m(s) \, ds \le c_3 \, |Q|$$

où l'on a interverti les intégrales avec le théorème de Fubini. Ceci prouve (20). En remplaçant v par -v dans (20), on déduit

$$\iint_{U^{-} \cap \{v < 0\}} \sqrt{-v(t, x)} \, dx \, dt \le c_4. \tag{22}$$

3.2.4 Élimination de la renormalisation

Éliminons alors la renormalisation qui nous a menés à (20). Soit x' un vecteur à une coordonnée temporelle t et n coordonnées spatiales $x_1
ldots x_n$. Soit y' défini de manière analogue. On pose maintenant

$$\phi(s) = \begin{cases} \sqrt{s} & \text{si } s > 0 \\ 0 & \text{sinon} \end{cases}$$

alors on obtient, en notant que $\phi(s_1 + s_2) \le \phi(s_1) + \phi(s_2)$:

$$\frac{1}{|U^{+}||U^{-}|} \int_{x' \in U^{+}} \int_{y' \in U^{-}} \phi(v(x') - v(y')) \, dy' \, dx' \\
\leq \frac{1}{|U^{+}|} \int_{U^{+}} \phi(v(x')) \, dx' + \frac{1}{|U^{-}|} \int_{U^{-}} \phi(-v(y')) \, dy' \leq 2 \, c_4.$$

Fin de la démonstration du théorème 3.2

Pour obtenir ceci, il a suffi de supposer que u > 0 est une solution sur le rectangle |x| < 2, |t| < 1. En utilisant l'invariance (1) par les transformations

$$t \to \alpha^2 t + a_0$$

$$x_k \to \alpha x_k + a_k$$

on en déduit qu'on a, pour tout couple de rectangles dans U définis par $C^{\pm} := \{ |x_k - a_k| < \rho, 0 < \pm (t - t_0) < \rho^2 \} :$

$$\frac{1}{|C^+||C^-|} \int_{x' \in C^+} \int_{y' \in C^-} \phi(v(x') - v(y')) \, dy' \, dx' \le 2 \, c_4.$$

Il ne reste plus qu'à appliquer le main lemma 3.4 à ce résultat pour obtenir le théorème:

$$\frac{1}{|D^+||D^-|} \int_{D^+} \int_{D^-} e^{\alpha \, \left(v(x') - v(y')\right)} \, dy' \, dx' \le c_5$$

où $\alpha < \frac{1}{c_0}$. Comme $v = -\log(u)$ et que les constantes ne dépendent que de n et λ , on a bien le résultat souhaité.

Preuve de l'inégalité de Harnack

Grâce à au théorème 3.2 et au travail qui a déjà été fait sur les normes ∞ et $-\infty$, on peut prouver le théorème central, que l'on rappelle ci-dessous :

Théorème 3.3 (Harnack). Soient R, R^+ et R^- les rectangles définis par

$$\begin{array}{l} -R &= \{|x|<\rho, \quad 0< t<\tau\} \\ -R^- &= \{|x|<\rho', \quad \tau_1^- < t<\tau_2^-\} \\ -R^+ &= \{|x|<\rho', \quad \tau^+ < t<\tau\} \\ où \ 0<\rho'<\rho \ et \ 0<\tau_1^- <\tau_2^- <\tau^+ <\tau. \end{array}$$

 $Si \ u \in H^1$ est une solution faible positive sur R, alors il existe une constate γ ne dépendant que de n, λ , et des rectangles R^+ et R^- tels que

$$\max_{R^-} u \leq \gamma \min_{R^+} u.$$

 $D\acute{e}monstration$. Choisissons α (qui apparaît dans le théorème 3.2 pour les rectangles choisis) comme constante ϵ de la proposition 3.1. Pour une solution strictement positive dans $\{|x| < 2, |t| < 1\}$, on obtient l'estimée

$$M(\alpha, D^-) \le c^{1/\alpha} M(-\alpha, D^+)$$

avec $D^{\pm}=\{|x|<1,\quad 1/2<\pm t<1\}.$ On translate alors R vers D^- et on choisit R^* un rectangle contenu dans D^- . Alors, on applique la proposition 3.1:

$$\max_{D_*} u = M(\infty, R^*) \le \gamma^* M(\alpha, D^-) \le \gamma^* c^{1/\alpha} M(-\alpha, D^+).$$

De manière similaire, en choisissant R' contenu dans R^+ et en raisonnant de manière analogue,

$$M(\infty, R^*) < \gamma^* c^{1/\alpha} \gamma' M(-\infty, R')$$

ce qui est précisément l'énoncé du théorème.

3.4 Proof of the main lemma

3.4.1 Outline

In order to get some detailed information from the given conditions, Moser's basic idea here is to represent an integral in terms of the measure of the level set of a function. Then, the problem becomes an estimate to the size of the level sets. Thus we can use some of the most fundamental methods in geometry, that is, subdivision and decomposition, to set up a connection between the local picture and the global picture, the former of which is provided in detail by the original assumptions of this lemma.

3.4.2 Notations

Let $C_0 = \{(t,x) : |t| \le 1, |x| \le 1\}, \ C_0^+ = \{(t,x) : \gamma \le |t| \le 1, |x| \le 1\}, \ \text{and} \ D_0^+ = \{(t,x) : \delta \le |t| \le 1, |x| \le 1\}, \ \text{where} \ 0 \le \gamma < \delta.$ Then define C_0^- and D_0^- to be the corresponding reflections of C_0^+ and D_0^+ .

We denote by C_{ν} the image of C_0 under any transformation $t' = N^{-2\nu}t + t_0, x' = N^{-\nu}x + x_0$ with N a fixed integer. They are assumed to lay in C_0 entirely. Similarly, we have C_{ν}^+ , C_{ν}^- , D_{ν}^+ , D_{ν}^- .

If there is a number $\phi_{\nu} = \phi_{\nu}(C_{\nu})$ for every C_{ν} such that

$$\frac{m\{x: f(x) - \phi_{\nu} > s\}}{|C_{\nu}^{+}|} + \frac{m\{x: \phi_{\nu} - f(x) > s\}}{|C_{\nu}^{-}|} < \epsilon$$

with some constant s and ϵ , then we denote by $p_{\nu}(s)$ the maximal for the left side over all possible C_{ν} , and say $p_{\nu}(s) < \epsilon$. Then define

$$q_{\nu}(s) := \max_{D_{\nu}} \frac{m\{x : f(x) - \phi_{\nu} > s\}}{|D_{\nu}^{+}|} + \frac{m\{x : \phi_{\nu} - f(x) > s\}}{|D_{\nu}^{-}|}$$

To avoid confusion, we have to mention that ϕ_{ν} depends not only on the number ν , but also on a specific choice of C_{ν} .

3.4.3 Step 1

We will assume that f is a continuous function without loss of generality, since any measurable function can be approximated by continuous function in measure.

In this step, we will deduce from the original conditions of the main lemma a powerful control upon $p_{\nu}(s_0)$ uniformly with respect of ν , where s_0 is an appropriate constant.

Let R_+ and R_- be a pair of rectangles in the statement of the main lemma. Then

$$\frac{1}{|R_{+}||R_{-}|} \int_{x \in R_{+}} \int_{y \in R_{-}} \phi(f(x) - f(y)) dx dy \le 1$$

Denote

$$M(R_+, R_-; s) := \frac{m\{x \in R_+, y \in R_- : f(x) - f(y) > s\}}{|R_+||R_-|}$$

So $\int_0^\infty \phi(s)d(-M(R_+,R_-;s)) \le 1$. Notice that M is decreasing as a function of s, thus for any $\sigma > 0$,

$$M(R_+, R_-; \sigma)\phi(\sigma) \le \int_0^{\sigma} M(R_+, R_-; s)d\phi(s) \le \int_0^{\infty} M(R_+, R_-; s)d\phi(s) \le 1$$

or,
$$M(R_+, R_-; s) \leq \frac{1}{\phi(s)}$$
.

Since this estimate is valid for every pair of R_+ and R_- , with no specific restriction, we will apply it to some well chosen pairs. In order to obtain the desired estimate of $p_{\nu}(s)$, we choose $\gamma=1/3$. Thus $C_0^+=\{(t,x):1/3\leq t\leq 1,|x|\leq 1\}$, and $C_0^-=\{(t,x):-1\leq t\leq -1/3,|x|\leq 1\}$. Moreover, we denote

$$C_0^m := \{(t, x) : -1/3 \le t \le 1/3, |x| \le 1\}$$

We mention that here $\{C_{\nu}^+, C_{\nu}^m\}$ is a pair, so is $\{C_{\nu}^m, C_{\nu}^-\}$. Hence we can apply the previous estimate to them:

$$M(C_{\nu}^{+}, C_{\nu}^{m}; s) + M(C_{\nu}^{m}, C_{\nu}^{-}; s) \le \frac{2}{\phi(s)}$$

Now we observe that the left side is exactly the average of

$$\frac{m\{x:f(x)-a>s\}}{|C_{\nu}^{+}|}+\frac{m\{x:a-f(x)>s\}}{|C_{\nu}^{-}|}$$

over $a \in C_{\nu}^{m}$. Thus there must be some ϕ_{ν} such that

$$\frac{m\{x: f(x) - \phi_{\nu} > s\}}{|C_{\nu}^{+}|} + \frac{m\{x: \phi_{\nu} - f(x) > s\}}{|C_{\nu}^{-}|} \le \frac{2}{\phi(s)}$$

Hence $p_{\nu}(s) \leq \frac{2}{\phi(s)}$.

3.4.4 Step 2

In this step, we will prove the following claim:

If $\epsilon < \frac{1}{4}(\frac{\delta-\gamma}{3})^{1+n/2}$ and $p_{\nu}(1) < \epsilon$ for all ν , then there are a,b>0 such that

$$q_0(s) < ae^{-bs}$$

for all s > 1.

To prove it, we choose N to be the smallest integer that satisfies

$$N^2 > \frac{1+\delta}{\delta - \gamma}$$

Then we divide every spacial edge of D_0^+ into N identical segments, divide the time edge into N^2 segments. So we get N^{n+2} small rectangles contained in D_0^+ , which satisfy the condition of being a D_1^+ . And we do the same operation to every such D_1^+ , then we get D_2^+ . Continue this process to infinity.

>From a simple consideration of the geometric relation, we find that if $\nu > \lambda$, and $D_{\nu}^+ \subset D_{\lambda}^+$, then $C_{\nu}^- \subset C_{\lambda}^+$. Notice here the assumption $N^2 > \frac{1+\delta}{\delta-\gamma}$ is used.

As a result, we have $\phi_{\nu+1}-\phi_{\nu}\leq 2$ when $D_{\nu+1}^+\subset D_{\nu}^+$. This is an application of the previous observation : If $\phi_{\nu+1}-\phi_{\nu}>2$, then $\phi_{\nu+1}-f(x)>1$ or $f(x)-\phi_{\nu}>1$ for all x. Thus

$$\begin{split} |C_{\nu+1}^-| &\leq m\{x \in C_{\nu+1}^-: \phi_{\nu+1} - f(x) > 1\} + m\{x \in C_{\nu+1}^-: f(x) - \phi_{\nu} > 1\} \\ &\leq m\{x \in C_{\nu+1}^-: \phi_{\nu+1} - f(x) > 1\} + m\{x \in C_{\nu}^+: f(x) - \phi_{\nu} > 1\} \\ &\leq \epsilon |C_{\nu+1}^-| + \epsilon N^{n+2}|C_{\nu+1}^-| \end{split}$$

It's a contradiction to the assumption of ϵ and N.

Our goal is to show an exponential decay of $q_0(s)$. Specifically, we will try to prove $q_0(s+4) \leq \frac{3}{4}q_0(s)$. So we need a deeper investigation to the interdependence between ϕ_{ν} , ϕ_0 and their corresponding D_{ν}^+ and D_0^+ .

For $s_0 \geq 2$ fixed, we select those sets among all D_1^+ sets such that $\phi_1 - \phi_0 > s_0$, and we denote these selected sets by \hat{D}_1^+ . Then we turn to the unselected D_1^+ sets, divide them into D_2^+ sets, then select all such D_2^+ sets satisfying $\phi_2 - \phi_0 > s_0$ and denote them by \hat{D}_2^+ . Then we turn to the remaining D_2^+ sets and continue this process to infinity. That is, for D_{ν}^+ selected, we have $\phi_{\nu} - \phi_0 > s_0$, but $\phi_{\nu-1} - \phi_0 \leq s_0$. We observe here these two inequalities together with $\phi_{\nu} - \phi_{\nu-1} \leq 2$ imply

$$\phi_0 + s_0 \le \phi_\nu \le \phi_0 + s_0 + 2$$

Finally, we collect all selected sets and denote it by $\hat{D}^+ := \cup \hat{D}_{\nu}^+$. Notice that for $x \in D_0^+ - \hat{D}^+$, we have

$$f(x) \le \phi_0 + s_0 + 1$$

Because x is contained in an infinite chain of C_{ν}^{+} , and for every such C_{ν}^{+} , we can find out a point y_{ν} such that $f(y_{\nu}) - \phi_{\nu} \leq 1$. Combining with $\phi_{\nu} \leq \phi_{0} + s_{0}$, we deduce the previous statement from the continuity of f.

Now we are going to establish an estimate of the relative size of \hat{D}^+ in D_0^+ . That is, there exist constants c > 0 satisfying $2c\epsilon < \frac{3}{4}$ such that

$$m(\hat{D}^+) \le cq_0(s_0 - 1)m(D_0^+)$$

To prove it, we use the assumption $p_{\nu}(1) < \epsilon$ to get $m\{x \in C_{\nu}^{-} : \phi_{\nu} - f(x) \le 1\} \ge (1 - \epsilon)|C_{\nu}^{-}|$. Since $\phi_{\nu} > \phi_{0} + s_{0}$, we have

$$m\{x \in C_{\nu}^{-}: f(x) - \phi_0 > s_0 - 1\} \ge (1 - \epsilon)|C_{\nu}^{-}|$$

We cannot add up all these inequalities directly, because there might be some overlaps on the left side to make the result too rough. Instead, we choose some C_{ν}^- step by step to ensure them to be disjoint and cover the original union essentially to some degree. For the λ th step, we choose a maximal collection of those C_{λ}^- such that they are mutually disjoint and they do not overlap any rectangles chosen by the previous steps. Collect all of them in all steps. So this collection of C_{λ}^- is disjoint, and satisfies that for all C_k^- , there is some C_{λ}^+ overlapping it.

Fix a selected C_{λ}^- and consider all D_{ν}^+ such that the corresponding C_{ν}^- overlap it. From a simple geometrical consideration, one can show the sum of measures of all these D_{ν}^+ is controlled by $\frac{3-\gamma}{1-\gamma}|C_{\lambda}^-| \leq \frac{3}{1-\gamma}|C_{\lambda}^-|$. Thus

$$|\hat{D}^+| = \sum |\hat{D}_{\nu}^+| \le \frac{3}{1 - \gamma} \sum_{selected} |C_{\lambda}^-|$$

Now that these selected C_{λ}^- are disjoint, we can add up the previous estimate, which leads

$$\sum_{selected} |C_{\lambda}^{-}| \le \frac{1}{1 - \epsilon} m\{x \in D_0^+, f(x) - \phi_0 > s_0 - 1\}$$

Combining these two, $|\hat{D}^+| \le cq_0(s_0-1)|D_0^+|$ is proven, with constant $c = \frac{3}{1-\gamma} \frac{1}{1-\epsilon}$ satisfying $2c\epsilon \le \frac{3}{4}$.

Finally, with these inequalities established, we will complete the proof of the claim at the beginning of this Step 2. We prove $q_0(s+4) \leq \frac{3}{4}q_0(s)$ for all $s \geq 1$. Consider the set

$$S := \{ x \in D_0^+ : f(x) - \phi_0 > s + 4 \}$$

Let s_0 in the previous discussion be $s_0 = s + 1$, then for all $x \in D_0^+ - \hat{D}^+$, $f(x) < \phi_0 + s + 2$, which implies $S \subset \hat{D}^+$. Thus together with $\phi_0 \ge \phi_{\nu} - s - 3$, we have

$$|S| = \sum_{\nu} m\{x \in \hat{D}_{\nu}^{+} : f(x) - \phi_{0} > s + 4\}$$

$$\leq \sum_{\nu} m\{x \in \hat{D}_{\nu}^{+} : f(x) - \phi_{\nu} > 1\}$$

$$\leq \sum_{\nu} \epsilon |\hat{D}_{\nu}^{+}| = \epsilon |\hat{D}^{+}|$$

Then we can apply the inequality $|\hat{D}^+| \le cq_0(s_0-1)|D_0^+|$, and obtain

$$|S| \le c\epsilon q_0(s)|D_0^+|$$

For the lower half D_0^- , we have a similar estimate. By adding them up, we arrive at

$$q_0(s+4) \le 2c\epsilon q_0(s) \le \frac{3}{4}q_0(s)$$

This implies an exponential decay.

3.4.5 Step 3

We are almost done. First we can choose some s_0 such that $\frac{2}{\phi(s_0)} < \epsilon$, then according to step 1, function $s_0^{-1}f$ satisfies the conditions of the claim at the beginning of step 2. So we can use the conclusion of that claim: there are constants a, b > 0 such that

$$\frac{m\{x:f(x)-\phi_0>s\}}{|D_0^+|}+\frac{m\{x:\phi_0-f(x)>s\}}{|D_0^-|}\leq ae^{-bs}$$

for all s > 1. Finally, we observe that

$$\begin{split} &\frac{1}{|D_0^+||D_0^-|}\int_{x\in D_0^+}\int_{y\in D_0^-}e^{\alpha(f(x)-f(y))}dxdy\\ =&\frac{1}{|D_0^+|}\int_{x\in D_0^+}e^{\alpha(f(x)-\phi_0)}dx\frac{1}{|D_0^-|}\int_{y\in D_0^-}e^{\alpha(\phi_0-f(y))}dy \end{split}$$

Thus by using the level sets of $f - \phi_0$ and $\phi_0 - f$ to rewrite the integral, we can see it's bounded for $\alpha = \frac{b}{2}$.

Références

- [1] MOSER, Jürgen (1964). A Harnack inequality for parabolic differential equations. Communications on pure and applied mathematics, 17(1), 101-134.
- [2] NASH, John Forbes (1958). Continuity of solutions of parabolic and elliptic equations. American Journal of Mathematics, 80(4), 931-954.
- [3] DE GIORGI, Ennio (1956). Sull'analiticità delle estremali degli integrali multipli. Atti della Academia Nazionale dei Lincei, Ser. 8, vol. 20, 438-441.
- $[4]\,$ JOST, Jürgen (1994). Partial differential equations, Springer Science & Business Media.
- [5] EVANS, Lawrence C. (1998). Partial differential equations, Graduate Studies in Mathematics, vol. 19.