
Implicit Branching and Parameterized Partial Cover

Problems∗

Omid Amini† Fedor V. Fomin‡ Saket Saurabh§

Abstract

Covering problems are fundamental classical problems in optimization, computer
science and complexity theory. Typically an input to these problems is a family of
sets over a finite universe and the goal is to cover the elements of the universe with
as few sets of the family as possible. The variations of covering problems include well
known problems like Set Cover, Vertex Cover, Dominating Set and Facility
Location to name a few. Recently there has been a lot of study on partial covering
problems, a natural generalization of covering problems. Here, the goal is not to cover
all the elements but to cover the specified number of elements with the minimum
number of sets.

In this paper we study partial covering problems in graphs in the realm of param-
eterized complexity. Classical (non-partial) version of all these problems have been
intensively studied in planar graphs and in graphs excluding a fixed graph H as a
minor. However, the techniques developed for parameterized version of non-partial
covering problems cannot be applied directly to their partial counterparts. The ap-
proach we use, to show that various partial covering problems are fixed parameter
tractable on planar graphs, graphs of bounded local treewidth and graph excluding
some graph as a minor, is quite different from previously known techniques. The
main idea behind our approach is the concept of implicit branching. We find implicit
branching technique to be interesting on its own and believe that it can be used for
some other problems.

1 Introduction

Covering problems are basic, fundamental and widely studied problems in algorithms and
combinatorial optimizations. In general these problems ask for selecting a least sized
family of sets to cover all the elements. One of the prominent covering problem is the
classical Set Cover problem. Set Cover problem consists of a family F of sets over
a universe U and the goal is to cover this universe U with the least number of sets from
F . Other classical problems in the framework of covering include well known problems
like Vertex Cover, Dominating Set, Facility Location, k-Median, k-Center
problems, on which hundreds of papers have been written.

In this paper we study the generalization of these problems to the partial setting,
where the objective is not to cover all the elements but to cover a pre-specified number

∗Extended abstract of this paper appeared in [4].
†CNRS - DMA, École Normale Supérieure, 45 Rue d’Ulm, 75005 Paris, France, omid.amini@m4x.org.
‡Department of Informatics, University of Bergen, N-5020 Bergen, Norway, fedor.fomin@ii.uib.no.
§The Institute of Mathematical Sciences, Chennai, India, saket@imsc.res.in.

1

of elements with minimum number of objects. More precisely, in the partial covering
problem, for a given integer t ≥ 0, we want to cover at least t elements rather than
covering all the elements. For an example, in Partial Vertex Cover (PVC), the goal
is to cover at least t edges with minimum number of vertices not all the edges while in
Partial Set Cover (PSC) the goal is to cover at least t elements of U with minimum
number of sets from F . Other problems are defined similarly. Partial covering problems
are studied intensively not only because they generalize classical covering problems, but
also because of many real life applications. They have received a lot of attention recently,
see for example [5, 6, 7, 10, 23].

These generalizations are motivated by the fact that real data, for instance in clus-
tering, often has errors, also called outliers. Thus discarding small number of constraints
posed by these outliers can be tolerated. The major drawback with non-partial covering
problems is that a few isolated elements can force the solution size to be large and hence
exerting a disproportional effect on the final solution of the problems. For example, as
suggested in [10], in a k-center problem a single client residing far from other clients may
force a center to be picked in its vicinity. For the majority of commercial applications of
facility location like banking facilities, establishing super markets, etc. it may be econom-
ically essential to ignore very distant clients. Another situation where partial covering
problems become significant is when facilities are limited, in this case we need to maxi-
mize the service within limited supply. All these problems can be formulated as PSC. We
refer to [6, 7, 10, 12, 23] for further applications.

While different variations of PSC were studied intensively and many approximation al-
gorithm and non-approximability results exist in the literature, only few things are known
on their parameterized complexity. In this paper we fill this gap by initiating parame-
terized algorithmic study of these problems. In parameterized algorithms, for decision
problems with input size n, and a parameter k, the goal is to design an algorithm with
runtime τ(k) ·nO(1), where τ is a function of k alone. Problems having such an algorithm
are said to be fixed parameter tractable (FPT). There is also a theory of hardness using
which one can identify parameterized problems that are not amenable to such algorithms.
This hardness hierarchy is represented by W [i] for i ≥ 1. For an introduction and more
recent developments see the books [18, 20, 29]. In this paper, we always parameterize a
problem by the size of the partial set cover, i.e., all our algorithms for finding a partial set
cover of size k that cover at least t sets with input of size n are of running time τ(k) ·nO(1).

Archetypical examples for the study of PSC on graphs are Partial Vertex Cover
and Partial Dominating Set (PDS) (we postpone all the definitions till the next
section). Parameterized version of the Dominating Set is known to be W [2]-complete
in general graphs, which implies that the existence of an FPT algorithm is highly unlikely.
Tremendous amount of literature is devoted to parameterized algorithms for Dominating
Set on different classes of sparse graphs like planar graphs, graphs with few crossings,
graphs of bounded genus, graphs of bounded degree, graphs excluding a fixed graph as a
minor. We refer to surveys [15, 17] for references. The most general class of sparse graphs
for which Dominating Set remains FPT is d-degenerated graphs [3]. A natural question
motivating our research is which of these results are valid for Partial Dominating Set?
Vertex Cover is FPT with the current best algorithm running in time O(1.2721knO(1))
[11], and a few papers have appeared giving FPT algorithms for partial covering problems
when the parameter is both the number of elements to be covered and the size of a
subfamily chosen to cover these elements, that is, t and k [6, 27, 28]. In contrast to that,

2

Partial Vertex Cover is W [1]-complete [26]. Thus the parameterized complexity of
Partial Vertex Cover on sparse graphs is also an interesting question.

Unfortunately, none of the known techniques of designing FPT algorithms seems to
work for partial covering problems. For example, the approach based on bidimensionality
[13] strongly exploits the fact that the existence of a large grid in a graph as a minor
(or contraction) forces also the parameter (or the solution size) to be large. This is not
the case for partial covering problems, i.e., they are not bidimensional. Similar situation
arises when one considers the technique of reducing to the problem kernel [2] or search
tree based technique [1].

Our Approach and Results. The main ideas behind our approach can be illustrated
by planar instances of Partial Vertex Cover and Partial Dominating Set. Let a
planar graph G = (V,E) on n vertices and integers k and t be an instance of Partial
Vertex Cover. Let S be the set vertices in G of degree at least t/k. If S is sufficiently
big, say, its size is at least 4k, then, by the four color theorem, the subgraph of G induced
on S contains an independent set of size at least k. This yields that there are k vertices
of S that are pairwise non-adjacent in G, and since each of these vertices covers at least
t/k edges, we have that in total they cover at least t edges. If the size of S is less than
4k, we apply explicit branching. The crucial observation here is that if G has a partial
vertex cover of size at most k, then this cover must contain at least one vertex of S. Thus
by making a guess on the vertices x ∈ S, whether x is in a partial vertex cover of size
at most k, we can guarantee, that if the problem has a solution, then at least one of our
guesses is correct. For each of the guesses x, we create a new subproblem for Partial
Vertex Cover, where the input is the subgraph of G induced on V \ {x} and we are
asked to cover t − deg(x) edges by k − 1 vertices, where deg(x) is the number of edges
adjacent to x. The number of subproblems we generate in this way is at most 4k, and we
call the procedure recursively on each subproblem. The depth of the recursion is at most
k, and the number of recursive calls at each steps is at most 4k, resulting in total running
time (4k)k · nO(1). Actually, in our arguments we used planarity only to conclude that
a graph has large independent set. Indeed, this approach is valid for many other graph
classes with large independent sets, like bipartite graphs, degenerate graphs and graphs
excluding some graph as a minor. (We provide detailed consequences of this approach in
Section 5.)

The main drawback of explicit branching is that we cannot use it for many partial
covering problems, in particular for Partial Dominating Set. Even for planar graphs,
the existence of a large independent set of vertices of degree at least t/k does not imply
that k vertices can dominate at least t vertices. To overcome this obstacle, we do the
following. We start by selecting the set S consisting of vertices of degree at least t/k, as
in the case of Partial Vertex Cover. If there are more than k vertices in S which are
at distance at least three from each other, we have the solution. Otherwise, we know that
at least one vertex from S should be in a partial dominating set but we cannot use explicit
branching by trying all vertices of S because the size of S can be too large. However, we
show in this case that the graph formed by S and their neighbors is of small diameter, and
thus, by well known properties of planar graphs, has small treewidth. (Very loosely small
here means bounded by some function of k.) In this case we apply implicit branching,
which means that we do not create a new subproblem for every vertex of S, but instead
for every i, 1 ≤ i ≤ k, we make a guess that exactly i vertices of S are in a partial
dominating set. Thus we branch on k cases and try to solve the problem recursively. We

3

formulate these ideas in details in Sections 3.1 and 3.2 and show how it is sufficient to
just know the size of an intersection of an optimal partial dominating set with S rather
than the actual intersection itself to solve the problem.

Again, the only property of planar graphs we mentioned here was the property that
non-existence of a large set of pairwise remote vertices in the graph yields a small treewidth.
But this property can be shown not only for planar graphs, but more generally for graphs of
bounded local treewidth, the class of graphs containing planar graphs, graphs of bounded
genus, graphs of bounded vertex degree, and graphs excluding an apex graph as a minor,
c.f., Lemma 1 and [14, 19, 25]. With more additional work we show that similar ideas
can be used to prove that much more general problem, namely a weighted version of
the Partial (k, r, t)-Center problem, where the goal is to cover at least t elements by
balls of radius r centered around at most k vertices, is FPT on graphs of bounded local
treewidth. This result can be found in Section 3.2. This is mainly of theoretical interest
because the running time of the algorithm is 2k

O(k) · nO(1). Such a huge running time is
due to the bounds on the treewidth of a graph, which is used in implicit branching. Due
to the generality of the result for graphs with bounded local treewidth, we do not see
any reasonable way of overcoming this problem. But because of numerous applications,
we find it is worth to search for faster practical algorithms on subclasses of graphs of
bounded local treewidth, in particular on planar graphs. As a step in this direction, we
obtain better combinatorial bounds on the treewidth of planar graphs in implicit branch-
ing, which results in algorithms with running time 2O(k) · nO(1) on planar graphs. The
combinatorial arguments used for the exponential speedup (Section 3.3) are interesting
on their own. In Section 4, we show that the Partial (k, r, t)-Center problem is FPT
on graphs excluding a fixed graph as a minor. The proof of this result is based on the de-
composition theorem of Robertson and Seymour from Graph Minors [32]. The algorithm
is quite involved, it uses two levels of dynamic programming and two levels of implicit
branching, and can be seen as a non-trivial extension of the algorithm of Demaine et al.
[13] for classical covering problems to partial covering problems.

Finally, let us remark that while Dominating Set is FPT on d-degenerated graphs
[3], there are strong arguments that our results cannot be extended to this class of sparse
graphs. This is because Golovach and Villanger [24] showed that Partial Dominating
Set is W[1]-hard on d-degenerated graphs.

2 Preliminaries

Let G = (V,E) be an undirected graph where V (or V (G)) is the set of vertices and E (or
E(G)) is the set of edges. We denote by n and m the number of vertices and the number
of edges respectively. For a subset V ′ ⊆ V , by G[V ′] we mean the subgraph of G induced
by V ′. By N(u) we denote (open) neighborhood of u that is set of all vertices adjacent to
u and by N [u] = N(u)∪{u}. Similarly, for a subset D ⊆ V , we define N [D] = ∪v∈DN [v].
The distance dG(u, v) between two vertices u and v of G is the length of the shortest
path in G from u to v. The diameter of a graph G, denoted by diam(G), is defined to
be the maximum length of a shortest path between any pair of vertices of V (G). By
abuse of notation, we define diameter of a graph as the maximum of the diameters of
its connected components. For r ≥ 0, the r-neighborhood of a vertex v ∈ V is defined as
N r
G[v] = {u | dG(v, u) ≤ r}. We also let Br(v) = N r

G[v] and call it a ball of radius r around
v. Similarly Br(A) = ∪v∈AN r

G[v] for A ⊆ V (G). Given a weight function w : V → R and

4

A ⊆ V (G), w(Br(A)) =
∑

u∈Br(A) w(u).
Given an edge e = (u, v) of a graph G, the graph G/e is obtained by contracting the

edge (u, v) that is we get G/e by identifying the vertices u and v and removing all the
loops and duplicate edges. A minor of a graph G is a graph H that can be obtained from
a subgraph of G by contracting edges. A graph class C is minor closed if any minor of
any graph in C is also an element of C. A minor closed graph class C is H-minor-free or
simply H-free if H /∈ C.

A tree decomposition of a (undirected) graph G is a pair (U,X) where U is a tree
whose vertices we will call nodes and X = ({Xi | i ∈ V (U)}) is a collection of subsets of
V (G) such that

1.
⋃
i∈V (U)Xi = V (G),

2. for each edge {v,w} ∈ E(G), there is an i ∈ V (U) such that v,w ∈ Xi, and

3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of U .

The width of a tree decomposition (U, {Xi | i ∈ V (U)}) equals maxi∈V (U){|Xi| − 1}. The
treewidth of a graph G is the minimum width over all tree decompositions of G. We use
notation tw(G) to denote the treewidth of a graph G.

The definition of treewidth can be generalized to take into account the local properties
of G and is called local treewidth [19, 25].

Definition 1 (Local tree-width) The local tree-width of a graph G is a function ltwG :
N → N which associates to every integer r ∈ N the maximum tree-width of an r-
neighborhood of vertices of G, i.e.,

ltwG(r) = max
v∈V (G)

{tw(G[N r
G(v)])}.

A graph class G has bounded local treewidth if there exists a function f : N → N such
that for each graph G ∈ G and for each integer r ∈ N, we have ltwG(r) ≤ f(r). The class
G has linear local treewidth, if in addition the function f can be chosen to be linear, that
is f(r) = cr where c ∈ R is a constant. For a given function f : N → N, Gf is the class
of all graphs G of local tree-width at most f , that is ltwG(r) ≤ f(r) for every r ∈ N.
See [19] and [25] for more details. A few well known graph classes which are known to
have bounded local treewidth are planar graphs, graphs of bounded genus, and graphs of
bounded maximum degree.

By a result of Robertson and Seymour [30], f(r) can be chosen as 3r for planar graphs.
Similarly Eppstein [19] showed that f(r) can be chosen as cgg(Σ)r for graphs embeddable
in a surface Σ, where g(Σ) is the genus of the surface Σ and cg is a constant depending
only on the genus of the surface. Demaine and Hajiaghayi [14] extended this result and
showed that the concept of bounded local treewidth and linear local treewidth are the
same for minor closed families of graphs.

3 FPT Algorithms for Weighted Partial-(k, r, t)-Center Prob-

lem

3.1 Developing a Step by Step Procedure

In this section we give a template of a generic algorithm for partial covering problems
arising on graphs. We use this later to show that partial covering problems arising on

5

graphs are fixed parameter tractable in graphs of bounded local treewidth. We formulate
the template through the following problem.

Weighted Partial-(k, r, t)-Center (WP-(k, r, t)-C): Given an undirected graph
G = (V,E), with weight function w : V → {0, 1} and integers k, r and t. The
problems asks whether there exists a C ⊆ V of size at most k (k centers), such that
w(Br(C)) ≥ t. Here k and r are the parameters.

When all the vertices have weight 1 this is a Partial-(k, r, t)-Center (P-(k, r, t)-C)
problem, and for r = 1 and w(v) = 1 for all v ∈ V this is Partial Dominating Set
problem. To formulate PSC problem as WP-(k, r, t)-C problem, we consider the incidence
bipartite graph associated with the instance of PSC problem and give weights 1 to the
vertices associated with elements and 0 to the vertices associated with sets. Since PVC
can be transformed to PSC problem, WP-(k, r, t)-C also generalizes PVC. One defines
Partial Hitting Set similarly.

Unlike the non-partial and non-weighted version of WP-(k, r, t)-C problem, the first
major challenge in partial covering problems is: which t elements we choose to cover? To
find an answer to this we define the following set S and the corresponding graph G, which
forms the first step of the algorithm:

(T1) Define S = {v | v ∈ V, w(Br(v)) ≥ t/k} and G = G[
⋃
v∈S Br(v)].

The basic observation is that if there exists a subset C ⊆ V of size at most k such that
w(Br(C, r)) ≥ t, then C ∩ S 6= ∅. Given the graph G, our second idea is to

(T2) Check the diameter of G, and if diam(G) is large, then we argue that this is a Yes
instance by providing a subset C of size at most k and w(Br(C)) ≥ t.

Now when the diam(G) is small, the treewidth of the graph G is bounded and hence
dynamic programming over graphs with bounded treewidth can be used. But we still
do not know whether we can find the desired C among the vertices of G. Hence even if
we find out that there is no X ⊆ S such that |X| ≤ k and w(Br(X)) ≥ t, we can not
guarantee that this is a No instance of the problem. So to overcome this difficulty we
resort to an implicit branching by using the earlier observation that there is no desired C
whose intersection with S is empty. Before we go further, given a vertex set S and G (as
defined above), we define µ(S, i) := maxA⊆S,|A|=i{w(Br(A))}.

(T3) Using dynamic programming over graphs with bounded treewidth, compute µ(S, i)
for G for 1 ≤ i ≤ k as well as a subset Ai ⊆ S such that w(Br(Ai)) = µ(S, i).

(T4) We make k recursive calls to reduce the size of k by using the fact that if there
exists a C, then its intersection with S is between 1 ≤ i ≤ k. Now we reduce the
parameters t to t− µ(S, i) and k to k − i and try to solve the problem recursively.

In the recursive steps, we follow the above steps and either we move forward to a
larger G or we get a desired solution for the problem. More precisely, suppose we are at
the ith step of recursion, then we proceed as follows:

(T5) Enlarge G by adding some new vertices to S. Let Si be the set of new vertices added
to S that is those set of vertices which are not in S and w(Br(v)) ≥ t/k where t and
k are the current parameters obtained after reductions done in previous recursive
calls.

6

(T6) Either we bound the diameter and hence the treewidth of G, Or, we select a set of
at most k vertices respecting the guesses made on the number of vertices we need
to select from Sj, 1 ≤ j ≤ i− 1. That is, the possible number of vertices in C ∩ Sj .

This completes the framework in which we will be working. In the next Section we
prove that WP-(k, r, t)-C Problem is FPT in graphs with bounded local treewidth by
proving the necessary technical lemmas needed for this generic algorithm to work.

3.2 An Algorithm for WP-(k, r, t)-C in Graphs of Bounded Local Treewidth

We start this section from a general combinatorial upper bound on the diameter of the
graph (valid for any graph). Combined with the bounded local tree-width property, we
use Lemma 1 to bound the treewidth of G, the graphs we obtained in the recursive calls
of the algorithm.

Lemma 1 Let k, r, and ℓ be three integers. Let G be a graph on n vertices and let H
be an induced subgraph of G such that the diameter of each of the connected components
of H is at most ℓ. Let C be a subset of V (H) of size at most k such that Br(C) ⊂
H, and let A be a subset of V (G). Then there exists a function g(k, r, ℓ) such that if
diam(G[Br(A) ∪ V (H)]) > g(k, r, ℓ), then there is a subset T ⊆ A such that

(a) |T | ≥ k;

(b) for all u, v ∈ T , dG(u, v) ≥ 2r + 1; and

(c) for all u ∈ T and for all v ∈ C, dG(u, v) ≥ 2r + 1.

In particular, one can take g(k, r, ℓ) = (4r+ 4)2kℓ and find the desired set T in O(m+n)
time, where m is the number of edges of G.

Proof: Let H1, . . . ,Hs be all the connected components of H. We construct a new graph
G′ from G by contracting each connected component Hi of H to a vertex vHi . Let X be
the set of all the vertices vHi in G′. For a vertex v ∈ V (G), we define its image im(v)
in G′ to be vHi if v is in Hi for 1 ≤ i ≤ s, and to be v itself otherwise. For a subset
W ⊆ V (G), its image im(W) in V (G′) is the set {im(v)|v ∈ W}. By the hypothesis of
the lemma, im(Br(C)) ⊆ X.

For any subset W ⊆ V (G), we claim that

diam(G′[im(W) ∪X]) ≥ diam(G[W ∪ V (H)])/ℓ.

(We recall that the diameter of a (non-necessarily connected) graph is defined to be the
maximum diameter of its connected components.)

To prove the claim we observe that a path P ′ in G′[im(W) ∪ X] can be lifted to a
path P in G[W ∪V (H)] by replacing each vertex vHi appearing on the path P ′ by a path
in the connected component Hi of H. As the diameter of each Hi is bounded by ℓ, each
of these local paths can be chosen to have length at most ℓ. Thus, in this way, the length
of P ′, once lifted in G, can only be increased by at most a constant multiplicative factor
ℓ. This gives diam(G[W ∪ V (H)]) ≤ ℓ · diam(G′[im(W) ∪X]) and the claim follows.

To finish the proof of the lemma we proceed as follows. We apply the above claim to
the subset W = Br(A). Since diam(G[Br(A)∪V (H)]) > g(k, r, ℓ) = (4r+ 4)2kℓ, we have

7

diam(G′[im(Br(A)) ∪X]) ≥ diam(G[Br(A) ∪ V (H)])/ℓ > g(k, r, ℓ)/ℓ = 2(4r + 4)k.

Thus, there is a connected component C of G′[im(Br(A))∪X] of diameter more than
2(4r + 4)k. Let A0 be the set of all the vertices in A with image in C. It is clear
that im(Br(A0)) = im(Br(A)) ∩ C. Since the graph C consists of G′[im(Br(A0))] and
some vertices of X, and since there is no edge in G′ between the vertices of X, we
have that the set im(A0) forms an (r + 1)-center in C. We now claim the existence of
a subset Y ⊆ im(A0) of size at least 2k such that for any two vertices u and v in Y ,
dC(u, v) ≥ 2r + 1. To see this, note that since the diameter of C is at least 2(4r + 4)k,
there is a path P = u0u1u2 . . . uq of size q ≥ 2(4r + 4)k in C realizing the diameter.
In particular, for any two vertices ui and uj on P , we have dC(ui, uj) = |i − j|. Let
Vi ⊆ V (C) be the subset of vertices of distance exactly i from u0 in C. Since im(A0) forms
an (r+1)-center in C, we have that for each 1 ≤ i ≤ q−2r−2, the intersection of im(A0)
with

⋃i+2r+2
j=i Vi is non-empty. Construct a subset Y as follows: select a vertex from the

intersection of im(A0) with
⋃2r+2
i=0 Vi and skip the next (2r+ 1) Vi’s, select again a vertex

of im(A0) from one of the next 2r+ 3 consecutive Vis and skip the next (4r+ 1) Vi’s, and
so on. By the bound on the length of P , |Y | ≥ 2k. Now, C is a subset of size at most k
by the assumption and thus |im(C) ∩ C| ≤ k. For each vertex u in im(C) ∩ C, there is at
most one vertex v in Y such that dC(u, v) ≤ r, otherwise the condition that the distance
in C between any two vertices of Y is at least 2r+ 1 would be violated. We construct the
set T ′ by removing from Y all vertices which are at distance at most r from a vertex of
im(C) ∩ C. The subset T ′ ⊆ im(A0) satisfies the following properties:

(a′) |T ′| ≥ k;

(b′) for all u, v ∈ T ′, dC(u, v) ≥ 2r + 1; and

(c′) for all u ∈ T ′ and for all v ∈ im(C) ∩ C, dC(u, v) ≥ r + 1.

Let T be a subset of A0 with im(T) = T ′. We show that T has all the properties of
the lemma. It is obvious that |T | ≥ k (Property (a) of the lemma). To prove Property
(b), suppose for the sake of a contradiction that there are two vertices u, v ∈ T such that
dG(u, v) ≤ 2r. This means that Br(u) ∩ Br(v) 6= ∅, and so dC(u, v) ≤ 2r contradicting
the way T ′ was constructed (Property (b′) above). To prove Property (c), we have to
show that for all u ∈ C and for all v ∈ T , dG(u, v) ≥ 2r + 1. Suppose, for the sake of
a contradiction, that this is not the case for a pair v ∈ C and u ∈ T . It follows that
Br(u) ∩Br(v) 6= ∅. Since Br(C) ⊂ H, we know that im(Br(v)) = im(v) and so im(v) is
in im(Br(v)) ⊂ C. Thus, we have dC(u, v) ≤ r which contradicts the construction of T ′

(Property (c′) above). 2

Another essential part of our algorithm is dynamic programming on graphs with
bounded treewidth which will be used in (T6). Our proof of Theorem 1 is based on
the following proposition proved in [12].

Proposition 1 [12, Theorem 4.1]. For a graph G on n vertices and with a given tree
decomposition of width ≤ b, and integers k, r, the existence of a (k, r)-center in G can be

checked in O((2r+1)
3b
2 n) time and, in case of a positive answer, construct a (k, r)-center

of G in the same time.

8

Now we give the necessary variations required in the proof of the Proposition 1 to give
the proof of the following theorem.

Theorem 1 Let G be a graph on n vertices, given with (a) a weight function w : V →
{0, 1}, (b) a tree decomposition of width ≤ b, and (c) positive integers k, r and t. Fur-
thermore let S1, · · · , Sp be disjoint subsets of V (G) with an associated positive integer ai
for 1 ≤ i ≤ p and

∑p
i=1 ai = a. Then we can check the existence of a weighted partial-

(k, r, t)-center such that it contains ai elements from Si, 1 ≤ i ≤ p, in O((2r+1)
3b
2 2

a
2 ·nt)

time and, in case of a positive answer, construct a weighted partial-(k, r, t)-center of G in
the same time.

Proof Sketch: To prove the theorem we increase the size of the table kept for each of
the bags in the tree decomposition in Theorem 1. Apart from associating following 2r+1
colors to

{0, ↑ 1, ↑ 2, · · · ↑ r, ↓ 1, ↓ 2, ↓ r}
each of the vertices, we also associate a tuple from

{0, 1, · · · , a1} × {0, 1, · · · , a2} · · · {0, 1, · · · , ap} × {0, 1, · · · , t} (1)

to each coloring of bags of the tree decomposition, remembering how many elements from
each of Si has been selected from the bags below it and the last entry represents sum
of weights of vertices which are at distance at most r from the vertices selected in the
solution for WP-(k, r, t)-C problem. The bound on the number of tuples generated in
Equation (1) is given by

p∏

i=1

ai · t ≤
p∏

i=1

2ai/2 · t ≤ 2a/2t.

2

The rest of the section is devoted to the proof of the following theorem.

Theorem 2 Let f : N → N be a given function. Then WP-(k, r, t)-C problem can be
solved in time O(τ(k, r) · t · (m+ n)) for graphs in Gf , where τ is a function of k and r.
In particular, WP-(k, r, t)-C problem is FPT for planar graphs, graphs of bounded genus
and graphs of bounded maximum degree.

Let us remark that for fixed k, r and t, our algorithm runs in linear time.
Proof: The proof of the theorem is divided into three parts: algorithm, correctness and
the time complexity. We first describe the algorithm.
Algorithm: First we set up notations used in the algorithm. By S we mean a family of
pairs (X, i) where X is a subset of V (G), i is a positive integer, and for any two elements
(X1, i1), (X2, i2) ∈ S, X1 ∩X2 = ∅. Given a family S, we define ρ(S) =

∑
(X,i)∈S i and

µ(w,S) = max
{
w(Br(D))

∣∣∣ D ⊆ V (G), |D| = ρ(S),∀(X, i) ∈ S |D ∩X| = i
}
,

that is a subset D ⊆ ⋃
(X,i)∈S X of size ρ(S), under the additional constraint that for each

element (X, i) of S we pick exactly i elements in X. A subset D realizing µ(w,S) will be
called an S-center. Our detailed algorithm is given in Figure 1.
Correctness: The correctness of the algorithm follows (almost directly) from its de-
tailed description in the earlier sections and hence we remark on the necessary points of
the proof. Whenever we answer Yes, we output a set C which has weight at least t that

9

Algorithm PCentre(G, r, k, t, w, S, C, S, µ(w,S))
(The algorithms takes as an input (a) a graph G = (V,E) ∈ Gf , (b) positive integers k, r and
t, (c) a weight function w : V → {0, 1}, (d) a family S of pairs (X, i), (e) an S-center C, (f)
a set S which is equal to ∪(X,i)∈SX and (g) the value of µ(w,S). It returns either a set C
such that w(Br(C)) ≥ t or returns No, if no such set exists. The algorithm is initialized with
PCentre(G, r, k, t, w, ∅, ∅, ∅, 0)).

Step 0 : If µ(w,S) ≥ t, then answer Yes and return C.

Step 1: If k = 0 and µ(w,S) < t, then return No and Exit.

Step 2: First define A as follows: A = {v | v ∈ V , v /∈ S,w(Br(v)) ≥ t/k}. If A is empty return
No and Exit. Else let S = S ∪A and define G = [

⋃
v∈S Br(v)].

Step 3: Compute the diameter, diam, of G.

Step 4: If diam > ((8r+8)(k+ ρ(S)))|S|+1 then apply Lemma 1 to find the subset T ⊆ A of size
k such that: (a) for all u, v ∈ T , dG(u, v) ≥ 2r+ 1; and (b) for all u ∈ T and for all v ∈ C,
dG(u, v) ≥ 2r + 1 and return C = C ∪ T and Exit.

Step 5: Else, the graph G has bounded local treewidth, compute a tree decomposition of width
f(diam) of G.

Step 6: For every 1 ≤ p ≤ k, using the dynamic programming of Theorem 1, compute a S ∪
{(A, p)}-center Dp of weight µ(w,S ∪ {(A, p)}). If for some recursive calls, 1 ≤ p ≤ k,
PCentre(G, r, k − p, t− µ(w,S ∪ {(A, p)}), w, S ∪ {(A, p)}, Dp, S, µ(w,S ∪ {(A, p)}))
returns a set C then answer Yes and return C else answer No and Exit.

Figure 1: Algorithm for Weighted Partial Center Problem

is w(Br(C)) ≥ t and C is of size at most k and hence these steps do not require any jus-
tification. Our observation is that if there exists a subset C such that w(Br(C)) ≥ t and
|C| ≤ k, then C and A = {v | v ∈ V, w(Br(v)) ≥ t/k} have non empty intersection. Hence
we recursively solve the problem with an assumption that |C ∩ A| = p, p ∈ {1, 2, · · · , k}.
In recursive steps, we have a family S of pairs (X, i) such that we want to compute C
with additional constraints that for all (X, i) ∈ S, |C ∩ X| = i. At this stage, the only
way we can have solution is when there exists a non-empty set A such that

C ∩A 6= ∅ where A =
{
v

∣∣∣ v ∈ V , v /∈ (∪(X,i)∈SX), w(Br(v)) ≥ t−µ(w,S)
k−ρ(S)

}
6= ∅.

Now based on the diameter of the graph G = G[
⋃
v∈S Br(v)], where S = A ∪(X,i)∈S X,

we either apply Lemma 1 or make further recursive calls.

(1.) When we apply Lemma 1, the diameter of the graph is more than ((8r + 8)k)|S|+1,
and hence we obtain a set T ⊆ A such that T is of cardinality k − ρ(S) and the distance
between any two vertices in T and distance between vertices of T and C, C a S-center, is
at least 2r + 1. In |C ∪ T | = |C| + |T | ≤ ρ(S) + k − ρ(S) ≤ k, and

w(Br(C ∪ T)) = w(Br(C)) +w(Br(T)) ≥ µ(w,S) + (k− ρ(S))× t−µ(w,S)
k−ρ(S) ≥ t.

(2.) Else, the diameter and hence the treewidth of the graph G is at most f(((8r +
8)k)|S|+1). Therefore, in this case there is a solution to the problem precisely when there
exists p, 1 ≤ p ≤ k− ρ(S), for which recursive call to PCentre returns a solution in Step
6 of the algorithm. This completes the correctness of the algorithm.

10

Time Complexity: The running time depends on the number of recursive calls we
make and the upper bound on the treewidth of the graphs G which we obtain during the
execution of the algorithm. First we bound the number of recursive calls. An easy bound
is kk since the number of recursive calls made at any step is at most k and the depth of
the recursion tree is also at most k. This bound can be improved as follows. Let N(k) be
the number of recursive calls. Then N(k) satisfies the recurrence N(k) ≤ ∑k

i=1N(k − i),
which solves to 2k.

At each recursive call, we perform a dynamic programming algorithm and, since the
size of the family S is at most k−1, the diameter of the graph does not exceed ((8r+8)k)k

at any step of the algorithm. Let h(r, k) = 3 · f(((8r + 8)k)k)/2. Then the dynamic

programming algorithm can be performed in O((2r + 1)h(r,k)2
k
2 · (n + m)t) time in any

recursive step of the algorithm. Hence the total time complexity of the algorithm is upper

bounded by O((2r + 1)h(r,k)2
3k
2 · (n+m)t). This completes the proof. 2

3.3 Improved Algorithm for Planar Graphs

In the previous section, we gave an algorithm for WP-(k, r)-C problem in graphs of
bounded local treewidth. The time complexity of the algorithm was dominated by the
upper bound on the treewidth of the graph G, which were considered in the recursive steps
of the algorithm. If the input to the algorithm Algorithm PCentre is planar, then a
direct application of Lemma 1 gives us that the treewidth of the graph G, obtained in the
recursive steps of the algorithm, is bounded by O((rk)O(rk)). In this section we reduce
this upper bound to O(rk) using grid arguments. We also need to slightly modify Algo-
rithm PCenter by replacing the diameter arguments with treewidth based arguments.
We present the modified steps here.

Modified Step 3: Compute the treewidth of G.

Modified Step 4: If tw(G) > g(r, k) (to be specified later) find a subset T ⊆ A of size k such
that: (a) for all u, v ∈ T , dG(u, v) ≥ 2r + 1; and (b) for all u ∈ T and for all v ∈ C,
dG(u, v) ≥ 2r + 1 and return C = C ∪ T and Exit.

Modified Step 5: Else, the graph G has bounded treewidth, compute a tree decomposition of

width at most g(r, k) of G.

To give the combinatorial bound on the treewidth of the graph G, we need the following
relation between the size of grids and the treewidth of the planar graph.

Lemma 2 [31] Let s ≥ 1 be an integer. The treewidth of every planar graph G with no
(s× s)-grid as a minor is upper bounded by 6s − 4.

The notations used in the next lemma is the same as in Algorithm PCentre.

Lemma 3 Let G = (V,E) be a planar graph on n vertices and m edges. Let k, r and t be
positive integers, and w be a weight function w : V → {0, 1}. Suppose that at some step
in Algorithm PCentre we are given a family S of pairs (X, i), an S-center C, a set S =
∪(X,i)∈SX and the value of µ(ω,S). Furthermore, let A = {v | v ∈ V , v /∈ S,w(Br(v)) ≥
t/k′} 6= ∅, S∗ = S∪A, where k′ = k−∑

(X,i)∈S i. Finally, let G = G[
⋃
v∈S∗ Br(v)]. Then

either there is a subset T ⊆ A of size k′ such that

11

(a) for all u, v ∈ T , dG(u, v) ≥ 2r + 1; and

(b) for all u ∈ T and for all v ∈ C, dG(u, v) ≥ 2r + 1,

or tw(G) ≤ O(rk).

Proof: Let S = {(A1, p1), (A2, p2), · · · , (Al, pl)}, where we obtain the couple (Ai, pi) by
branching in the ith stage (basically we are looking at the recursion tree associated with
the algorithm and S is used to specify the path from the root to this node in this recursion
tree). Let Si = {(A1, p1), (A2, p2), · · · , (Ai, pi)} and Ci be an Si-center. For an ease of the
presentation, we define A0 = ∅, p0 = 0 and C0 = ∅ (a S0-center). Then notice that for
every set Ai+1, 0 ≤ i ≤ l − 1, the following holds

(D∗) There is no subset Ti+1 ⊆ Ai+1 such that (a) |Ti+1| ≥ k − ∑i
j=0 pj, (b)

for all u, v ∈ Ti+1, dG(u, v) ≥ 2r + 1; and (c) for all u ∈ Ti+1 and for all
v ∈ Ci, dG(u, v) ≥ 2r + 1.

Now we move towards the main part of the proof. We assume that we do not have
the desired set T . Under this assumption we show that tw(G) < h(r, k) = 6((8r + 2)(k +
1)+ 4r+ 4). For a sake of contradiction, let us suppose that the treewidth of the graph is

at least h(r, k). Then by Lemma 2, G contains a h(r,k)
6 × h(r,k)

6 grid as a minor. We refer
to Figure 2 for an intuitive picture of the definitions to follow. We set q = (8r+2)(k+1),
and define

Q = {−(4r + 1), · · · ,−1, 0, 1, · · · , q, q + 1, · · · , q + 4r + 2} ×
{−(4r + 1), · · · ,−1, 0, 1, · · · , q, q + 1, · · · , q + 4r + 2}.

Let H =
(
Q,

{
((x, y), (x′, y′))

∣∣∣ |x−x′|+ |y− y′| = 1
})

be a planar grid which is a minor

of some fixed planar embedding of G. (This is the h(r,k)
6 × h(r,k)

6 grid with the vertex set
Q.) We call the subgrid of H induced by vertices {1, · · · , q} × {1, · · · , q} by internal grid
and denote it by Hin. Now we define the set of small gridoids in Hin.

R =
{
Hi′j′

∣∣∣ i′, j′ ∈ {1, 2, · · · , k + 1}
}
.

By Hi′j′ we mean the gridoid whose bottom-left corner vertex is given by ((8r + 3)(i′ −
1) + 1, (8r + 3)(j′ − 1) + 1). The other corner vertices of this particular gridoid are
given by ((8r + 3)(i′ − 1) + 4r + 1, (8r + 3)(j′ − 1) + 1) (bottom-right corner vertex),
((8r + 3)(i′ − 1) + 1, (8r + 3)(j′ − 1) + 4r + 1) (top-left corner vertex) and ((8r + 3)(i′ −
1) + 4r + 1, (8r + 3)(j′ − 1) + 4r + 1) (top-right corner vertex). For a particular gridoid
Hi′j′ , we define its center vertex vi′j′ as ((8r+3)(i′− 1)+2r+1, (8r+3)(j′− 1)+2r+1).

Consider a sequence σ of edge contractions and removals that transforms G to H. It
is well known that the result of the transformation does not depend on the order of edge
removals and contractions. We denote the vertex obtained by contraction of an edge (u, v)
by uv and call such a vertex fat. If we only apply edge contractions of the sequence σ, then
we obtain a partially triangulated grid H∗, which is a planar graph which can be obtained
from the grid H by adding some edges to non-consecutive vertices of its faces. Notice that
the vertices of S∗ form an r-center of the graph G. This implies that for every gridoid Hi′j′

either the center vi′j′ is in S∗, or there exists a fat or a normal vertex V in Hi′j′ , which
contains a vertex u in S∗ (the vertex from which the distance to center is at most r in G).
We say that a gridoid Hab and a set Ai+1 intersects if Hab has either a fat or a normal
vertex V which contains a vertex u ∈ Ai+1. Let Ri+1 = {Hab | Hab intersects Ai+1}.

12

H

Hin

Hi′j′

vi′j′
4r + 2

4r + 1

Figure 2: The grid used in the Proof of Lemma 3. Here each of the gridoid Hi′j′ is a
smaller grid of size (4r + 1) × (4r + 1) with vi′j′ as its center.

Claim 1 For 0 ≤ i ≤ l − 1, |Ri+1| < k.

Let Ci be a Si-center. The number of gridoids from Ri+1 which intersect Ci is at most∑i
j=0 pj because |Ci| ≤

∑i
j=0 pj . Let R′

i+1 be the set of gridoids which are not intersected
by Ci. By picking a vertex (exactly one) of Ai+1 from each of the gridoids in R′

i+1 (the
one which is in the intersection of Ai+1 and Ha′b′ ∈ R′

i+1), we construct a set Ti+1 ⊆ Ai+1.
Since the distance between any two vertices of Ai+1 (or A) in two different gridoids is at
least 2r + 1 in G, by condition (D∗), we have |Ti+1| < k − ∑i

j=0 pj . Thus, we infer that
|Ri+1| < k.

By Claim 1, we have
∑l

j=1 |Rj| ≤ kl, where l < k. This implies that all other gridoids

which do not contain vertices from S = ∪lj=1Aj have at least one vertex from the set A
(by the definition of the graph G and the fact that S∗ is an r-center in G). Let R′ be the
set of gridoids containing no vertex from S. Since |R| = (k + 1)2, the number of gridoids
hit by A is at least (k + 1)2 − kl > k. By selecting a vertex (exactly one) of A from the
gridoids of R′, we construct a set T such that

(a) for all u, v ∈ T , dG(u, v) ≥ 2r + 1; and

(b) for all u ∈ T and for all v ∈ C, dG(u, v) ≥ 2r + 1.

The existence of such a set T contradicts our initial assumption. Thus tw(G) ≤ h(r, k) =
O(rk). 2

Let us set g(r, k) = 6h(r, k). One can compute in O(|G|4) time a tree decomposition
of width ω of G such that tw(G) ≤ ω ≤ 1.5tw(G) [33]. Moreover, given a graph G whose
largest grid minor is of order b × b, one can find a grid minor of G of size (b/4) × (b/4)
in time O(|G|2 log |G|) [9]. Hence, if ω > g(r, k) then the tw(G) > 4h(r, k) and then by
applying the polynomial time algorithm to compute grid minor, we can obtain a grid of
size 4

24h(r, k). Let us finally observe that the proof of Lemma 3 is constructive, in the

13

sense that given the grid H, we can construct the desired set T in polynomial time. Hence
by setting h(r, k) = O(rk) in the time complexity analysis of Theorem 2, we obtain the
following theorem.

Theorem 3 WP-(k, r, t)-C problem can be solved in time O(2O(kr) · nO(1)) for planar
graphs.

4 H-minor free graphs

The arguments of the previous sections were based on a specific graph class property,
namely, that a graph with small diameter has bounded treewidth. Thus, the natural
limit of our framework is the class of graphs of bounded local treewidth. We overcome
this limit and extend the framework on the class of graphs excluding a fixed graph H as
minor. To do so, we need to use the structural theorem of Robertson and Seymour [32]
and an algorithmic version of this theorem by Demaine et al. [16]. The algorithm is quite
involved, it uses two levels of dynamic programming and two levels of implicit branching,
and can be seen as a non-trivial extension of the algorithm of Demaine et al. [13] for
classical covering problems to partial covering problems. Since several steps of our proof
follows the algorithm of Demaine et al. [13], we indicate here only the most important
differences on how the techniques of Demaine et al. [13] can be extended to partial covering
problems. Also while all our arguments can be used for the PW-(k, r, t)-C problem, to
make our presentation clear, we restrict ourselves to the Partial Dominating Set
problem.

Before describing the structural theorem of Robertson and Seymour, we need to recall
some definitions.

Definition 2 (Clique-Sums) Let G1 = (V1, E1) and G2 = (V2, E2) be two disjoint
graphs, and k ≥ 0 an integer. For i = 1, 2, let Wi ⊂ Vi, form a clique of size h and
let G′

i be the graph obtained from Gi by removing a set of edges (possibly empty) from
the clique Gi[Wi]. Let F : W1 → W2 be a bijection between W1 and W2. We define the
h-clique-sum or the h-sum of G1 and G2, denoted by G1 ⊕h,F G2, or simply G1 ⊕ G2 if
there is no confusion, as the graph obtained by taking the union of G′

1 and G′
2 by iden-

tifying w ∈ W1 with F (w) ∈ W2, and by removing all the multiple edges. The images of
the vertices of W1 and W2 in Gi ⊕G2 is called the join of the sum.

We remark that ⊕ is not well defined; different choices of G′
i and the bijection F could

give different clique-sums. A sequence of h-sums, not necessarily unique, which result in
a graph G is called a clique-sum decomposition of G.

Definition 3 (h-nearly embeddable graphs) Let Σ be a surface with boundary cycles
C1, . . . , Ch. A graph G is h-nearly embeddable in Σ if G has a subset X of size at most
h, called apices, such that there are (possibly empty) subgraphs G0, . . . , Gh of G \X such
that the following properties are verified.

• G \X = G0 ∪ . . . ∪Gh,

• G0 is embeddable in Σ, we fix an embedding of G0,

• G1, . . . , Gh are pairwise disjoint,

14

• for 1 ≤ i ≤ h, let Ui := {ui1 , . . . , uimi } = V (G0) ∩ V (Gi), Gi has a path decompo-
sition (Bij), 1 ≤ j ≤ mi, of width at most h such that

– for 1 ≤ i ≤ h and for 1 ≤ j ≤ mi we have uj ∈ Bij

– for 1 ≤ i ≤ h, we have V (G0)∩Ci = {ui1 , . . . , uimi } and the points ui1 , . . . , uimi
appear on Ci in this order (either if we walk clockwise or anti-clockwise).

The class of graphs h-nearly embeddable in a fixed surface Σ has linear local treewidth
after removing the set of apices. More specifically, the result of Robertson and Sey-
mour [32], which was made algorithmic by Demaine et al. in [16], states the following:

Theorem 4 (Robertson and Seymour [32], Demaine et al. [16]) For every graph
H there exists an integer h, depending only on the size of H, such that every graph
excluding H as a minor can be obtained by h-clique sums from graphs that can be h-
nearly embedded in a surface Σ in which H can not be embedded and such a clique-sum
decomposition can be obtained in time nO(1). The exponent in the running time depends
only on H.

Let G be a H-minor free graph, and (T,B = {Ba}) be a clique-sum decomposition
of G obtained in polynomial time by Theorem 4. Given this rooted tree T , we define
Aa := Ba ∩ Bp(a) where p(a) is the unique parent of the vertex a in T , and Ar = ∅. Let

B̂a be the graph obtained from Ba by adding all possible edges between the vertices of At
and also between the vertices of As, for each child s of t, making At and As’s as cliques
(these are also called torso in the literature [25]). In this way, G becomes an h-clique
sum of the graphs B̂a, according to the above tree T and can also be viewed as a tree
decomposition given by (T,B = {Ba}), where each B̂a is h-nearly embeddable in a surface
Σ in which H can not be embedded. Let Xa be the set of apices of B̂a. Then |Xa| ≤ h,
and B̂a \ Xa has linear local treewidth. By Ga we denote the subgraph induced by all
vertices of Ba

⋃
(∪sBs), s being a descendant of a in T . Now we are ready to state the

main theorem of the section.

Theorem 5 PDS is fixed parameter tractable for the class of H-minor free graphs and
the algorithm takes time O(τ(k) · t ·nCH), where τ is the function of k only and CH is the
constant depending only on the size of H.

Proof Sketch: Our proof is based on the combination of two levels of dynamic program-
ming over clique-sum decomposition from [13] with two level of implicit recursive calls.
Our algorithm is similar to the one for graphs with locally bounded treewidth. We here
give a sketch of the difficulties which arise in generalizing the algorithm of Figure 1 and
explain how to resolve that. The outline of the algorithm remains the same, the only
difficulty we face is when the diameter of the graph G is bounded above and we need to
calculate the value µ(w,S) for the given family S, as no longer we can guarantee an upper
bound on the treewidth of G. We show how to compute µ(w, {(S, i)}) for 1 ≤ i ≤ k, that
is when we are in the first case and have not made any recursive calls yet. Here we have
G = G[B1(S)] and S = {v | w(B1(v)) ≥ t/k}. Let us remind that since we are dealing
with PDS, we have w(v) = 1 for every v ∈ V in the beginning. This case itself presents
all the difficulty we will need to handle for cases when there are more than one elements
in S. All other steps of the algorithm of Figure 1 remain the same.

1. Obtain a clique-sum decomposition (T,B = {Ba}) for G using Theorem 4.

15

2. For a given bag p ∈ T , we fix a coloring function ψ : Ap ∪Xp → {0, 1, 2, 3}, where
ψ(v) ∈ {0, 1, 2, 3} if v ∈ (S ∩Ap), ψ(v) ∈ {0, 2, 3} if v ∈ (Ap \ S), ψ(v) ∈ {0, 1, 2} if
v ∈ ((S ∩Xp) \Ap) and ψ(v) ∈ {0, 2} if v ∈ Xp \ (Ap ∪ S). Our goal is to compute
µ(p, ψ, S, j) in Gp, 1 ≤ j ≤ i, which means we want to compute the maximum
number of new vertices dominated by j vertices in (S ∩ V (Gp)) in V (Gp). Let C ′

be the set realizing µ(p, ψ, S, j). To compute this we guess 1 ≤ tp ≤ t and check
whether µ(p, ψ, S, j) ≥ tp and finally set it to the maximum tp it satisfies. The
meaning of the colors of the vertices are as follows:

• ψ(v) = 1 means v is in the set C ′ that we are constructing;

• ψ(v) = 2 means v /∈ C ′ but needs to be dominated by vertices in (S ∩ V (Gp));

• ψ(v) = 3 means v /∈ C ′ but is already dominated from the vertices in S\V (Gp);

• ψ(v) = 0 otherwise.

Notice that for r ∈ T , Gr = G, Ar = ∅ and ψ, and µ(S, i) = maxψ µ(r, ψ, S, i).

3. For a fixed ψ, we guess C ′
ψ = {u | u ∈ ((N(v) ∩ Bp ∩ S) \ (Ap ∪Xp)), ψ(v) = 2}, a

set of vertices of size at most 2h from Bp \ (Xp ∪Ap) such that it dominates all the
vertices v in Ap ∪Xp, such that ψ(v) = 2.

4. For a fixed ψ and C ′
ψ, let C ′ = {v | ψ(v) = 1}∪C ′

ψ and m(C ′) = w(B1(C
′)). Notice

that we do not count already dominated vertices. Now we redefine our weight
function. We have w(v) = 0 either if ψ(v) = 3 and v ∈ Xp or if v is dominated by
some vertex in C ′.

5. Now we guess the number of vertices q, 1 ≤ q ≤ j − |C ′|, such that our optimal C ′

consists of q vertices from Bp \ C ′ and j − |C ′| − q vertices from V (Gp) \ Bp. We
compute the maximum weight mq of vertices dominated by j−|C ′|−q vertices from
(S ∩ V (Gp) \ Bp) by using the known values stored for µ(s, ψ′, S, j′), where s is a
child of p in the tree T and the fact that weight of the vertices in Xp is zero and so
we can remove them. Let mq := mq +m(C ′).

6. Let Z1 = {v | v ∈ Bp \ (Ap ∪Xp ∪C ′), w(B1(v)) ≥ (tp−mq)/q}. Our final C ′ must

intersect Z1. Consider the diameter diam of B̂p[B1(Z1) \ (Xp ∪B1(C
′))].

7. If diam is larger than (16k)k , then by Lemma 1 we can find a subset T1 ⊆ Z1 of size q
such that the distance between any two vertices in T1 is at least 3, distance between
vertices in T1 and the set of j−|C ′|− q already selected vertices of S ∩ (V (Gp)\Bp)
is at least 3 and so w(B1(T1)) + mq ≥ tp. So we assume that we have bounded

diameter. The graph Gψ = B̂p[B1(Z1) \ Xp] has linear local treewidth and we
can obtain a tree decomposition (Tψ, {Ur}) of width dH(16k)k in polynomial time,
where dH is a constant. Now since As ∩ Gψ is a clique it appears in a bag of this
tree decomposition. Let r′ be the node representing this bag in this tree. We now
create a new bag containing the vertices of As ∩ Gψ and make it a leaf of the tree
Tψ by adding a node and connecting this node to r′.

By abuse of notation, by s we denote this distinguished leaf containing the bag
As∩Gψ. We can apply a dynamic programming algorithm similar to the one we used

16

for the bounded local treewidth case (Theorem 1). For this fixed ψ, C ′
ψ, q, we run

the tree decomposition algorithm of Theorem 1 with the restriction that colorings of
the bags respect ψ and selection of vertices in C ′

ψ, to compute µ(p, ψ, q, C ′
ψ , Z1, q1),

1 ≤ q1 ≤ q. This is to compute the maximum weight of vertices in V (Gp) one can
dominate by selecting a set T1, containing q1 vertices from Z1, and j − |C ′| − q
vertices from S ∩ (V (Gp) \ Bp). We initialize the bag s (distinguished bag) by the
appropriate value µ(s, ψ′, S, j′) for an appropriate coloring ψ′ of As (respecting the
coloring ψ, C ′

ψ).

8. After we have computed the values µ(p, ψ, q, C ′
ψ , Z1, q1), 1 ≤ q1 ≤ q, we make

implicit recursive calls as in (T4) of the framework based on the fact that |C ′∩Z1| ≤
q and reduce q := q−q1 and tp := tp−m(C ′)−µ(p, ψ, q, C ′

ψ , Z1, q1). In this recursive
call we define Z2 = {v | v ∈ Bp \ (Ap ∪Xp ∪ Z1 ∪C ′), w(B1(v)) ≥ tp/q} and either
we find a subset T2 of Z2 of size q using Lemma 1 such that w(B1(T2)) ≥ tp and
C ′ ∪ T1 ∪ T2 is the desired C ′ or we do implicit recursive calls as in algorithm of
Figure 1 and we similarly continue further. Using this algorithm we compute the
value of µ(p, ψ, j, C ′

ψ , S, q). Hence at the end we have:

µ(p, ψ, S, j) = maxC′
ψ
,q

{
µ

(
p, ψ, j, C ′

ψ , S, q
)}

.

One can handle in the similar way the general case, that is when there are more than
one elements in S. In the general case for each bag p and for each coloring ψ, we also fix
the number j of chosen elements in S for each pair (S, i) in S. For one bag of the tree
decomposition, we have 42h choices for ψ and we make at most nO(h) guesses for a fixed ψ.
Notice that after fixing ψ, C ′

ψ and q, we make at most 2k calls to dynamic programming
algorithm of Theorem 1. Since the Tψ has at most O(n) nodes, the time taken of the above
one step of the algorithm is O(nO(h)4h3(3h(k)/2)2kt) where h(k) = dH(16k)k . Since the
algorithm of Figure 1 makes at most 2k recursive calls and we can obtain the clique-sum
decomposition in nO(1), we get the desired time complexity for the algorithm. 2

5 Partial Vertex Cover

While the results of the previous section can be used to prove that PVC is FPT on H-
minor free graphs, we do not need that heavy machinery for this specific problem. In
this section we show how implicit branching itself does the job, even for more general
classes of graphs. We present a simple modification to our framework developed in the
Section 3.1 and use it to show that PVC problem is FPT in triangle free graphs. Given a
graph G = (V,E) and a subset S ⊆ V , by ∂S ⊆ E we denote the set of all edges having
at least one end-point in S. Our modification in the generic algorithm is in step (T2).

(T2′) Bound the size of S as a function of the parameter in every recursive step.

We call a graph class G hereditary if for any G ∈ G , all the induced subgraphs of G
also belong to G . Let ξ : N → N be an increasing function. We say that a hereditary
graph class G has the ξ-bounded independent set property, or simply the property ISξ, if
for any G ∈ G , there exists an independent set X ⊆ V (G) such that |V (G)| ≤ ξ(|X|)
and X can be found in time polynomial in the input size. There are various graph classes

17

which have the property of ISξ. Every bipartite graph has an independent set of size at
least n/2 and hence we can choose ξb : N → N as ξb(k) = 2k. A triangle free graph has an
independent set of size at least max{∆, n/(∆ + 1)} where ∆ is the maximum degree of
the graph which implies that a triangle free graphs has an independent set of size at least√
n/2. In this case we can choose the function ξt : N → N by ξt(k) = 4k2. H-minor free

graphs, and in particular, planar graphs and graphs of bounded genus, have chromatic
number at most g(H) for some function depending only on H. In this case G has an
independent set of size at least n/g(|H|) and we can take ξH(n) = g(H)n. For planar
graphs g(H) is 4.

We can show that if a graph class G has the property ISξ, then in the case of PVC
for every G ∈ G either we can upper bound the size of S used in the implicit branching
step by ξ(k) or we can find a subset V ′ of size at most k such that |∂V ′| ≥ t. The main
theorem of this section is as follows.

Theorem 6 Let G be a hereditary graph class with the property of ISξ for some integer
function ξ. Then PVC can be solved in O(τ(k) · nO(1)) time in G where τ(k) = ξ(k)k.

Proof: Let k and t be two integers. Let G = (V,E) ∈ G be a graph on n vertices. Let
us define S and G as follows:

S = {v | v ∈ V, deg(v) ≥ t/k} and G = G[S].

Notice that any partial vertex cover V ′ must contain a vertex from S. As G is hereditary
and has the property ISξ, we have G ∈ G , and one can find in time polynomial in n, an
independent set X ⊆ A of H, such that |H| ≤ ξ(|X|). Now we have two cases based on
the size of the independent set X.

• If |X| ≥ k, then the answer to PVC is YES and a partial vertex cover can be
obtained by taking a subset Y of X of size k. Since every independent set in H
remains to be an independent set in G, we have that Y ⊆ X is an independent set
in G. This implies that |∂Y | ≥ k tk = t

• If |X| < k, then the size of S is bounded above by ξ(k). Since every partial vertex
cover intersects S, in this case we recursively solve the problem by selecting a vertex
v ∈ S, in the partial vertex cover V ′ and then looking for partial vertex cover of size
k − 1 and covering t− |∂v| edges in the graph G− {v}.

Since the number of recursive calls made at any step is at most ξ(k) and the depth of the
recursion tree is at most k, in the worst case the time taken to solve PVC problem in G
is O(ξ(k)knO(1)). This proves that PVC is fixed parameter tractable in G and gives the
desired running time. 2

Corollary 1 The PVC problem can be solved in time O((2k)knO(1)), O((4k2))knO(1)),
O((4k)knO(1)) and O((λHk)

knO(1)) in bipartite graphs, triangle free graphs, planar graphs
and graphs excluding a fixed minor H respectively. Here λH is a constant depending only
on the size of H.

18

6 Conclusion

In this paper we obtained a framework to give FPT algorithms for various partial covering
problems in graphs with locally bounded treewidth and graphs excluding a fixed graph
H as a minor. The main idea behind our approach was the concept of implicit branching
which is of independent interest. We believe that it will be useful for other problems as
well.

Many non-partial parameterized problems on planar graphs can be solved by reducing
to a kernel of linear size [2, 8, 22]. This does not seem to be the case for their partial
counterparts and an interesting question here is, whether Partial Dominating Set or
Partial Vertex Cover can be reduced to polynomial sized kernels on planar graphs.

Recently, the running time of algorithms for Partial Dominating Set and Partial
Vertex Cover on planar graphs, and more generally, on apex-minor-free graphs was
improved in [21].

References

[1] J. Alber, H. Fan, M. R. Fellows, H. Fernau, R. Niedermeier, F. A. Rosamond, and U.
Stege. A refined search tree technique for Dominating Set on planar graphs. Journal
of Computer and System Sciences, 71(4), 385-405 (2005).

[2] J. Alber, M. R. Fellows and R. Niedermeier. Polynomial-time Data Reduction for
Dominating Set. Journal of ACM 51(3): 363-384 (2004).

[3] N. Alon and S. Gutner. Linear Time Algorithms for Finding a Dominating Set of
Fixed Size in Degenerated Graphs. Algorithmica 54(4): 544-556 (2009).

[4] O. Amini, F. V. Fomin, and S. Saurabh. Implicit Branching and Parameterized Par-
tial Cover Problems (Extended Abstract). In Proc. of IARCS Conference on Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS), Leibniz
International Proceedings in Informatics, Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Germany, vol. 2, 2008, 1–12.

[5] S. Arora and G. Karakostas. A 2 + ǫ Approximation Algorithm for the k-MST
Problem. Math. Program. 107(3): 491-504 (2006).

[6] M. Bláser. Computing small partial coverings. Information Processing Letters 85(6):
327-331 (2003).

[7] R. Bar-Yehuda. Using Homogenous Weights for Approximating the Partial Cover
Problem. J. Algorithms 39(2): 137-144 (2001).

[8] H. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and
D. M. Thilikos, (Meta) Kernelization, In Proc. of Symposium on Foundations
of Computer Science (FOCS 2009), IEEE, pp. 629–638.

[9] H. L. Bodlaender, A. Grigoriev, A. M. C. A. Koster. Treewidth Lower Bounds with
Brambles. Algorithmica 51(1): 81-98 (2008)

19

[10] M. Charikar, S. Khuller, D. Mount and G. Narasimhan. Algorithms for Facility
Location Problems with Outliers. In Proc. of Symposium on Discrete Algorithms
(SODA), SIAM, 642-651 (2001).

[11] J. Chen, I. A. Kanj and G. Xia. Improved Upper Bounds for Vertex Cover. Theor.
Comput. Sci. 411: 3736-3756 (2010).

[12] E. D. Demaine, F. V. Fomin, M.T. Hajiaghayi and D. M. Thilikos. Fixed Parameter
Algorithms for (k, r)-Center in Planar Graphs and Map Graphs. ACM transactions
on Algorithms, 1(1): 33-47 (2005).

[13] E. D. Demaine, F. V. Fomin, M.T. Hajiaghayi and D. M. Thilikos. Subexponen-
tial Parameterized Algorithms on Bounded-genus Graphs and H-minor-free Graphs.
Journal of ACM 52(6): 866-893 (2005).

[14] E. D. Demaine and M.T. Hajiaghayi. Diameter and Treewidth in Minor-Closed
Graph Families, Revisited, Algorithmica 40(3): 211-215 (2004).

[15] E. Demaine and M. Hajiaghayi, The bidimensionality theory and its algorithmic
applications, The Computer Journal 51(3): 292-302 (2008).

[16] E. D. Demaine, M. T. Hajiaghayi and K. C. Kawarabayashi. Algorithmic Graph Mi-
nor Theory: Decomposition, Approximation and Coloring. In Proc. of Foundations
of Computer Science (FOCS), IEEE, 637-646 (2005).

[17] F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexponential parameterized algorithms,
Computer Science Reviews 2(1): 29-39 (2008).

[18] R.G. Downey and M.R. Fellows. Parameterized Complexity, Springer, (1999).

[19] D. Eppstein. Diameter and Treewidth in Minor Closed Graph Families, Algorith-
mica, 27 (3-4): 275-291 (2000).

[20] J. Flum and M. Grohe. Parameterized Complexity Theory, Springer, (2006).

[21] F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh, Subexponential Algo-
rithms for Partial Cover Problems, In Proc. of IARCS Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS), Leibniz In-
ternational Proceedings in Informatics, Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, Germany vol. 4, 2009, 4193–201.

[22] F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos, Bidimensionality and
Kernels, In Proc. of ACM-SIAM Symposium on Discrete Algorithms (SODA 2010),
ACM and SIAM, 2010, pp. 503–510.

[23] R. Gandhi, S. Khuller and A. Srinivasan. Approximation Algorithms for Partial
Covering Problems. Journal of Algorithms 53(1): 55-84 (2004).

[24] P. Golovach and Y. Villanger. Parameterized Complexity for Domination Problems
on Degenerate Graphs. In Proc. of Graph-Theoretic Concepts in Computer Science
(WG), Lecture Notes Comp. Sci. 5344, Springer, 195-205 (2008).

20

[25] M. Grohe. Local Treewidth, Excluded Minors and Approximation Algorithms. Com-
binatorica, 23(4): 613-632 (2003).

[26] J. Guo, R. Niedermeier and S. Wernicke. Parameterized Complexity of Vertex Cover
Variants. Theory of Computing Systems 41(3): 501-520 (2007).

[27] J. Kneis, D. Mölle and P. Rossmanith. Partial vs. Complete Domination: t-
Dominating Set. In Proc. of Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM), Lecture Notes Comp. Sci. 4362, Springer, 367-376
(2007).

[28] J. Kneis, D. Mölle, S. Richter and P. Rossmanith. Intuitive Algorithms and t-Vertex
Cover. In Proc. of Symposium on Algorithms and Computation (ISAAC). Lecture
Notes Comp. Sci. 4288, Springer, 598-607 (2006).

[29] R. Niedermeier. Invitation to Fixed-Parameter Algorithms, Oxford University Press,
(2006).

[30] N. Robertson and P. Seymour. Graph minors V, Excluding a Planar Graph. Journal
of Combinatorial Theory, Series B, 41(2): 92-114, (1986).

[31] N. Robertson, P. Seymour and R. Thomas. Quickly Excluding a Planar Graph.
Journal of Combinatorial Theory, Series B, 62(2): 323-348 (1994)

[32] N. Robertson and P. Seymour. Graph minors XVI, Excluding a Non-planar Graph.
Journal of Combinatorial Theory, Series B, 81(1): 43-76 (2003).

[33] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217-241, (1994).

21

