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Abstract. We investigate from a mathematical perspective how
Feynman amplitudes appear in the low-energy limit of string ampli-
tudes. In this paper, we prove the convergence of the integrands.
We derive this from results describing the asymptotic behavior
of the height pairing between degree-zero divisors, as a family of
curves degenerates. These are obtained by means of the nilpotent
orbit theorem in Hodge theory.

À Jean-Pierre Serre, en témoignagne d’admiration

1. Introduction

This paper grew out of an attempt to understand from a mathe-
matical perspective the idea we learned from physicists that Feynman
amplitudes should arise in the low-energy limit α′ → 0 of string theory
amplitudes, cf. [33] and the references therein. Throughout we work
in space-time RD with a given Minkowski bilinear form 〈· , ·〉.

String amplitudes are integrals over the moduli spaceMg,n of genus
g ≥ 1 curves with n marked points. They are associated to a fixed col-
lection of external momenta p = (p1, . . . ,pn), which are vectors in RD

satisfying the conservation law
∑n

i=1 pi = 0. Up to some factors car-
rying information about the physical process being studied, the string
amplitude can be written as (see e.g. [35, p.182])

(1.1) Aα′(g,p) =

∫
Mg,n

exp(−i α′F) dνg,n.

In this expression, dνg,n is a volume form on Mg,n, independent of
the momenta, α′ is a positive real number, which one thinks of as
the square of the string length, and F : Mg,n → R is the continuous
function defined at the point [C, σ1, . . . , σn] of Mg,n by

F([C, σ1, . . . , σn]) =
∑

1≤i,j≤n

〈pi,pj〉 g′Ar,C(σi, σj),

1
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where g′Ar,C denotes a regularized version of the canonical Green func-
tion on C so that it takes finite values on the diagonal.

On the other hand, correlation functions in quantum field theory are
calculated using Feynman amplitudes, which are certain finite dimen-
sional integrals associated to graphs. Recall that a (massless) Feynman
graph (G,p) consists of a finite graph G = (V,E), with vertex and
edge sets V and E, respectively, together with a collection of external
momenta p = (pv)v∈V , pv ∈ RD, such that

∑
v∈V pv = 0. To the

Feynman graph (G,p) one associates two polynomials in the variables
Y = (Ye)e∈E. The first Symanzik ψG, which depends only on the graph
G, is given by the following sum over the spanning trees of G:

ψG(Y ) =
∑
T⊆G

∏
e/∈T

Ye.

The second Symanzik polynomial φG, depending on the external mo-
menta as well, admits the expression

φG(p, Y ) =
∑
F⊆G

q(F )
∏
e/∈F

Ye.

Here F runs through the spanning 2-forests of G, and q(F ) is the real
number −〈pF1 ,pF2〉, where pF1 and pF2 denote the total momentum
entering the two connected components F1 and F2 of F . The polyno-
mial φG is quadratic in p and it will be also convenient to consider the
corresponding bilinear form, which we denote by φG(p,p′, Y ).

One of the various representations of the Feynman amplitude asso-
ciated to (G,p) is, up to some elementary factors which we omit,

(1.2) IG(p) =

∫
[0,∞]E

exp(−i φG/ψG) dπG,

where dπG denotes the volume form ψ
−D/2
G

∏
E dYe on [0,∞]E. This

can be found e.g. in formula (6-89) of [17]. If one interprets the locus
of integration as the space of metrics (i.e. lengths of edges) on G, then
(1.2) looks like a path integral with the action φG/ψG.

Although both amplitudes diverge in general, one may still ask if
IG(p) is related to the asymptotic of Aα′(g,p) when α′ goes to zero, as
physics suggests. The graph G appears as the dual graph of a stable
curve C0 with n marked points lying on the boundary of the Deligne-
Mumford compactification Mg,n (recall that the irreducible compo-
nents Xv of C0 are indexed by the vertices of G, whereas the singular
points correspond to the edges). The question can be then split into
two different problems, namely (i) the convergence of the integrands,
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and (ii) the convergence of the measure νg,n, in an appropriate sense,
and along the boundary of Mg,n, to a linear combination of the mea-
sures πG for the (marked) dual graphs G associated to the strata. Our
main result in this paper answers question (i) in the affirmative when
the external momenta satisfy the “on shell” condition: the integrand
in string theory converges indeed to the integrand appearing in the
Feynman amplitude.

To make this more precise, let us consider the versal analytic de-
formation π : C ′ → S ′ of the marked curve C0, which we think of as
a smooth neighborhood of C0 in the analytic stack Mg,n. Here S ′ is
a polydisc of dimension 3g − 3 + n, the total space C ′ is regular and
C ′0, the fibre of π at 0, is isomorphic to C0. For each edge e ∈ E, let
De ⊂ S ′ denote the divisor parametrizing those deformations in which
the point associated to e remains singular. Then D =

⋃
e∈E De is a

normal crossings divisor whose complement U ′ = S ′ \D can be identi-
fied with (∆∗)E×∆3g−3−|E|+n. Over U ′, the fibres C ′s are smooth curves
of genus g. Moreover, the versal family comes together with n disjoint
sections σi : S

′ → C ′ which do not meet the double points of C0. We
denote by pG = (pGv )v∈V the restriction of p to G. By this we mean

that, for each vertex v ∈ V , the external momentum pGv is obtained by
summing those pi associated to the sections σi which meet C0 on the
irreducible component Xv.

An admissible segment is a continuous maps t : [0, ε] → S ′ from an
interval of length ε > 0 such that t((0, ε]) ∈ U ′ and, letting te denote
the coordinate corresponding to e ∈ E in the factor (∆∗)E of U ′, the
limit limα′→0 |te(α′)|α

′
exists and belongs to (0, 1). To any admissible

segment we attach a collection Y = (Ye)e∈E of positive real numbers
(the edge lengths) as follows:

Ye = − lim
α′→0

log |te(α′)|α
′
.

Theorem 1.1 (cf. Theorem 6.8). Let C0 be a stable curve of genus
g ≥ 1 with n marked points σ1, . . . , σn and dual graph G = (V,E), and
let p = (p1, . . . ,pn) be a collection of external momenta satisfying the
conservation law

∑n
i=1 pi = 0 and the “on shell” condition 〈pi,pi〉 = 0

for all i. Then, for any admissible segment t : I → Mg,n such that
t(0) = [C0, σ1, . . . , σn], we have

lim
α′→0

α′F(t(α′)) =
φG(pG, Y )

ψG(Y )
,

where Y = (Ye)e∈E denotes the edge lengths determined by t.
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We derive the above theorem from results describing the asymp-
totic behaviour of the archimedean height pairing. We start with the
case of disjoint divisors. We consider the versal analytic deformation
π : C → S of C0 (without the marked points), which we think of as
a smooth neighborhood of C0 in the analytic stack Mg. Now S is
a polydisc of dimension 3g − 3. Again the total space C is regular
and we repeat the construction above letting De ⊂ S denote the divi-
sor parametrizing those deformations in which the point associated to
e remains singular. Then D =

⋃
e∈E De is a normal crossings divisor

whose complement U = S \D can be identified with (∆∗)E×∆3g−3−|E|.
To accommodate external momenta, we assume that we are given two
collections of sections of π, which we denote by σ1 = (σ`,1)`=1,...,n and
σ2 = (σ`,2)`=1,...,n. Since C is regular, the points σl ,i(0) lie on the smooth
locus of C0. We label the markings with two vectors p

1
= (pl ,1)nl=1 and

p
2

= (pl ,2)nl=1 with pl ,i ∈ RD subject to the conservation of momentum,

thus obtaining a pair of relative degree zero RD-valued divisors

As =
n∑

l=1

pl ,1σl ,1, Bs =
n∑

l=1

pl ,2σl ,2.

We first assume that σ1 and σ2 are disjoint on each fiber of π. Recall
that to any pair A, B of degree zero (integer-valued) divisors with dis-
joint support on a smooth projective complex curve C, one associates
a real number, the archimedean height

〈A,B〉 = Re(

∫
γB

ωA),

by integrating a canonical logarithmic differential ωA with residue A
along any 1-chain γB supported on C \ |A| and having boundary B.
Coupling with the Minkowski bilinear form on RD, the definition ex-
tends to RD-valued divisors. We thus get a real-valued function

(1.3) s 7→ 〈As,Bs〉.

For each e ∈ E, denote by se the coordinate in the factor corre-
sponding to e in U = (∆∗)E × ∆3g−3−|E|, write ye = −1

2π
log |se| and

put y = (ye)e∈E. After shrinking U if necessary, the asymptotic of the
height pairing is given by the following result:

Theorem 1.2 (cf. Corollary 5.10). Assume, as above, that σ1 and
σ2 are disjoint on each fibre. Then there exists a bounded function
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h : U → R such that

(1.4) 〈As,Bs〉 = 2π
φG(pG

1
,pG

2
, y)

ψG(y)
+ h(s).

Theorem 1.2 only deals with disjoint sections. In order to derive
Theorem 1.1 we need to allow the supports of the divisors to intersect,
which requires a regularization of the height pairing. Pointwise, the
regularization depends on the choice of a metric on the tangent space
of the given curve. To regularize the height pairing globally we choose
a smooth (1, 1)-form µ on π−1(U) such that the restriction to each fibre
Cs is positive. Using µ we define a regularized height pairing 〈As,As〉

′
µ

(see Section 6). In the case where g ≥ 1 and µ is the Arakelov metric
µAr we recover the function F from the string amplitude:

F([Cs, σ1(s), . . . , σn(s)]) = 〈As,As〉
′

µAr
.

The asymptotic of the regularized height pairing is described in the
following result:

Theorem 1.3 (cf. Theorem 6.5 and Corollary 6.6). Let p = (pi)i=1,...,n

be external momenta satisfying the conservation law and (σi)i=1,...,n a
collection of sections σi : S → C. Put As =

∑
piσi(s), and let µ be

a smooth (1, 1)-form on π−1(U) whose restriction to each curve Cs is
positive. Assume that one of the following conditions hold:

(1) µ extends to a continuous (1, 1)-form on C, or
(2) the pi satisfy the “on shell” condition 〈pi,pi〉 = 0.

Then there exists a bounded function h : U → R such that

〈As,As〉
′

µ = 2π
φG(pG, y)

ψG(y)
+ h(s).

To get Theorem 1.1 from Theorem 1.3 we first observe that the latter
can be easily extended to the versal family C ′ → S ′ of genus g curves
with n marked points. For any admissible segment t : I → U ′, we have

lim
α′→0

α′F(t(α′)) = lim
α′→0

[
φG(pG, (− log |te(α′)|α

′
)e)

ψG((− log |te(α′)|α′)e)
+ α′h(s)

]

=
φG(pG, Y )

ψG(Y )
,

where we have used that φG/ψG is homogeneous of degree one, as well
as the boundedness of h.



6 O. AMINI, S. BLOCH, J. I. BURGOS GIL, AND J. FRESÁN

Remark 1.4. If one wants to compute the quantum field theory am-
plitude (1.2) for “off shell” momenta as a limit of heights in the spirit
of this paper, the surprising “on shell” condition in Theorem 1.1 can be
avoided by simply taking momenta pG = pG

1
= pG

2
and disjoint multi-

sections σ1, σ2 which have the same intersection data with components
of the curve at infinity. One can combine equation (1.4) and the above
limit calculation, noting that φG(pG, Y ) = φG(pG

1
,pG

2
, Y ).

The proofs of Theorems 1.2 and 1.3 are based on the Hodge theo-
retic interpretation of the archimedean height. Since both sides of the
equality (1.4) are bilinear in the momenta, we can reduce to the case
of integer-valued divisors. Then As and Bs define a biextension mixed
Hodge structure HBs,As with graded pieces Z(1), H1(Cs,Z(1)),Z(0).
The moduli space of such biextensions is the C×-bundle associated

to the Poincaré line bundle over J(Cs) × Ĵ(Cs), and one recovers the
archimedean height by evaluating its canonical metric at HBs,As . As s
varies, the biextensions HBs,As fit together into an admissible variation
of mixed Hodge structures over U . We shall write the period map

Φ̃ : Ũ −→ Hg × Rowg(C)× Colg(C)× C,

where Ũ is the universal cover of U and Hg the Siegel upper half-
space. If P× denotes the Poincaré bundle over the universal family of

abelian varieties and their duals, Φ̃ descends to the map Φ: U → P×
which sends s to HBs,As . Then (a weak version of) the nilpotent orbit
theorem for variations of mixed Hodge structures allows us to describe
the asymptotic of the height pairing.

In order to prove Theorem 1.3, we need to study the effect of the
regularization process. To this end, we consider an analytic family of
sections σuj parametrized by u in a small disc such that σ0

j = σj and,
for each u 6= 0, the sections σui and σj are disjoint for all i, j. We also
choose a suitable rationally equivalent divisor A + div(f). When the
metric extends continuously to C, the difference between the regular-
izations obtained using the metric µ and changing the section through
the function f is bounded, thus proving the result. On the other hand,
if the external momenta satisfy the “on shell” condition, then all diver-
gent terms vanish, which makes the regularization process independent
of the metric. In this way we deduce the result in the “on shell” case
for non-continuous metrics from the result for continuous metrics.

We would like to end this introduction by mentioning that the as-
ymptotic of the height pairing has been previously studied from a math-
ematical perspective in [11, 14, 16, 23, 26]. In particular, an analogue of
theorems 1.2 and 1.3 for families of curves over a one-dimensional base
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was established by Holmes and de Jong in [16]. Some Hodge theoretic
aspects of stable curves appear already in the work of Hoffman [15].
We are less familiar with the physics literature, but many of the ideas
in this paper are discussed from a physics viewpoint in [34].

The paper is organized as follows. In Section 2, we discuss Symanzik
polynomials in an abstract setting, convenient for the sequel. Section 3
is devoted to the study of the local monodromy of the analytic versal
deformation. In Section 4, we recall the definition of the archimedean
height pairing, as well as its interpretation in terms of biextensions and
the Poincaré bundle. Section 5 contains the proof of Theorem 1.2, for
which we need to write the period map and use part of the nilpotent
orbit theorem. Finally, in Section 6 we put everything together to get
the convergence of the integrands.
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2. Symanzik Polynomials

In this section, we define the first and the second Symanzik polyno-
mials in an abstract setting. We then show how to recover the usual
formulas for ψG and φG in the case of graphs [10]. Throughout, if K is
a field and E a finite set, we write KE =

{∑
e∈E κee | κe ∈ K

}
. For

each e ∈ E, we denote by e∨ : KE → K the functional which takes the
e-th coordinate of a vector.

2.1. Abstract setting. Let H be a vector space of finite dimension h
over a field K, and suppose we are given a finite set E of cardinality
at least h + 1, and an embedding ι : H ↪→ KE. Abusing notation,
we write e∨ as well for the composition H ↪→ KE → K. The function
which sends x ∈ H to e∨(x)2 defines a rank one quadratic form e∨,2 on
H. When needed, we denote by 〈· , ·〉e the corresponding bilinear form.

If we fix a basis γ1, . . . , γh of H, we can identify the quadratic form
e∨,2 with an h× h symmetric matrix Me of rank one so that, thinking
of elements of H as column vectors, we have

(2.1) e∨,2(x) = txMex.

Let Y = {Ye}e∈E be a collection of variables indexed by E, and
consider the matrix M =

∑
e∈E YeMe (associated to the quadratic form∑

e∈E Yee
∨,2). It is an h× h symmetric matrix whose entries are linear

forms in the Ye. The linear map M : H → H∨ is in fact canonical and
independent of the choice of a basis of H.
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Definition 2.1. The first Symanzik polynomial ψ(H,Y ) associated to
the configuration H ↪→ KE is defined as

ψ(H,Y ) = det(M).

Remark 2.2. Note that this definition depends on the choice of a basis
of H. For a different basis, M is replaced by tPMP , where P is the
h × h invertible matrix transforming one basis into the other, so the
determinant gets multiplied by an element of K×,2. The same argument
shows that when H = L⊗Z K for a sublattice L of ZE and we restrict
to bases coming from L, the first Symanzik polynomial is well-defined.

LetW = KE/H. For any nonzero w ∈ W , we define Hw ⊆ KE as the
(h + 1)-dimensional subspace of vectors in KE whose images in W lie
in the line spanned by w. Choosing a vector ω ∈ KE in the preimage of
w, we can extend the basis {γ1, . . . , γh} of H to a basis {γ1, . . . , γh, ω}
of Hw. The first Symanzik polynomial ψ(Hw, Y ) with respect to this
basis of Hw yields the second Symanzik.

Lemma 2.3. ψ(Hw, Y ) does not depend on the choice of ω.

Proof. Let 〈 . , . 〉 =
∑

e∈E Ye〈 . , . 〉e be the bilinear form on Hw associ-
ated to the quadratic form

∑
Yee
∨,2. The polynomial ψ(Hw, Y ) is the

determinant of 〈 . , . 〉 with respect to the basis {γ1, . . . , γh, ω}. Chang-
ing the basis of Hw by adding to ω a linear combination of γ1, . . . , γh
does not change the determinant of 〈 . , . 〉, so ψ(Hw, Y ) only depends
on w and the basis {γ1, . . . , γh} of H. �

Definition 2.4. The second Symanzik polynomial associated to H,
w ∈ W , and the variables Y = {Ye}e∈E, is the polynomial

φ(H,w, Y ) = ψ(Hw, Y ).

Proposition 2.5. The ratio φ(H,w, Y )/ψ(H, Y ) between the first and
the second Symanzik polynomials does not depend on the choice of a
basis of H.

Proof. Let 〈 . , . 〉 still denote the bilinear form on Hw associated to the
quadratic form

∑
Yee
∨,2. Then ψ(H,Y ) is the determinant, in the given

basis, of the restriction of 〈 . , . 〉 to H. Changing the basis multiplies
both ψ(H,Y ) and φ(H,w, Y ) = ψ(Hw, Y ) by the same factor in K×,2,
from which the claim follows. �

To give another formula for the second Symanzik polinomial which
will be used later we introduce the following notation.
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Definition 2.6. Let w ∈ W \ {0} and choose ω ∈ KE in the preimage
of w. We denote by We(ω) the column vector with components 〈γi, ω〉e.
If w′ and ω′ is another choice of such vectors we write

Qe(ω, ω
′) = 〈ω, ω′〉e and Qe(ω) = Qe(ω, ω).

Proposition 2.7.

(1) The first Symanzik polynomial ψ(H,Y ) is homogeneous of de-
gree h = dimH in the variables Ye.

(2) The second Symanzik is given by

(2.2) φ(H,w, Y ) = det
(∑

Ye

(
Me We(ω)

tWe(ω) Qe(ω)

))
.

Moreover, it is homogeneous of degree h+ 1 in the variables Ye
and is quadratic in w ∈ W \ {0}.

Proof. The first statement is clear from ψ(H,Y ) = det(
∑
YeMe). Equa-

tion (2.2) is just a reformulation of the definition of the second Symanzik
polynomial, from which the last statement follows immediately. �

One can slightly generalize the definition of the second Symanzik
polynomial. Let V be a vector space over K equipped with a quadratic
form q associated to a symmetric bilinear form 〈· , ·〉q. Using it, one
can make sense of the determinant on the right hand side of (2.2) and
define φ(H,w, Y ) for any nonzero element w ∈ W ⊗K V . Typically,
for physics applications, K = R, V = RD is space-time, and q is the
Minkowski metric. This works as follows.

One naturally extends 〈 . , . 〉e to a bilinear pairing

〈 . , . 〉e : H × (KE ⊗K V)→ V ,

and e∨,2 to the quadratic form Qe on KE ⊗K V given by

Qe(α⊗ β) = e∨,2(α)q(β).

Let w ∈ W ⊗K V and consider ω ∈ KE ⊗ V in the preimage of
w ∈ W ⊗K V . Applying the bilinear pairing to (γi, ω) leads to the
column vector We = (ve,1, . . . , ve,h) with entries ve,i ∈ V .

Using the above extension, one can now make sense of the determi-
nant in (2.2) and define φ(H,w, Y ) for w ∈ W ⊗ V . To explain this,
suppose we have a symmetric (h+ 1)× (h+ 1) matrix of the form

T =

(
M W
tW S

)
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where M is an invertible h × h matrix, W is a (column) vector of
dimension h, and S is a scalar. The formula (detM)M−1 = adj(M),
where adj(M) is the matrix of minors, gives

detT

detM
= − tWM−1W + S.

Taking W =
∑

e∈E YeWe, where We has now entries in V , the deter-
minant in (2.2) can be written as

(2.3)
φ(H,w, Y )

ψ(H,Y )
= − tWM−1W +Q(ω),

where Q(ω) =
∑

e∈E YeQe(ω), and the product tWM−1W is inter-
preted via the bilinear form (in the sense that, developing the product
as the sum of the form

∑
ve,imi,jve,j, with ve,i, ve,j ∈ V , mi,j ∈ K[Y ],

becomes
∑
mi,j〈ve,i, ve,j〉q).

The expression (2.3) will be later used to relate the second Symanzik
to the archimedean height.

2.2. Graphs. In what follows, G is a connected graph with edge set
E = E(G) and vertex set V = V (G). We will fix an orientation on the
edges so we have a boundary map ∂ : ZE → ZV , e 7→ ∂+(e) − ∂−(e),
where ∂+ and ∂− denote the head and the tail of e, respectively. The
homology of G is defined via the exact sequence

(2.4) 0→ H1(G,Z)→ ZE ∂−→ ZV → Z→ 0.

Homology with coefficients in any abelian group is defined similarly.

In order to apply the constructions of the previous section, we write
H = H1(G,K). The exact sequence (2.4) yields an isomorphism

(2.5) W = KE/H ' KV,0,

where KV,0 consists of those x ∈ KV whose coordinate sum to zero. We
will use (2.5) to identify both spaces.

Definition 2.8. The first Symanzik polynomial of a connected graph
G is the first Symanzkik polynomial, as in Definition 2.1, associated to
the configuration H = H1(G,K) ⊂ KE. We will denote it by

ψG(Y ) = ψ(H,Y ).

Since H = H1(G,Z) ⊗Z K, Remark 2.2 guarantees that ψG is in-
dependent of the choice of an integral basis. The link between the
above definition and the expression for ψG given in the introduction
is the content of Kirchhoff’s matrix-tree theorem [21]. Recall that a
subgraph T of G is called a spanning tree if it is connected and simply
connected, and satisfies V (T ) = V (G).
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Proposition 2.9. The first Symanzik polynomial ψG is equal to

ψG(Y ) =
∑
T⊂G

∏
e 6∈T

Ye,

where T runs through all spanning trees of G.

The second Symanzik polynomial can be described explicitly via the
external momenta, as we explain now. Note that, in the situations
coming from physics, it also depends on the masses associated to the
edges. However, in this paper we only consider the massless case.

Let V be a vector space over a field K with a symmetric bilinear form
〈· , ·〉q, and consider ω ∈ KE⊗V which reduces to the vector w ∈ W⊗V ,
where H = H1(G,K) and W = KE/H. Using the isomorphism (2.5),
we have W ⊗ V ' KV,0 ⊗ V ' VV,0. In other words, the choice of
w ∈ W ⊗ V is equivalent to the choice of external momenta pv ∈ V
satisfying the conservation law

∑
v∈V pv = 0.

Definition 2.10. Let G be a connected graph and p = {pv} ∈ VV,0
be external momenta. The second Symanzik polynomial of (G,p) is

φG(p, Y ) = φ(H,ω, Y )

for the element ω ∈ KE ⊗ V with p = ∂(ω).

To give an explicit description of the polynomial φG(p, Y ), we need
to introduce some extra notation. Let G be a connected graph. A span-
ning 2-forest F ⊂ G is a subgraph ofG, with two connected components
F1 and F2, satisfying V (F ) = V (G) and H1(F,Z) = 0 (so each Fi is a
subtree of G). Given a collection of external momenta p = (pv) ∈ VV,0
and a spanning 2-forest, we define p(Fi) =

∑
v∈V (Fi)

pv, the total mo-

mentum entering Fi, and q(F ) = −〈p(F1),p(F2)〉q = q(p(F1)), where
the last equality follows from the conservation law. Then we have the
following proposition, for which we refer the reader e.g. to [8]:

Proposition 2.11. If G is a connected graph, then

φG(p, Y ) =
∑
F⊂G

q(F )
∏

e/∈E(F )

Ye ,

where the sum runs over all spanning 2-forests F of G.

3. Degeneration of curves

The aim of this section is to interpret the rank one symmetric matri-
ces Me introduced in (2.1) in terms of the monodromy of a degenerating
family of curves [5, 6]. For this, we fix a complex stable curve C0 of
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arithmetic genus g and dual graph G = (V,E). Throughout h denotes
the first Betti number of G.

Concretely, C0 is a projective connected nodal curve with smooth
irreducible components Xv indexed by the vertices of G. It is obtained
as a quotient of

∐
v∈V Xv by identifying a chosen point of Xv with a

chosen point of Xw whenever there exists an edge connecting v and w.
Stability means that the automorphism group of C0 is finite: letting
g(Xv) denote the geometric genus of Xv and val(v) the valency of a
vertex, this is equivalent to 2g(Xv)− 2 + val(v) > 0 for every v ∈ V .

Proposition 3.1. The identification map p :
∐

v∈V Xv → C0 induces
a canonical isomorphism

H1(G,C) ' ker
(
H1(C0,OC0)

p∗→
⊕
v∈V

H1(Xv,OXv)
)
,

and the arithmetic genus of C0 is equal to h+
∑

v∈V g(Xv), where h is
the first Betti number of G. Moreover,

H1(G,Z) ' ker
(
H1(C0,Z)

p∗→
⊕
v∈V

H1(Xv,Z)
)
.

Proof. Let us choose an orientation of the edges of G. Then we have
an exact sequence of sheaves

(3.1) 0→ OC0 → p∗O∐
Xv

ϕ−→ S → 0,

where S is a skyscraper sheaf with stalk C over each singular point
of C0 and the map ϕ = (ϕe)e∈E is defined as follows: if f is a local
section of p∗O∐

Xv near the singular point corresponding to e, then
ϕe(f) = f(Pv)− f(Pw) where v and w denote the head and the tail of
e respectively, and Pv ∈ Xv and Pw ∈ Xw are the points identified to
get C0. Observe that, since p is finite, taking cohomology commutes
with p∗, so we get the exact sequence

0→ C→ CV δ−→ CE → H1(C0,OC0)
p∗−→
⊕
v∈V

H1(Xv,OXv)→ 0,

where δ is dual to the boundary map (with respect to the same ori-
entation of the edges) in the definition (2.4) of the graph homology.
Thus, H1(G,C) ' coker(δ) and the first isomorphism, as well as the
expression for the arithmetic genus of C0, follows.

The proof of the second assertion goes in the same way, up to replac-
ing the exact sequence (3.1) by the analogous sequence of constructible
sheaves calculating Betti cohomology. �
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3.1. Deformations. We recall some basic facts about deformation
theory of stable curves, for which we refer the reader to [9, 12, 13, 30].

Let C0 be, as before, a complex stable curve of arithmetic genus g.
Standard results in deformation theory provide a smooth formal scheme

Ŝ = Spf C[[t1, . . . , tN ]] and a versal formal family of curves π : Ĉ → Ŝ

with a fibre C0 over 0 ∈ Ŝ isomorphic to C0. In particular, the total

space Ĉ is formally smooth over C, and we get an identification of the

tangent space T to Ŝ at 0 with the Ext group Ext1(Ω1
C0
,OC0). Locally

(for the étale topology) at the singular points, we have

(3.2) C0 ' SpecR, R = C[x, y]/(xy),

so Ω1
C0
' Rdx ⊕ Rdy/(xdy + ydx). In particular, since xdy ∈ Ω1

C0

is killed by both x and y, it follows that Ω1 has a non-trivial torsion
subsheaf supported at the singular points. By the vanishing of the
higher degree terms [9], we get the following short exact sequence from
the five term exact sequence of low degree terms in the local to global
Ext-spectral sequence
(3.3)

0→ H1(C0,Hom(Ω1
C0
,OC0))→ T → Γ(C0, Ext1(Ω1

C0
,OC0))→ 0.

The local Ext sheaf on the right can be easily calculated using the
local presentation (3.2) at the singular points:

0→ R −→ Rdx⊕Rdy → Ω1
R → 0

1 7−→ xdy + ydx

One identifies in this way Ext1(Ω1
C0
,OC0) with the skyscraper sheaf

consisting of one copy of C supported at each singular point, hence

(3.4) Γ
(
C0, Ext1(Ω1

C0
,OC0)

)
' CE.

In addition, Γ
(
C0, Ext1(Ω1

C0
,OC0)

)
corresponds to smoothings of the

double points [9], so the subspace H1(C0,Hom(Ω1
C0
,OC0)) ⊂ T corre-

sponds to deformations such that only Xv with the points correspond-
ing to incident edges to v in G move. Since r points on Xv of genus
g(Xv) have 3g(Xv)− 3 + r moduli, we get the dimensions

dimH1(C0,Hom(Ω1
C0
,OC0)) =

∑
v∈V

(3g(Xv)− 3 + val(v)),
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dimT =
∑
v∈V

(3(g(Xv) + val(v)− 3) + |E|

= −3|V |+ 3|E|+
∑
v∈V

3g(Xv)

= 3g − 3,

where the last equality follows from Proposition 3.1. Note that the
arithmetic genus of C0 coincides with the usual genus of a smooth
deformation of C0, and that 3g− 3 is also the dimension of the moduli
space of curves of genus g.

For each edge e ∈ E, let pe ∈ C0 be the corresponding singular point
of C0. Those deformations of C0 which preserve the singularity at pe are

given by a divisor D̂e ⊂ Ŝ. Suppose that fe ∈ OŜ defines D̂e. Then the

functional T → CE pre−−→ C is defined by dfe. Taking into account the
identification (3.4), this yields the surjective map T → CE in (3.3). In

the geometric picture, we have a collection of principal divisors D̂e ⊂ Ŝ
indexed by the edges of G which meet transversally. The subvariety cut
out by these divisors is precisely the locus of equisingular deformations
of C0 which are given by moving the singular points.

Similarly, if (C0, q1, . . . , qn) is a complex stable curve of arithmetic

genus g with n marked points, there exists a formal disc Ŝ ′ of dimension

3g − 3 + n and a versal formal deformation π : Ĉ ′ → Ŝ ′ such that the

tangent space to 0 ∈ Ŝ ′ is identified with Ext1(Ω1
C0
,OC0(−

∑n
i=1 qi)).

The fibre at 0 is isomorphic to C0, and the family comes together with

sections σi : S̃
′ → C̃ ′ such that σi(0) = qi.

3.2. Monodromy. The formal schemes given by the deformation the-
ory can be spread out to yield an analytic deformation C → S, where
S is a polydisc of dimension 3g − 3. In this way, the divisors lift to
analytic divisors De ⊂ S which are defined by the equation {fe = 0}.

We fix a basepoint s0 ∈ S \
⋃
e∈E De. The goal is to study the

monodromy action on H1(Cs0 ,Z). For this, we choose, for each e ∈ E,
a simple loop `e ⊂ S \

⋃
e∈E De based at s0 which loops around the

divisor De. We assume that `e is contractible in the space S \
⋃
ε 6=eDε.

The monodromy for the action of `e on H1(Cs0 ,Z) is given by the
Picard-Lefschetz formula:

(3.5) β 7→ β − 〈β, ae〉ae,

where ae ∈ H1(Cs0 ,Z) denotes the vanishing cycle associated to the
double point which remains singular as one deforms along De.
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By a basic result in differential topology, after possibly shrinking the
polydisc S, the inclusion C0 ↪→ C admits a retraction C → C0 in such
a way that the composition C → C0 → C becomes homotopic to the
identity. The inclusion C0 ↪→ C is thus a homotopy equivalence, and
from this, one gets the specialization map

sp: H1(Cs0 ,Z)→ H1(C,Z) ' H1(C0,Z).

Lemma 3.2. The specialization map sp above is surjective.

One can give a formal proof based on the Clemens-Schmid exact
sequence, see e.g. [24]. Intuitively, a loop in H1(C0,Z) can be broken
up into segments which connect double points of the curve. Since
these double points arise by shrinking (vanishing) cycles on Cs0 , we can
model the segments by segments in Cs0 which connect the vanishing
cycles. Connecting all these segments together yield a loop in Cs0 which
specializes to the given loop in C0.

Let A ⊂ H1(Cs0 ,Z) denote the subspace spanned by the vanishing
cycles ae. Observe that we have an exact sequence

0→ A→ H1(Cs0 ,Z)
sp−→ H1(C0,Z)→ 0.

Define A′ = A+ sp−1(
⊕

v∈V H1(Xv,Z)) ⊆ H1(Cs0 ,Z). Using Propo-
sition 3.1, we have

(3.6) H1(Cs0 ,Z)/A′ ' H1(C0,Z)/
⊕
v∈V

H1(Xv,Z) ' H1(G,Z).

Lemma 3.3. The subspace A ⊂ H1(Cs0 ,Z) defined by the vanishing
cycles is isotropic and has rank h. In particular, it is maximal isotropic
if the genera of all the components Xv are zero.

Proof. For s0 very close to 0 ∈ S, the vanishing cycles ae become
disjoint since they approach different singular points pe ∈ C0. Thus,
〈ae, ae′〉 = 0. The pairing on H1 being symplectic, we automatically
have 〈ae, ae〉 = 0, which shows that the subspace A is isotropic.

To prove the claim about the dimension, note that (3.6) implies

h = rkH1(C0,Z)− 2
∑
v∈V

g(Xv) = rkH1(Cs0 ,Z)− rkA− 2
∑
v∈V

g(Xv)

= 2g(Cs0)− rkA− 2
∑
v∈V

g(Xv) = 2h− rkA.

It follows that rkA = h. �

The same reasoning as above implies that 〈A,A′〉 = 0, so the sym-

plectic pairing reduces to a pairing A×
(
H1(Cs0 ,Z)/A′

)
→ Z.
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Write Ne = `e − Id. Note that by (3.5), we have Ne(β) = 〈β, ae〉ae
for any β ∈ H1(Cs0 ,Z). Thus the image of Ne is contained in A. By
Lemma 3.3, we get that Ne vanishes in A. Thus N2

e = 0 which shows
that Ne = log(`e). Consider now the composition

H1(C0,Z) ' H1(Cs0 ,Z)/A
Ne−→ A ' (H1(Cs0 ,Z)/A′)∨ ' H1(G,Z)∨.

Note that, by Picard-Lefschetz, all the elements in

sp−1(
⊕
v

H1(Xv,Z)) ⊂ H1(Cs0 ,Z)

are in the kernel of Ne, so in fact the above map passes to the quotient
to give a map

(3.7) H1(G,Z) ' H1(Cs0 ,Z)/A′
Ne−→ H1(G,Z)∨.

The following proposition provides the relation between the mon-
odromy and the combinatorics of the graph polynomials.

Proposition 3.4. The bilinear form on H1(G,Z) given by (3.7) coin-
cides with the bilinear form 〈· , ·〉e.

Proof. For any b ∈ H1(Cs0 ,Z), the image of sp(b) in the quotient
H1(Cs0 ,Z)/A′ ' H1(G,Z) can be identified with a loop γ =

∑
e nee,

where ne = 〈b, ae〉 denotes the multiplicity of intersection of b with the
vanishing cycle ae. The quadratic form on H1(Cs0 ,Z) associated to Ne

sends b to 〈b, 〈b, ae〉ae〉 = n2
e. On the other hand, the bilinear form

〈· , ·〉e on H1(G,Z) corresponding to the edge e sends the loop γ to n2
e,

from which the proposition follows. �

Fix a symplectic basis a1, . . . , ag, b1, . . . , bg for H1(Cs0 ,Z) such that
a1, . . . , ah form a basis of A. For any e ∈ E, we can write

(3.8) ae =
h∑
i=1

ce,iai.

Let B ⊂ H1(Cs0 ,Z) be the subspace generated by b1, . . . , bh. Note
that we have isomorphisms B ' A∨ ' H1(G,Z). Thus, we can see the
monodromy operators as maps

Ne : A −→ B.

The following proposition is straightforward.

Proposition 3.5. In terms of the basis b1, . . . , bh for B ' H1(G,Z),

we can write Me =
(
ce,ice,j

)
1≤i,j≤h

.
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We will denote by A0 (respectively B0) the subspace of H1(Cs0 ,Z)
generated by a1, . . . , ag (respectively b1, . . . , bg). The A0 is a maximal
isotropic subspace with A ⊂ A0 ⊂ A′.

4. Archimedean heights and the Poincaré bundle

In this section, we recall the definition of the archimedean height
pairing between degree zero divisors with disjoint support on a smooth
projective curve, as well as its interpretation in terms of biextensions
and the Poincaré bundle. Throughout, given a set Σ and a ring R, we
denote by (

⊕
Σ R)0 the set of elements (rs) ∈

⊕
Σ R with

∑
s rs = 0.

4.1. Archimedean heights. Let C be a smooth projective curve over
the field of complex numbers and Σ ⊂ C a finite set of points in C,
which we also think of as a reduced effective divisor. The inclusion
j : C \ Σ ↪→ C yields an exact sequence of mixed Hodge structures:

(4.1) 0→ H1(C,Z(1))
j∗−→ H1(C \ Σ,Z(1)) −→ (

⊕
Σ

Z)0 → 0.

Lemma 4.1. The exact sequence of real mixed Hodge structures ob-
tained from (4.1) by tensoring with R is canonically split.

Proof. It suffices to show that an extension of real mixed Hodge struc-
tures of the form 0 → H → E

α−→ R(0) → 0, where H is pure of
weight −1, is canonically split. For this, we consider the subspace
M = F 0EC∩F 0EC of E. The map α induces a surjection M → R with
kernel M ∩H. Since H has weight −1, this intersection is empty. We
thus get an isomorphism whose inverse map provides the splitting. �

Recall that the Hodge filtration on H1(C \ Σ,C) comes from the
exact sequence of sheaves

(4.2) 0→ Ω1
C −→ Ω1

C(log Σ)
ResΣ−−−→

⊕
Σ

C→ 0,

were ResΣ =
∑

p∈Σ Resp, and ResΣ is defined, for a local section ω, by

Resp(ω) =
1

2πi

∫
γp,ε

ω,

for a small negatively oriented circle γp,ε around the point p. We take
γp,ε negatively oriented because we want it to be part of the bounday
of the complement of a small disk around p and not of the disc itself.

From the exact sequence (4.2) we deduce that F 0H1(C \Σ,C(1)) =
H0(C,Ω1

C(log Σ)). Combining this information with Lemma 4.1, we
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get a canonical map

(
⊕

Σ

R)0 −→ H0(C,Ω1
C(log Σ)) ∩H1(C \ Σ,R(1))

D 7−→ ωD,R.

Remark 4.2. Concretely, ωD,R can be understood as follows. By (4.2),
the condition ResΣωD = D determines a logarithmic differential ωD

only up to addition of elements in H0(C,Ω1
C). To fix it uniquely, we

require that
∫
γ
ωD,R ∈ R(1) for every real valued cycle γ in C \Σ. Note

that ωD,R is an “admissible integral” in the sense of [11, Def. 3.3.5].

Let A be a degree zero R-divisor on C with support Σ and let ωA,R
the form just defined. Given another degree zero R-divisor B with
disjoint support, we can find a real-valued 1-chain γB on C \ Σ such
that B = ∂γB.

Definition 4.3. The archimedean height pairing between A and B is
the real number

(4.3) 〈A,B〉 = Re

(∫
γB

ωA,R

)
.

Note that, since ωA,R is an R(1)-class, modifying γB by an element
of H1(C \Σ,R) does not change the real part of the integral. Therefore
the above definition is independent of the choice of γB. Though not
apparent from (4.3), the archimedean height pairing is symmetric.

Example 4.4. When the divisor A is of the form div(f) for a rational
function f on C, the differential ωA,R is nothing else than −df

f
, hence

(4.4) 〈A, div(f)〉 = Re

(∫
γB

−d log |f |
)

= − log |f(B)|.

Finally, consider the case of divisors with values in space-time RD

with a given Minkowski metric. Tensoring with RD and using the
Minkowski metric, the archimedean height pairing extends to a pairing
between degree zero RD-valued divisors with disjoint support.

4.2. Biextensions. Let A and B be integer-valued degree zero divi-
sors with disjoint supports |A| and |B| on C. In this paragraph, we
recall how to attach to A and B a mixed Hodge structure M with
weights −2,−1, 0 and graded pieces

grW−2M = Z(1), grW−1M = H1(C,Z(1)), grW0 M = Z(0).

Such mixed Hodge structures are called biextensions. The standard
reference is Section 3 of Hain’s paper [11].
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We first observe that pulling back the exact sequence (4.1) by the

map Z→
(⊕

|A| Z
)0

which sends 1 to the divisor A, we get an extension

HA ∈ Ext1
MHS

(
Z(0), H1(C,Z(1))

)
which fits into a diagram
(4.5)

0 // H1(C,Z(1)) // H1(C \ |A|,Z(1)) //
(⊕

|A| Z
)0

// 0

0 // H1(C,Z(1)) // HA
//

γ

OO

Z(0)

OO

// 0.

Abusing notation, HA is also denoted by H1(C \ A,Z(1)).

Similarly, from the cohomology of C relative to |B| we obtain an
exact sequence of mixed Hodge structures

(4.6) 0→ coker
(
Z→

⊕
|B|

Z
)
→ H1(C, |B|;Z)→ H1(C,Z)→ 0.

Pushing forward (4.6) by the map coker
(
Z→

⊕
|B| Z

)
→ Z given by

the coefficients of B and tensoring by Z(1), we get an element

H1(C,B;Z(1)) ∈ Ext1
MHS

(
H1(C,Z(1)) , Z(1)

)
.

Remark 4.5. Applying HomMHS(−,Z(1)) to this extension and using
Poincaré duality we get HB.

Since A and B have disjoint support, replacing C by C \ |A| in (4.6)
and proceeding as before yields another extension

(4.7) 0→ Z(1)→ E → H1(C \ |A|,Z(1))→ 0.

Definition 4.6. The biextension mixed Hodge structure associated to
A and B is the pullback of the extension (4.7) by the map γ in (4.5).
It will be denoted either by HB,A or by H1(C \ A,B;Z(1)).
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By construction, HB,A fits into the diagram

(4.8) 0

��

0

��

0 // Z(1) // H1(C,B;Z(1))

��

// H1(C,Z(1))

��

// 0

0 // Z(1) // HB,A

��

// HA

��

// 0

Z(0)

��

Z(0)

��
0 0

In particular, the weight filtration is given by

0 = W−3 ⊂ W−2 = Z(1) ⊂ W−1 = H1(C,B;Z(1)) ⊂ W0 = HB,A

and hence satisfies

grW−2HB,A = Z(1), grW−1HB,A = H1(C,Z(1)), grW0 HB,A = Z(0).

Remark 4.7.

(1) By Poincaré duality, the biextension H1(C \ A,B;Z(1)) is iso-
momorphic to the biextension H1(C \ B,A;Z) which is con-
structed in the same way, but using homology.

(2) Going from integral to real coefficients, the same construction
yields a real biextension which will be denoted by

H1(C \B,A;R).

It has graded quotients R(1), H1(C,R) and R(0).

Lemma 4.8. The set of isomorphism classes of real biextensions with
graded quotients R(0), H1(C,R) and R(1) is canonically isomorphic to
R = C/R(1). Moreover, if we denote by η the composition of the change
of coefficients from Z to R with this isomorphism, then for every pair
A, B of integer-valued degree zero divisors on C with disjoint support
the following equality holds

〈A,B〉 = η(HB,A).

Proof. The first statement is [11, Cor. 3.2.9] and the second is [11,
Prop. 3.3.7]. Note that, in this reference, the height pairing is defined
as the class of the biextension while we have defined it as an integral.
The content of the [11, Prop. 3.3.7] is that both definitions agree. �
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4.3. The Poincaré bundle. For what follows, it will be more conve-
nient to reformulate the height pairing in terms of Poincaré bundles.
We first recall the construction for a single compact complex torus
T = V/Λ, where V is a finite dimensional C-vector space and Λ ⊂ V

a cocompact lattice. By definition, the dual torus T̂ is the quotient

T̂ = V̂ /Λ̂ of the C-vector space V̂ = HomC(V,C) of C-antilinear func-

tionals on V by the dual lattice Λ̂ = {φ ∈ V̂ | Im(φ(Λ)) ⊂ Z}. Observe

that a functional φ ∈ V̂ is uniquely determined by its imaginary part
η = Im(φ) : V → R, thanks to the formula φ(v) = η(−iv) + iη(v).

For φ ∈ T̂ , denote by Lφ the C×-bundle on T associated to the
representation of the fundamental group

(4.9) π1(T ) = Λ ⊂ V
Im(φ)−−−→ C exp(2πi·)−−−−−→ C×.

A Poincaré bundle P× is a C×-bundle on T × T̂ , which is uniquely
characterized up to isomorphisms by the following two properties:

(i) The restriction P×|{0}×T̂ is trivial.

(ii) The restriction P×|T×{φ} is Lφ.

Moreover, if P×1 and P×2 are two C×-bundles satisfying conditions (i)
and (ii) and we choose trivializations P×i |{(0,0)} ' C×, then there is a
unique isomorphism P×1 ' P×2 compatible with the trivializations. A
Poincaré bundle P× together with a trivialization P×|{(0,0)} ' C× is
called a rigidified Poincaré bundle.

More generally, if T → X is a holomorphic family of principally
polarized abelian varieties, the dual abelian varieties fit together into

a holomorphic family T̂ → X. A Poincaré bundle on the product

π : T ×X T̂ → X is a C×-bundle P× such that

(i) The restriction of P× to each fibre is a Poincaré bundle.

(ii) The restriction to the zero section s0 : X → T ×X T̂ is trivial.

A rigidification of P× is an isomorphism

s∗0P× ' O×X .

To extend the Poincaré bundle to the space Ag of all principally
polarized abelian varieties of dimension g, first recall the construction
of Ag. The Siegel domain is by definition

Hg = { g × g complex symmetric matrix Ω | Im(Ω) > 0 }.
The group Sp2g(R) acts on Hg by(

A B
C D

)
Ω = (AΩ +B)(CΩ +D)−1.
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The quotient Ag = Sp2g(Z) \Hg is the Siegel moduli space parametriz-
ing principally polarized abelian varieties of dimension g. As a complex
manifold, this quotient is not smooth due to the existence of elliptic
fixed points, but it is a smooth Deligne-Mumford stack and as such is
the fine moduli space of principally polarized abelian varieties.

Denote by Rowg(C) ' Cg and Colg(C) ' Cg the g-dimensional
vector space of row and column matrices, and let

X̃ = Hg × Rowg(C)× Colg(C)× C.

Define the group G̃ by

G̃ =
{

1 λ1 λ2 α
0 A B µ1

0 C D µ2

0 0 0 1

 ∣∣∣ λi ∈ Rowg(R), µj ∈ Colg(R), α ∈ C,

(
A B
C D

)
∈ Sp2g(R)

}
.

The space X̃ is a homogeneous space for the group G̃ with respect
to the action given by

(4.10)


1 0 0 0
0 A B 0
0 C D 0
0 0 0 1

 (Ω,W, Z, ρ) = ((AΩ +B)(CΩ +D)−1,

W (CΩ +D)−1, t(CΩ +D)−1Z, ρ−W tC t(CΩ +D)−1Z),

(4.11)


1 λ1 λ2 0
0 Idg 0 0
0 0 Idg 0
0 0 0 1

 (Ω,W, Z, ρ) = (Ω,W+λ1Ω+λ2, Z, ρ+λ1Z),

(4.12)
1 0 0 0
0 Idg 0 µ1

0 0 Idg µ2

0 0 0 1

 (Ω,W, Z, ρ) = (Ω,W, Z + µ1 − Ωµ2, ρ−Wµ2),

(4.13)


1 0 0 α
0 Idg 0 0
0 0 Idg 0
0 0 0 1

 (Ω,W, Z, ρ) = (Ω,W, Z, ρ+ α).
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Denote by G̃(Z) ⊂ G̃ the subgroup consisting of those matrices with

entries in Z. The matrices in (4.13) form a normal subgroup N of G̃, so

we can take the quotient G = G̃/N and consider G(Z) = G̃(Z)/N(Z).
The following result gives a characterization of the Poincaré bundle.

Theorem 4.9.
(1) The quotient

Eg = G(Z) \
(
Hg × Rowg(C)× Colg(C)

)
is isomorphic to the universal family of abelian varieties and
their duals over the fine moduli stack Ag.

(2) Under the previous isomorphism, the quotient

(4.14) P×g = G̃(Z) \
(
Hg × Rowg(C)× Colg(C)× C

)
is a Poincaré bundle over Eg. Moreover, there is a canonical
isomorphism

(Sp2g(Z)×N(Z)) \
(
Hg × {(0, 0)} × C

)
= Ag × C×.

that rigidifies P×g .

Proof. This result is classical. See for instance [3, §8.7] for the construc-
tion of the universal family of abelian varieties. We start by sketching
the construction of the isomorphism claimed in the first statement. Let
T be an element of Ag which is the image of the element Ω ∈ Hg. De-
note by ω1, . . . , ωg the rows of Ω, and let e1, . . . , eg be the standard basis
of Cg, so that the lattice ΛΩ is generated by ωk, ej. Then the corre-
sponding abelian variety is T = Cg/ΛΩ. We identify Cg with Rowg(C)
and Λ with Row(Zg)⊕Row(Zg) using the above basis, so the inclusion
Λ ↪→ Cg is given by (λ1, λ2) 7→ λ1Ω +λ2. When we want to distinguish
between an abstract vector v ∈ Cg and its image in Rowg(C) we will
denote the latter by Wv.

By (4.11), the action of G̃ identifies W ∈ Rowg(C) with W+λ1Ω+λ2,

for λ1, λ2 ∈ Row(Zg). Thus, the image of W in the quotient G̃\X̃ varies
in T = Cg/Λ.

The action of G̃ identifies Z ∈ Col(Cg) with Z + µ1 − Ωµ2. We

verify as follows that the class of Z in G̃\X̃ varies in the dual T̂ of

T . If η denotes, as before, the imaginary part of φ ∈ Ĉg, we have

φ(v) = η(−iv) + iη(v) for all v. First, we identify Ĉg = HomC(Cg,C)

with Col(Cg), via the identification φ ∈ Ĉg 7→ Zφ = µ1 − Ωµ2, where
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µ1 = Col
(
η(ω1), . . . , η(ωg)

)
and µ2 = Col

(
η(e1), . . . , η(eg)

)
. Under this

identification, the pairing between φ and v is given by

φ(v) = −WvIm(Ω)−1Zφ,

while its imaginary part is

η(v) = Im(φ(v)) = λ1µ1 + λ2µ2.

Therefore, an element φ0 ∈ Ĉg belongs to Λ̂ if and only if η0 =
Im(φ0) ∈ HomZ(Λ,Z), which amounts to ask that the two associ-

ated vectors µ1 and µ2 have integer coordinates. We get Ĉg/Λ̂ '
Cg/{µ1 − Ωµ2 |µ1, µ2 ∈ Zg}. In this way, we have verified that the

fibre of Eg → Ag over a point T ∈ Ag is identified with T × T̂ . This
identification can be extended to an isomorphism of Eg with the uni-
versal family of abelian varieties and their duals.

Denote by L the C× bundle obtained as the quotient (4.14). If we re-
strict the actions (4.10) and (4.12) to the points of the form (Ω, 0, Z, ρ)
we see that the restriction of L to the set W = 0 (which is the zero
section in the abelian variety) is trivial. Thus we obtain the first condi-
tion that characterizes the Poincaré bundle. We now fix Ω0 ∈ Hg and

Z0 ∈ Col(Cg). Denote X0 the subvariety of X̃ of equations Ω = Ω0,

Z = Z0 and φ0 ∈ Ĉg corresponding to Z0. That is,

φ0(v) = −WvIm(Ω0)−1Z0.

The restriction of the action (4.11) to X0 reads

(λ1, λ2)(Ω0,W, Z0, ρ) = (Ω0,W + λ1Ω0 + λ2, ρ+ λ1Z0).

Hence the restriction of L to the abelian variety covered by X0 is the
C× bundle determined by the cocycle

a((λ1, λ2),W ) = exp(2πiλ1Z0)

Consider the holomorphic function ψ : X0 → C given by ψ(W ) =
exp(2πiW Im(Ω0)−1Im(Z0)). The cocycle

b((λ1, λ2),W ) = a((λ1, λ2),W )ψ(W + λ1Ω0 + λ2)−1ψ(W )

is equivalent to a and hence defines an isomorphic bundle. Computing
this cocycle we obtain

b((λ1, λ2),W ) = exp(2πiIm(φ0(λ1Ω + λ2)).

By (4.9) this cocycle determines the line bundle Lφ0 , so L satisfies
also the second condition that determines the Poincaré bundle. In
consequence, we have seen that the restriction of P×g to each fibre
of Eg → Ag is a Poincaré bundle. The stated rigidification shows in
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particular that the restriction to the zero section is trivial implying the
statement. �

Theorem 4.10. Let P× be a rigidified Poincaré bundle. Then there
is a unique metric on P× whose curvature is translation invariant and
that, under the rigidification, satisfies ‖1‖ = 1. Moreover, for the
Poincaré bundle Pg over the universal family Ep this metric is given,

for an element (Ω,W, Z, ρ) in X̃, by
(4.15)

log ||(Ω,W, Z, ρ)|| =
(
− 2πIm(ρ) + 2πIm(W )

(
Im(Ω)

)−1
Im(Z)

)
.

Proof. It is well known that the invariance of the curvature form fixes
the metric up to a multiplicative constant on each fibre but the com-
patibility with the rigidification fixes this constant.

Consider the space X̃ ′ = Hg × Rowg(C) × Colg(C) × C× and the

map X̃ → X̃ ′ that sends ρ to s = exp(2πiρ). Then X̃ ′ is a trivial C×-
bundle over Hg × Rowg(C)× Colg(C). The formula (4.15) determines
a hermitian metric on this trivial bundle given by

(4.16) ‖(Ω,W, Z, s)‖2 = |s|2 exp(4πIm(W )
(
Im(Ω)

)−1
Im(Z)).

Let G̃R ⊂ G̃ be the subgroup consisting of matrices with α ∈ R.
The fact that (4.16) induces a metric in the Poincaré bundle whose
curvature is invariant under translation follows from the invariance of
the function (4.15) under the action of G̃R, which is a straightforward
verification. �

4.4. The Poincaré bundle and the archimedean height. The in-
terest for us on the Poincaré bundle is consequence of the relation
between biextensions and the Poincaré bundle due to Hain [11].

Let H be a principally polarized pure Hodge structure of weight
−1 and type {(−1, 0), (0,−1)} and TH the corresponding principally
polarized abelian variety. Let B(H,Z) be the set of isomorphism classes
of biextensions of H. That is, the isomorphism classes of mixed Hodge
structures E of weights −2, −1 and 0 with

GrW−2(E) = Z(1), GrW−1(E) = H, GrW0 (E) = Z(0).

There are natural maps

B(H,Z) −→ Ext1(Z(0), H) = TH
E 7−→ E/W−2E.

and
B(H,Z) −→ Ext1(H,Z(1)) = T̂H

E 7−→ W−1E.
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Thus we obtain a map B(H,Z)→ TH×T̂H . The canonical isomorphism
Ext1(Z(0),Z(1)) = C× induces a structure of C×-bundle on B(H,Z)
and a rigidification of B(H,Z).

Let B(H,R) be the set of isomorphism classes of real biextensions.
By Lemma 4.8 we can identify B(H,R) with R. We have already
denoted by η : B(H,Z)→ R.

Theorem 4.11 (Hain [11]). The bundle B(H,Z) is a rigidified Poincaré
bundle and the invariant metric is given by

log ‖E‖ = η(E).

Using now the relation between the height pairing and the biex-
tensions we can relate the height pairing and the Poincaré bundle.
Summing up Theorem 4.11 and Lemma 4.8 we deduce:

Proposition 4.12. Let C be a smooth projective curve over C and A,
B integer-valued degree zero divisors on C with disjoint support. The
following three quantities coincide:

(a) 〈A ,B 〉,
(b) log ||HB,A||,
(c) η(HB,A).

Example 4.13. Let C = P1 and consider the divisors A = z1− z2 and
B = z3 − z4, where zi are four distinct points of P1. Then:

〈A,B〉 = Re

∫ z3

z4

(
1

z − z1

− 1

z − z2

)
dz = log

∣∣(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)

∣∣.
Observe that the term inside the absolute value is nothing else than
the cross-ratio of the points zi. Since H1(P1,Z(1)) = 0, the biextension
associated to A and B is in this case simply the extension

0→ Z(1)→ H1(P1 \ {z1, z2}, {z3, z4};Z(1))→ Z(0)→ 0.

5. The asymptotic of the height pairing

The goal of this section is to prove Theorem 1.2 from the introduc-
tion, which relates the asymptotic of the height pairing between degree
zero divisors with disjoint support, as a family of smooth curves de-
generates to a stable curve C0, to the ratio of the first and the second
Symanzik polynomials of the dual graph of C0.
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5.1. Asymptotic of the height pairing. Let ∆ be a small open disc
around 0 ∈ C, and write ∆∗ = ∆ \ {0} and S = ∆3g−3. Consider the
versal analytic deformation π : C → S from Section 3 of the stable curve
C0. The stability of C0 implies in particular that we deal with curves
of genus g ≥ 2 and that the dual graph C0 has ≤ 3g − 3 edges. These
assumptions can be removed if one works systematically with moduli
of stable marked curves.

Recall that the fibres are smooth outside a normal crossing divisor
D =

⋃
e∈E De ⊂ S, with irreducible components indexed by the set of

singular points of C0. We denote by U the complement of D in S and
we identify it with U = (∆∗)E ×∆3g−3−|E|. The universal cover is then

(5.1) Ũ = HE ×∆3g−3−|E| −→ U,

where the map is induced by ze 7→ exp(2πize) in the first factors and
identity on the second factors.

We assume moreover that we are given two collections

σ1 = {σl ,1}l=1,...,n, σ2 = {σl ,2}l=1,...,n

of sections σl ,i : S → C of π. Since C is regular over C, the sections
cannot pass through double points of C0. Thus, for each l , σl ,i(S)∩C0

lies in a unique irreducible component Xvl of C0, corresponding to a
vertex vl of G. We assume further that the sections σl ,1 and σl ,2 are
distinct on C0. It follows, possibly after shrinking S, that σ1 and σ2

are disjoint as well.

Let p
1

= {pl ,1}nl=1 ∈ (RD)n,0 and p
2

= {pl ,2}nl=1 ∈ (RD)n,0 be two
collections of external momenta satisfying the conservation law. We
label the marked points σl ,i with pl ,i ∈ RD, and we write pG

1
= (pGv,1)

and pG2 = (pGv,2) for the restriction of p
1

and p
2

to G. By definition,

for each vertex v of G, the vector pGv,i is the sum of all pl ,i with vl = v.

For any s ∈ S, let As and Bs denote the RD-valued degree zero
divisors on Cs

As =
n∑

l=1

pl ,1σl ,1(s), Bs =
n∑

l=1

pl ,2σl ,2(s).

Recall that in Section 4.1 we have extended the usual archimedean
height pairing to RD-valued degree zero divisors by means of the given
Minkowski bilinear form. We thus get a function

U −→ R, s 7−→ 〈As,Bs〉.
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Definition 5.1. An admissible segment in S is a continuous map

t : I = (0, ε)→ U = (∆∗)E ×∆3g−3−|E|

from an open interval of positive length ε, which satisfies the following:

(i) letting (te)e∈E denote the coordinates in the factor (∆∗)E, the
limit limα′→0 |te(α′)|α

′
exists and belongs to (0, 1) for all e ∈ E;

(ii) the segment can be extended to a continuous map t : [0, ε)→ S.

Note that it follows from property (i) that te(0) = 0 for all e ∈ E.

Example 5.2.

(1) Given tuples of real numbers (xe)e∈E and (Ye)e∈E with Ye > 0

for all e ∈ E, we define a map z : (0, 1) → HE × {0} ⊂ Ũ by
ze(α

′) = xe + i Ye
2πα′

. Projecting to U by the universal cover
(5.1), we get an admissible segment t : (0, 1) → U for which
|te(α′)|α

′
= exp(−Ye).

(2) Let ∆∗δ be a punctured disc of radius δ centered at the origin,
and γ : ∆∗δ → U be an analytic map which can be analytically
extended to γ̃ : ∆δ → S. Let ε = − 1

log δ
and let π : ∆∗δ → (0, ε)

be the map π(t) = − 1
log |t| . Then for any continuous section η of

π, the composition γ ◦ η : (0, ε)→ U is an admissible segment.

Our first result describes the asymptotic behavior of the height pair-
ing 〈As,Bs〉 as the smooth curves Cs degenerate to C0 through an
admissible segment.

Theorem 5.3. For any admissible segment t : I → U the following
asymptotic estimate holds

(5.2) lim
α′→0

α′〈At(α′),Bt(α′)〉 =
φG(pG

1
,pG

2
, Y )

ψG(Y )
,

where, for each edge e ∈ E, we define

Ye = − lim
α′→0

log |te(α′)|α
′
> 0,

and ψG and φG denote the first and second Symanzik polynomials of G.

Before proving the theorem, we need to consider the period map
obtained from the variation of the biextension mixed Hodge structures
given by the divisors As and Bs. This is what we do next.



30 O. AMINI, S. BLOCH, J. I. BURGOS GIL, AND J. FRESÁN

5.2. The period map and its monodromy. Throughout this sec-
tion we assume that the divisors As and Bs are integer-valued, that is,
pl ,i ∈ Z for all l , i. We see the p

i
as row vectors.

The family of mixed Hodge structures HBs,As fit together into an
admissible variation of mixed Hodge structures (see [32] for the defini-
tion). This can be seen as follows. Using the theory of mixed Hodge
modules [28], [29] one can form a mixed Hodge module HBs,As . Since
the relative homology H1(Cs \As,Bs;Z) is a local system, then HBs,As

is an admissible variation of mixed Hodge structures. See [2] for a
survey of mixed Hodge modules with all the needed properties.

In what follows we give a description of the period map of the vari-
ation of HBs,As and its monodromy. Since the period map is only well

defined up to the action of the group G̃(Z) we have to make some
choices. We start by stating explicitely all the choices. We fix base-

points s0 ∈ U and s̃0 ∈ Ũ lying above s0, and a symplectic basis

a1, . . . , ag, b1, . . . , bg ∈ H1(Cs0 ,Z) = A0 ⊕B0.

such that the space of vanishing cycles A is generated by a1, . . . , ah ∈ A,
and b1, . . . , bh generate H1(Cs0 ,Z)/A′ ' H1(G,Z) as in (3.6).

For i = 1, 2, we write Σi,s = {σ1,i(s), . . . , σn,i(s)}, Σs = Σ1,s ∪ Σ2,s

and Σi =
⋃
s Σi,s. We lift the classes aj and bj, j = 1, . . . , g to elements

of H1(Cs0 \ Σs0 ,Z) by choosing loops that do not meet the points in
Σs0 . We will denote these new classes also by aj and bj.

Since the cohomology groups H1(Cs \Σs,Z) form a local system, we
can spread out this symplectic basis to a basis

a1,s̃, . . . , ag,s̃, b1,s̃, . . . , bg,s̃

of H1(Cs \Σs,Z), for any s ∈ U and s̃ ∈ Ũ over it. If there is no risk of
confusion, we drop s̃, and simply use ai and bi for these elements. Note
also that, since A0 is isotropic and contains the subspace of vanishing
cycles, the Picard-Lefschetz formula (3.5) implies that the elements ai,s̃
only depend on s and not on s̃. Thus we will also denote them by ai,s.

By the admissibility of HB,A we know that HB,A ⊗C OU can be ex-
tended to a holomorphic vector bundle over S and that F 0W−1HB,A

can be extended to a coherent subsheaf of it. From this we deduce
the existence of a collection of 1-forms {ωi}i=1,...,g on π−1(U) ⊂ C such
that, for each s ∈ U , the forms {ωi,s := ωi|Cs}i=1,...,g are a basis of the
holomorphic differentials on Cs and

(5.3)

∫
ai,s

ωj,s = δi,j.
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Then the classical period matrix for the family of curves C is (
∫
bi,s
ωj,s ).

We choose an integer valued 1-chain γBs0
on Cs0 \ Σ1,s0 having Bs0

as boundary. By adding a linear combination of the bj if needed, we
can assume that

(5.4) 〈ai, γBs0
〉 = 0.

The chain γBs0
determines a class

[γBs0
] ∈ H1(Cs0 \ Σ1,s0 ,Σ2,s0 ,Z)

that we can spread to classes γBs̃
as before.

Invoking again the admissibility of HB,A, we can find a 1-form ωA on
π−1(U) \ Σ1 such that each restriction ωA,s := ωA|Cs is a holomorphic
form of the third kind, with residue As and normalized in such a way
that

(5.5)

∫
ai,s

ωA,s = 0, i = 1, . . . , g.

Note that this last condition is easily achieved by adding to ωA a suit-
able linear combination of the ωi.

Proposition 5.4. The period map of the variation of mixed Hodge
structures HBs,As is given by

Φ̃ : Ũ −→ Hg × Rowg(C)× Colg(C)× C

s̃ 7−→
( ( ∫

bi,s̃

ωj,s
)
i,j
,
( ∫

γB,s̃

ωj,s
)
j
,
( ∫

bi,s̃

ωA,s

)
i
,

∫
γB,s̃

ωA,s

)
.(5.6)

Proof. We drop the index s and work pointwise. Recall the definition
of the biextension mixed Hodge structure HB,A from Section 4.2. The
integral part HB,A has a basis given by αA, a1, . . . , ag, b1, . . . , bg, γB,
where αA is the generator of Q(1) ⊂ W−2HB,A,Q determined by the
divisor A. This means that, if δl is a small negatively oriented disc
centered at σl ,1, then the image of ∂δl in HB,A,Q is pl ,1αA.

The quotient HB,A,C/F
0 has a basis given by the classes

(5.7) [αA], [a1], . . . , [ag]

The class of the biextension HB,A is given by the expression of the
classes [b1], . . . , [bg], [γB] is the basis (5.7):(

W ρ
Ω Z

)
with Ω ∈ Hg, W ∈ Rowg(C), Z ∈ Colg(C) and ρ ∈ C. Given a path γ
representing a class in H1(C \B,A;Z), then, by the choice of the forms
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ωj and ωA, the expression of the class [γ] is the basis (5.7) is given by(∫
γ

ωA,

∫
γ

ω1, . . . ,

∫
γ

ωg

)
,

which proves the proposition. �

We next describe the action of the logarithm of monodromy maps
Ne on the entries in (5.6), for e ∈ E. To this end we observe first
that, since the sections σl,i do not meet the double points of C0, the
vanishing cycles ae ∈ H1(Cs0 ,Z) can be lifted canonically to cycles in
H1(Cs0 \Σs0 ,Z). These cycles will also be denoted by ae. In this group
we can write

(5.8) ae =
∑
i

ce,iai +
∑
l

de,l,1γl,1 +
∑
l

de,l,2γl,2,

where γl,i is a small negatively oriented loop around σl,i(s0). By the
choice of the basis {ai, bi} the coefficients ce,i are zero for i > h.

By the Picard-Lefschetz formula (3.5), the assumption (5.4) and the
formula (5.8), we deduce that

Ne(bi) = −〈bi, ae〉ae = ce,iae,(5.9)

Ne(γBs0
) = −〈γBs0

, ae〉ae = −ae
∑
l

pl,2de,l,2.(5.10)

Since the forms ωj and ωA are defined globally, they are invariant under
monodromy. The integral of these forms with respect to the vanishing
cycles is computed using (5.8), (5.5) and (5.3):

(5.11)

∫
ae

ωj = ce,j,

∫
ae

ωAs0
=
∑
l

pl,1de,l,1.

Applying (5.9), (5.10) and (5.11) we deduce

Ne(

∫
bi

ωj,s0) = −〈bi, ae〉
∫
ae

ωj,s = ce,ice,j

Ne(

∫
γBs0

ωj,s0) = −〈γBs0
, ae〉

∫
ae

ωj,s = −ce,j
∑
l

pl,2de,l,2

Ne(

∫
bi

ωAs0
) = −〈bi, ae〉

∫
ae

ωAs0
= ce,i

∑
l

pl,1de,l,1,

Ne(

∫
γBs0

ωAs0
) = −〈γBs0

, ae〉
∫
ae

ωAs0
= −

(∑
l

pl,1de,l,1

)(∑
k

pk,2de,k,2

)
.
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We introduce the matrices M̃e, W̃e, Z̃e and Γe given by

(M̃e)i,j = ce,ice,j, (W̃e)l,j = −ce,jde,l,2,

(Z̃e)i,l = ce,ide,l,1, (Γk,l) = −de,k,2de,l,1.
Then the logarithm of the monodromy is given by the element of the

Lie algebra of G̃

(5.12) Ne =


0 0 p

2
W̃e p

2
Γe

tp
1

0 0 M̃e Z̃e
tp

1
0 0 0 0
0 0 0 0

 .

Note that all the entries of this matrix are integers.

By Proposition 3.5, the matrix M̃e is the h × h matrix Me from

Section 2 filled with zeros to a g × g matrix. Similarly, the matrix W̃e

(resp. Z̃e) is the extension with zeros of a matrix We (resp. Ze) that
has only h columns (resp. rows).

The choice of the path γB determines a preimage ω2 of the vector
pG2 in ZE by counting the number of times (with sign) that γB crosses
the vanishing cycle ae. Similarly, the form ωA determines a preimage
ω1 of pG1 in CE with e-th component given by∫

ae

ωA.

Recall the definitions of We(ω) and Qe(ω1, ω2) given in Definition 2.6.

Proposition 5.5. The following equalities hold:

Ze
tp

1
= −We(ω1), p

2
We = tWe(ω2), p

2
Γe

tp
1

= −Qe(ω1, ω2).

Proof. The j-th component of We(ω2) is given by

We(ω2)j = 〈bj, γB〉e = 〈bj, ae〉〈γB, ae〉 = −ce,j
∑
l

pl,2de,l,2 = (p
2
We)j.

The i-th component of We(ω1) is given by

We(ω1)i = 〈bi, ae〉
∫
ae

ωA = −ce,i
∑
l

pl,1de,l,1 = −(Z̃e
tp

1
)i.

Finally

Qe(ω1, ω2) = 〈γB, ae〉
∫
ae

ωA =
∑
k,l

pk,2de,k,2de,l,1pl,1 = −p
2
Γe

tp
1
.

�



34 O. AMINI, S. BLOCH, J. I. BURGOS GIL, AND J. FRESÁN

Since the monodromy is given by an element of G̃(Z), the map Φ̃
descends to U , making the following diagram commutative:

(5.13)

Ũ
Φ̃−−−→ Hg × Rowg(C)× Colg(C)× Cy y

U
Φ−−−→ G̃(Z)\

(
Hg × Rowg(C)× Colg(C)× C

)
.

Clearly the definition of the map Φ̃ can be extended to the case when
D = 1 and the divisors are real-valued. But in this case the monodromy

will not be integral valued and the map Ψ̃ will not descend to U . Thus
there is no analogue to the diagram (5.13). Finally we extend to the
case of RD-valued divisors simply working componentwise. That is,
when the divisors p

1
and p

2
have values in RD we define a period map

Ψ̃: Ũ −→ (Hg × Rowg(C)× Colg(C)× C)D.

5.3. Asymptotic of the period map and proof of Theorem 5.3.
The proof of Theorem 5.3 is based on the Nilpotent Orbit Theorem. We
refer to the paper by Schmidt [31] and Cattani-Kaplan-Schmidt [7] for
the the case of variations of polarized pure Hodge structures. We need
the more general case of a variation of mixed Hodge structures [19, 25].
We actually only need a small part of the Nilpotent Orbit Theorem
that can be found in [27, Section 6].

Back to the case of integral valued divisors, consider the diagram
(5.13). The action of the fundamental group ZE of U is unipotent,
and we write Ne for the logarithm of the generator 1e ∈ ZE. These
operators are given explicitly in (5.12). To ease notation we write

X̃ = Hg × Rowg(C)× Colg(C)× C.

The untwisted period map

(5.14) Ψ̃(z) = exp(−
∑
E

zeNe)Φ̃(z)

takes values in a “compact dual” M̌ which is (essentially) a flag variety
which parametrizes filtrations F ∗Cg+2 which satisfy the conditions to
be the Hodge filtration on a biextension of genus g. The space M̌
contains X̃ as an open subset. It is called the compact dual by analogy
with the theory of semisimple Lie groups although in general is not

compact. Since the map Ψ̃ is invariant under the transformation ze 7→
ze + 1, it descends to a map Ψ : U → M̌.
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We separate the variables corresponding to the edges as sE, and write
any point s of U as s = sE × sEc . The coordinates in the universal

cover Ũ will be denoted by ze. The projection Ũ → U is given in these
coordinates by

(5.15) se =

{
exp(2πize), for e ∈ E,
ze, for e 6∈ E.

The following result is the part of the Nilpotent Orbit Theorem that
we need. A proof of it for admissible variations of mixed Hodge struc-
tures can be found in [27, Section 6]. Recall that ∆ is a disk of small
radius and we denote S = ∆3g−3.

Theorem 5.6. After shrinking the radius of ∆ if necessary, the map
Ψ extends to a holomorphic map

Ψ : S −→ M̌.

Moreover, there exists a constant h0 such that, if for all e ∈ E, Im(ze) ≥
h0, then

exp(
∑
e∈E

zeNe)Ψ(s) ∈ X̃.

We now write Ψ0(s) = exp(
∑

e ih0Ne)Ψ(s) so Ψ0 : S → X̃ is holo-
morphic. We write

(5.16) Ψ0(s) = (Ω0(s),W0(s), Z0(s), ρ0(s)),

(5.17) ye = Im(ze) =
−1

2π
log |se|.

Gathering together all the computations we have made we obtain an
expression for the height pairing function.

Proposition 5.7. The height pairing is given by

(5.18) 〈As,Bs〉 = −2π Im(ρ0)−
∑
e∈E

2πy′ep2
Γe

tp
1
+

2π
(

Im(W0) +
∑
e∈E

y′ep2
W̃e

)
·
(

Im(Ω0) +
∑
e∈E

y′eM̃e

)−1

·
(

Im(Z0) +
∑
e∈E

y′eZ̃e
tp

1

)
,

where y′e = ye − h0.
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Proof. By Proposition 4.12 and equation (5.14) we know that

〈As,Bs〉 = log ‖HBs,As‖ = log ‖Φ̃(z)‖ = log ‖ exp(
∑
e∈E

zeNe)Ψ̃(z)‖.

The proposition follows from the explicit description of the operators
Ne in (5.12), and the function log ‖ · ‖ in Theorem 4.10, as well as
equations (5.16) and (5.17). �

From the previous proposition we derive the following estimate.

Theorem 5.8. After shrinking the radius of ∆ if necessary, the height
pairing can be written as

(5.19) 〈As,Bs〉 = −
∑
e∈E

2πyep2
Γe

tp
1

+ 2π
(∑
e∈E

yep2
We

)(∑
e∈E

yeMe

)−1(∑
e∈E

yeZe
tp

1

)
+ h(s),

where h : U → R is a bounded function.

Proof. Since ρ0 is a holomorphic function on S = ∆3g−3, after shrinking
the radius of ∆ we can assume that Im(ρ0) is bounded. So we only
need to prove that the third term in the right hand side of equation
(5.18) is, up to a bounded function, equal to the second term in the
right hand side of (5.19).

Using that, for any symmetric bilinear form 〈·, ·〉 the equality

2〈a, b〉 = 〈a+ b, a+ b〉 − 〈a, a〉 − 〈b, b〉

holds, we may assume that W0 = tZ0 and that p
2
W̃e = p

1
tZe.

On the other hand, if we denote by ce (resp. de,1) the column vector
(ce,i)i (resp. (de,l,1)l), then

M̃e = ce
tce, Z̃e = ce

tde.

Therefore we can choose a colum vector v such that

Z̃e
tp

1
= M̃ev.

For shorthand we write a = Im(Z0) and B = Im(Ω0). Then(
ta+

∑
e∈E

y′ep1

tZ̃e

)
·
(
B +

∑
e∈E

y′eM̃e

)−1

·
(
a+

∑
e∈E

y′eZ̃e
tp

1

)
,

is a normlike function in the terminology of [4, Section 3.1]. Taking
this into account, the result follows from [4, Theorem 3.2 (1)]. �
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Remark 5.9. A graph-theoretic proof of this theorem based on Equa-
tion 2.3, Proposition 5.7, and exchange properties between spanning
trees and 2-forests in a graph is given in [1].

From Theorem 5.8, Proposition 5.5 and equation (2.3) we derive:

Corollary 5.10. The height pairing can be written as

〈As,Bs〉 = 2π
φG(pG

1
,pG

2
, y)

ψG(y)
+ h(s),

where y = (ye)e∈E and h : U → R is a bounded function.

Remark 5.11. Let now π : C ′ → S ′ denote the versal analytic de-
formation of the marked stable curve C0, and let σi : S → C, for
i = 1, . . . , n, be the sections corresponding to the markings. Then
S is a polydisc ∆3g−3+n and the fibres of π are smooth over the open
subset U ′ = (∆∗)E ×∆3g−3−|E|+n.

Assume that we are given another family of sections λ1, . . . , λn dis-
joint between them and from the σi. Then, for any two collections of
external momenta p

1
= (p1,i) and p

2
= (p2,j) satisfying the conserva-

tion law, we still have

〈
n∑
i=1

p1,iσi,
n∑
j=1

p2,jλj〉 = 2π
φG(pG

1
,pG

2
, y)

ψG(y)
+ h(s)

for a bounded function h : U ′ → R.

Remark 5.12. By considering a ramified covering of S ′, étale over U ′,
the same results holds when the λi in Remark 5.11 are multi-valued
sections which do not meet the double points of C0.

Proof of Theorem 5.3. Let t : I → U be an admissible segment, and

consider a lift z : I → Ũ . Then te(α
′) = exp(2πize(α

′)), so

α′ye(α
′) = α′Im(ze(α

′)) = − 1

2π
log |te(α′)|α

′
.

In particular, limα′→0 α
′ye(α) = 1

2π
Ye.

Using Corollary 5.10, together with the fact that the quotient of the
Symanzik polynomials is homogeneous of degree one, we get

α′〈At(s),Bt(s)〉 = 2π
φG(pG

1
,pG

2
, (α′ye(α

′))e∈E)

ψG((α′ye(α′))e∈E)
+ α′h(t(s)).

Since the function h is bounded, passing to the limit yields

lim
α′→0

α′〈At(s),Bt(s)〉 =
φG(pG

1
,pG

2
, Y )

ψG(Y )
. �
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6. Convergence of the integrands

In this final section, we prove the main result of the paper: the con-
vergence of the integrand in string theory to the integrand of Feynman
amplitudes in the low-energy limit α′ → 0. For this, we first recall the
definition of regularized Green functions.

6.1. Green functions. Let C be a smooth projective complex curve,
together with a smooth positive (1, 1)-form µ.

Example 6.1. If C has genus g ≥ 1, a natural choice for µ is the
Arakelov form

µAr =
i

2g

g∑
j=1

ωi ∧ ωi,

where ω1, . . . , ωg is any orthonormal basis of the holomorphic differen-
tials H0(C,Ω1

C) for the Hermitian product (ω, ω′) = i
2

∫
C
ω ∧ ω′.

To µ one associates a Green function gµ as follows. For a fixed point
x of C, consider the differential equation

(6.1) ∂∂ϕ = πi(δx − µ),

where δx is the Dirac delta distribution. It admits a unique solution

gµ(x, ·) : C \ {x} −→ R

satisfying the following conditions:

• If we choose local coordinates in an analytic chart U , then,
for fixed x ∈ U there exists a smooth function α such that
gµ(x, y) = − log |y − x|+ α(y) for any y ∈ U \ {x}.
• (Normalization)

∫
C
gµ(x, y)µ(y) = 0.

Letting x vary, we can view gµ as a function on C × C \ ∆. The
chosen normalization implies that gµ is symmetric.

The following lemma, proved in [22, Chap, II, Prop. 1.3], explains
how the Green function varies when µ is changed.

Lemma 6.2. If µ′ is another positive (1, 1)-form on C, then there
exists a smooth function f on C such that

(6.2) gµ′(x, y) = gµ(x, y) + f(x) + f(y).

The archimedean height pairing between RD-valued divisors can be
expressed in terms of Green functions as follows:
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Lemma 6.3. Let A =
∑

pi,1σi,1 and B =
∑

pj,2σj,2 be RD-valued
degree zero divisors with disjoint support on C. Then

(6.3) 〈A,B〉 =
∑
i,j

〈pi,1,pj,2〉gµ(σi,1, σj,2)

for any positive (1, 1)-form µ on C. In particular, the right hand side
of (6.3) is independent of µ.

Proof. By bilinearity, it suffices to prove the result for divisors of the
form A = x1 − x2 and B = y1 − y2. For this, consider the function

gA,µ(·) = gµ(x1, ·)− gµ(x2, ·).

We claim that ωA = 2∂gA,µ. By Remark 4.2, this amounts to say
that 2∂gA,µ has residue 1 at x1 and −1 at x2, and

∫
γ
∂gA,µ ∈ R(1) for

any real-valued cycle γ on C \ |A|. The first property follows from the
local expression of gµ(x1, ·) and gµ(x2, ·) around the points x1 and x2,

and the second one uses the fact that ∂gA,µ = ∂gA,µ since gA,µ is a real
function. Therefore,

〈A,B〉 = Re

(∫
γB

ωA

)
= Re

(∫
γB

∂gA,µ + ∂gA,µ

)
= Re

(∫
γB

dgA,µ

)
= gµ(x1, y1)− gµ(x1, y2)− gµ(x2, y1) + gµ(x2, y2),

as we wanted to show. �

To prove the convergence of the integrands, we need to extend the
definition of the height pairing to divisors with non-disjoint supports.
For this we introduce the regularized Green function g′µ : C × C → R,
which agrees with gµ outside the diagonal, and is defined on ∆ by

g′µ(x, x) = lim
x′→x

(
gµ(x′, x) + log dµ(x′, x)

)
,

where x′ is a holomorphic coordinate in a small neighborhood of x and
dµ denotes the distance function associated to the metric µ.

Replacing the Green function by its regularization in (6.3), we can
extend the definition of the height pairing to arbitrary RD-valued di-
visors and, in particular, define

〈A,A〉′µ =
∑

1≤i,j≤n

〈pi,pj〉g′µ(σi, σj).

Without further assumptions, the real number 〈A,A〉′µ depends on
the choice of µ. However, we have the following straightforward conse-
quence of Lemma 6.3:
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Corollary 6.4. Assume that the external momenta pi ∈ RD satisfy the
conservation law

∑n
i=1 pi = 0 and the on shell condition 〈pi,pi〉 = 0

for all i. Then 〈A,A〉′µ is independent of the choice of µ.

Proof. Let µ and µ′ be two different metrics. Then, using the on shell
condition, the conservation law and Lemma 6.3

〈A,A〉′µ =
∑

1≤i,j≤n

〈pi,pj〉g′µ(σi, σj) = 2
∑

1≤i<j≤n

〈pi,pj〉g′µ(σi, σj)

= 2
∑

1≤i<j≤n

〈pi,pj〉g′µ′(σi, σj) = 〈A,A〉′µ′ . �

6.2. Asymptotic of the regularized height pairing. Let π : C ′ →
S ′ be the analytic versal deformation of the stable marked curve C0

over a polydisc S ′ = ∆3g−3+n, and let U ′ = (∆∗)E ×∆3g−3−|E|+n ⊂ S ′

denote the smooth locus. Consider the RD-valued relative divisor

A =
n∑
i=1

piσi.

Given a smooth (1, 1)-form µ on π−1(U ′) such that every restriction
µs = µ|Cs is positive, we get a function U ′ → R by

〈As,As〉′µ =
∑

1≤i,j≤n

〈pi,pj〉g′µs(σi(s), σj(s)).

To study the asymptotic of 〈As,As〉′µ as s approaches the boundary,
we introduce the following function:

hp,µ(s) = 〈As,As〉′µ − 2π
φG(pG, y)

ψG(y)
.

Theorem 6.5. If µ extends to a continuous (1, 1)-form on C ′, then the
function hp,µ is bounded.

Proof. By bilinearity, it suffices to prove that the function is bounded
for integer-valued divisors

A =
n∑
i=1

piσi, pi ∈ Z,
n∑
i=1

pi = 0.

Let Σ ⊂ C0 denote the union of the set of singular points of C0 and
the marked points σ1(0), . . . , σn(0). Using the moving lemma, one can
find a rational function f on C such that A + div(f) does not meet Σ.
Possibly after shrinking ∆, we may assume that the divisor A+ div(f)
has support disjoint from A and no vertical components.
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Since div(f) does not meet the double points of C0 and div(f)|Xv

has degree zero for each v ∈ V , the restrictions to G of the momenta of
the divisors A and A + div(f) coincide. Let pG denote their common
value. Then Corollary 5.10 and remarks 5.11 and 5.12 yield

(6.4) 〈A,A + div(f)〉 = 2π
φG(pG, y)

ψG(y)
+ h1(s),

where y = (ye)e∈E and h1 : U ′ → R is a bounded function.

Let πi be a local equation of the divisor σi ⊂ C ′ around the point
σi(0), and consider the first order deformation σui given by {πi = u}
for u in a small disc. Then the relative divisor

Au =
n∑
i=1

piσ
u
i

coincides with A for u = 0 and is disjoint both from A and A + div(f)
for u 6= 0 sufficiently small. Moreover,

〈A,A〉′µ = lim
u→0

(
〈Au,A〉 −

n∑
i=1

p2
i log dµ(σui , σi)

)
.

By Example 4.4, this can be rewritten as

〈A,A〉′µ = lim
u→0

(
〈Au,A + div(f)〉 − log |f(Au)| −

n∑
i=1

pi log dµ(σui , σi)
)
.

Note that, since A+div(f) is disjoint from A, the function f is, locally
around the point σi(0), of the form f = π−pii vi with vi invertible, hence

log |f(Au)| = −
∑

p2
i log |u|+ pi log vi(σ

u
i ).

On the other hand, since the metric µ is continuous, there exists a
continuous function ηµ such that dµ(σui , σi) = ηµ|u|. It follows that the
function

h2(s) = lim
u→0

(
log |f(Au

s )|+
n∑
i=1

p2
i log dµ(σui , σi)

)
is bounded. Combining this with equation (6.4), we get hp,µ = h1−h2,
so it is a bounded function. �

Corollary 6.6. Assume that the external momenta satisfy
∑n

i=1 pi = 0
and 〈pi,pi〉 = 0 for all i. Then the function gp,µ is independent of µ.
In particular, when g ≥ 1 and µ = µAr, the following holds

(6.5) 〈A,A〉′µAr
= 2π

φG(pG, y)

ψG(y)
+ bounded.
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Remark 6.7. By [18, Thm 1.2], when the base is one dimensional,
the Arakelov metric has logarithmic singularities. This implies that
equation (6.5) does not hold for µAr without the “on shell” condition
〈pi,pi〉 = 0. Since the asymptotic behaviour of the Arakelov metric
is also determined by the combinatorics of the dual graph of C0, one
may ask what the asymptotic of 〈A,A〉µAr

is in the general case. We
have a formula in terms of the Green’s function associated to the Zhang
measure on the metric graph G with edge lengths Y . We hope to return
to this point in a future publication.

From Corollary 6.6 we immediately derive:

Theorem 6.8. Assume that the external momenta satisfy
∑n

i=1 pi = 0
and 〈pi,pi〉 = 0 for all i. Then, for any admissible segment t : I → U ′,
the following holds:

lim
α′→0

α′〈At(α′),At(α′)〉′µAr
=
φG(pG, Y )

ψG(Y )
.
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Algébrique d’Angiers, Sijthoff Nordhoff, Alphen an den Rijn, the Netherlands
(1979), 77-106.

[6] E. H. Cattani, Mixed Hodge structures, compactifications, and monodromy
weight filtration, Topics in Transcendental Algebraic Geometry, 75–100, Ann.
Math. Studies 106, Princetonn Univ. Press, 1984.

[7] E. Cattani, A. Kaplan, and W. Schmidt, Degeneration of Hodge structures,
Annals of Math. 123 (1986), 457–535.

[8] S. Chaiken, A combinatorial proof of the all minors matrix tree theorem, SIAM
J. Algebraic Discrete Methods 3 (1982), no. 3, 319–329.

[9] P. Deligne and D. Mumford, The irreducibility of the space of curves of given

genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109.
[10] R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, The Analytic

S-Matrix, Cambridge University Press, London-New York-Ibadan, 1966.
[11] R. Hain, Biextensions and heights associated to curves of odd genus, Duke

Math. J. 61 (1990), no. 3, 859–898.



FEYNMAN AMPLITUDES AND LIMITS OF HEIGHTS 43

[12] J. Harris and I. Morrison, Moduli of curves, Grad. Texts in Math. 187,
Springer-Verlag, New York, 1998.

[13] R. Hartshorne, Deformation theory, Grad. Texts Math. 257, Springer, New
York, 2010.

[14] T. Hayama and G. Pearlstein, Asymptotics of degenerations of mixed Hodge
structures, Adv. Math. 273 (2015), 380–420.

[15] J. W. Hoffman, The Hodge theory of stable curves. Mem. Amer. Math. Soc.
51 (1984), no. 308.

[16] D. Holmes and R. de Jong, Asymptotics of the Néron height pairing, Math.
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