
GEOMETRY OF GRAPHS AND APPLICATIONS IN ARITHMETIC AND

ALGEBRAIC GEOMETRY

OMID AMINI

We survey recent results concerning the algebraic-geometric aspects of graphs and metric
graphs, and discuss some applications in arithmetic and algebraic geometry.

All graphs considered here are supposed to be connected.

1. Algebraic geometry of metric graphs

In this section, we provide some background on algebraic geometry of metric graphs, and
explain the link from algebraic geometry of curves to that of metric graphs. The presentation
follows those in [5, 6, 9]; more details can be found in [4, 11, 12, 50, 11].

1.1. Metric graphs. Given n ∈ Z≥1, we define Sn ⊂ C to be a “star with n branches”, i.e.,
a topological space homeomorphic to the union of the convex hull in R2 of (0, 0) and any
point among a set of n points no two of them lie on a common line through the origin. We
also define S0 = {0}. A finite topological graph Γ is the topological realization of a finite
graph: Γ is a compact (zero or) one dimensional topological space such that for any point
p ∈ Γ, there exists a neighborhood Up of p in Γ homeomorphic to some Sn; moreover there
are only finitely many points p with Up homeomorphic to Sn with n 6= 2.

The unique integer n such that Up is homeomorphic to Sn is called the valence of p and
denoted val(p). A point of valence different from 2 is called an essential vertex of Γ: they are
of two types, v with val(v) ≥ 3 which are called branching points, and v for which val(v) = 1
which are called ends of Γ. The set of tangent directions at p is Tp(Γ) = lim−→Up

π0(Up \ {p}),
where the limit is taken over all neighborhoods of p isomorphic to a star with n branches.
The set Tp(Γ) has precisely val(p) elements.

A metric graph (Γ, `) is a compact connected metric space, such that for every p ∈ Γ there is
a radius rp ∈ R>0 such that there is a neighborhood Up around p which is isometric to the star

shaped domain S(val(p), rp) := {re2πim/ val(p) : 0 < r < rp, 1 ≤ m ≤ val(p)} ⊂ C equipped
with the path-metric. We will usually drop the metric ` from the notation and simply refer
to Γ as the metric, and the corresponding topological, graph. We use the notation Tp(Γ) to
denote the set of all unit tangent vectors emanating from p in Γ (which gets identified with

the unit vectors e2πim/val(p) in C under the isometry of Up with S(val(p), rp)).

For a function f : Γ→ C, a point p ∈ Γ and a unit tangent vector w ∈ Tp(Γ), the directional
derivative dwf(x) of f at p in the direction of w, which we simply call the outgoing slope of
f at p along w, is defined by:

dwf(x) = lim
t↓0

f(x+ tw)− f(x)

t
,
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if the limit exists. Note that the above expression makes sense by (isometrically) identifying
a small enough neighborhood Up of p with a star shaped domain S(val(p), rp) in C, and by
restricting f to S(val(p), rp).

Let Γ be a metric graph. A vertex set V (Γ) is a finite subset of the points of Γ which
contains all the essential points of Γ. An element of a fixed vertex set V (Γ) is called a vertex
of Γ, and the closure of a connected component of Γ \V (Γ) is called an edge of Γ. We denote
by E(Γ) the set of all edges of Γ with respect to the vertex set V (Γ). The (combinatorial)
graph G = (V (Γ), E(Γ)) is called a model of Γ. A model G of Γ is simple if there is no loop
edge or double edge in E. Since Γ is a metric graph, we can associate to each edge e of a
model G = (V,E) its length `(e) ∈ R>0.

The genus g(Γ) of a metric graph Γ is by definition equal to its first Betti number. If
G = (V,E) is a model of Γ, then g = |E| − |V |+ 1.

The model G = (V,E) of a metric graph Γ with V the set of all essential points of Γ is
called the minimal model of Γ. We denote by `min the minimum length of the edges in the
minimal model of Γ. The volume µ(Γ) of Γ is the sum of the edge lengths in any model G of
Γ. We denote by dmax the maximum valence of points of Γ.

1.2. Divisor theory on metric graphs. We recall some basic definitions concerning the
divisor theory of metric graphs. See [12, 50] for more details.

For a metric graph Γ, let Div(Γ) be the free abelian group on points of Γ. An element D
of Div(Γ) is called a divisor on Γ and can uniquely be written as

D =
∑
v∈Γ

av(v), with av ∈ Z,

where all but finitely many av are zero. The degree of D is deg(D) =
∑

v∈Γ av. A divisor D
is effective if av ≥ 0 for all v ∈ Γ. The coefficient of D at v is also denoted by D(v).

The set of points v for which av is nonzero is called the support of D and is denoted by
supp(D).

A rational function on Γ is a continuous piecewise linear function on Γ whose outgoing
slopes are all integers. The set of all rational functions on Γ is denoted by R(Γ). The order of
a rational function f at a point p of Γ, denoted by ordp(f), is the sum of the outgoing slopes
of f along the unique tangent directions in Γ emanating from p. As f is piecewise linear, and
Γ is compact, the order of f is zero on all but finitely many points of Γ, and one gets a map

div : R(Γ)→ Div(Γ), f 7→
∑
p

ordp(f)(p).

A divisor in the image of div is called a principal divisor. Two divisors, D and D′ are called
linearly equivalent, written D ∼ D′, if they differ by a principal divisor, i.e., there is a rational
function such that D = div(f)+D′. The (complete) linear system |D| of a divisor D is defined
to be the set of all effective divisors which are linearly equivalent to D:

|D| := {E ∈ Div(Γ) : E ≥ 0, E ∼ D}.

We denote by R(D) := {f ∈ Rat(Γ) : D + div(f) ≥ 0} the ”set of all global sections of D”.
Note that R(D) is closed under addition by constants and under taking maximum, i.e., for
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f, g ∈ R(D) and c ∈ R, one has c + f ∈ R(D) and max(f, g) ∈ R(D), in other words, R(D)
is a so called tropical semi-module.

The rank of a divisor D, denoted by r(D) is defined by

r(D) := min
{E:E≥0,|D−E|=∅}

deg(D)− 1.

The canonical divisor K of Γ is by definition

K :=
∑
x∈Γ

(val(x)− 2)(x).

Note that the above sum is actually only over essential vertices of Γ, and so is finite.
For the proof of the following Riemann-Roch theorem, we refer to [12, 50]. A generalization

to the mixed (algebraic curve-metric graph) setting can be found in [4].

Theorem 1.1 (Riemann-Roch). Let Γ be a metric graph of genus g. For any divisor D of
degree d, r(D)− r(K −D) = deg(D)− g + 1.

The divisorial gonality γdiv(Γ) of a metric graph Γ is defined by

γdiv(Γ) := min{d : there exists a D ∈ Div(Γ), with deg(D) = d and r(D) = 1}.

1.3. Harmonic morphisms, tropical modifications, and geometric gonality. We re-
call some standard definitions regarding the morphisms between metric graphs, and the cor-
responding tropical curves, see [5] and the references there for a more detailed discussion of
the following definitions with several examples.

Let Γ and Γ′ be two metric graphs, and fix vertex sets V = V (Γ) and V ′ = V (Γ′) for Γ
and Γ′, respectively. Denote by E and E′ the edge sets E(Γ) and E(Γ′), respectively. Let
φ : Γ→ Γ′ be a continuous map.

• The map φ is called a (V, V ′)-morphism of metric graphs if we have φ(V ) ⊂ V ′,
φ−1(E′) ⊂ E, and the restriction of φ to any edge e in E is a dilation by some factor
de(φ) ∈ Z≥0.
• The map φ is called a morphism of metric graphs if there exists a vertex set V = V (Γ)

of Γ and a vertex set V ′ = V (Γ′) of Γ′ such that φ is a (V, V ′)-morphism of metric
graphs.
• The map φ is said to be finite if de(φ) > 0 for any edge e ∈ E(Γ).

The integer de(φ) ∈ Z≥0 in the definition above is called the degree of φ along e. Let
p ∈ V (Γ), let w ∈ Tp(Γ), and let e ∈ E(Γ) be the edge of Γ in the direction of w. The
directional derivative of φ in the direction w is by definition the quantity dw(φ) := de(φ). If
we set p′ = φ(p), then φ induces a map

dφ(p) :
{
w ∈ Tp(Γ) : dw(φ) 6= 0

}
→ Tp(Γ

′)

in the obvious way.
Let φ : Γ→ Γ′ be a morphism of metric graphs, let p ∈ Γ, and let p′ = φ(p). The morphism

φ is harmonic at p provided that, for every tangent direction w′ ∈ Tp′(Γ′), the number

dp(φ) :=
∑

w∈Tp(Γ)
w 7→w′

dw(φ)
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is independent of w′. The number dp(φ) is called the degree of φ at p.
We say that φ is harmonic if it is surjective and harmonic at all p ∈ Γ; in this case the

number deg(φ) =
∑

p 7→p′ dp(φ) is independent of p′ ∈ Γ′, and is called the degree of φ.

There is an equivalence relation between metric graphs, that we recall now; an equivalence
class for this relation is called a tropical curve.

An elementary tropical modification of a metric graph Γ0 is a metric graph Γ = [0, `] ∪ Γ0

obtained from Γ0 by attaching a segment [0, `] of (an arbitrary) length ` > 0 to Γ0 in such a
way that 0 ∈ [0, `] gets identified with a point p ∈ Γ0.

A metric graph Γ obtained from a metric graph Γ0 by a finite sequence of elementary
tropical modifications is called a tropical modification of Γ0.

Tropical modifications generate an equivalence relation ∼ on the set of metric graphs. A
tropical curve is an equivalence class of metric graphs with respect to ∼.

There exists a unique rational tropical curve, which is denoted by TP1: it is the class of all
finite metric trees (which are all equivalent under tropical modifications).

A tropical morphism of tropical curves φ : C → C ′ is a harmonic morphism of metric
graphs between some metric graph representatives of C and C ′, considered up to tropical
equivalence.

A tropical curve C is said to have a (non-metric) graph G as its combinatorial type if C
admits a representative whose underlying graph is G.

A tropical curve C is called d-gonal if there exists a tropical morphism C → TP1 of degree
d. A metric graph Γ has geometric gonality d, if the tropical curve associated to Γ is d-gonal,
and d is the smallest integer satisfying this condition. The geometric gonality of a metric
graph is denoted by γgm(Γ).

It is easy to see that the fibers of any finite harmonic morphisms from a metric graph Γ to
a finite tree are linearly equivalent, and define a linear equivalence class of divisors on Γ of
rank at least one. It thus follows that

γgm(Γ) ≥ γdiv(Γ)

for any metric graph Γ.

1.4. Berkovich analytic curves. We provide a brief discussion of the structure of Berkovich
analytic curves; This will allow to explain in paragraphs 1.5 and 1.6, the link between algebraic
geometry of curves and that of metric graphs, presented in the previous paragraph. For further
details, we refer to [15, 16, 31, 60].

Let X/K be an algebraic variety. The topological space underlying the Berkovich analytifi-
cation Xan of X is described as follows. Each point x of Xan corresponds to a scheme-theoretic
point X, with residue field K(x), and an extension | |x of the absolute value on K to K(x).
The topology on Xan is the weakest one for which Uan ⊂ Xan is open for every open affine
subset U ⊂ X and the function x 7→ |f |x is continuous for every f ∈ OX(U). By definition,
the set X(K) of closed points of X is naturally included in Xan, and has a dense image. The
space Xan is locally compact, Hausdorff, and locally path-connected. Furthermore, Xan is
compact iff X is proper, and path-connected iff X is connected. Analytifications of algebraic
varieties is a subcategory of a larger category of K-analytic spaces, and e.g., open subsets of
Xan come with a K-analytic structure in a natural way [16].
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For any point x of Xan, the completion of the residue field K(x) of X with respect to | |x
is denote by H(x), and the residue field of the valuation field (H(x), | |x) is denoted by H̃(x).

1.4.1. Structure of analytic curves. For an analytic curve Xan, the points can be classified

into four types. By Abhyankar’s inequality, tr-deg
(
H̃(x)/κ

)
+ rank

(
|H(x)×|/|K×|

)
≤ 1,

where the rank is that of a finitely generated abelian group. The point x is then of type I if it

belongs to X(K) in which case, H(x) ∼= K, of type II if the transcendence degree of H̃(x)/κ
is one, of type III if the rank of the valuations extension is one, and of type IV otherwise.

1.4.2. Semistable vertex sets and skeleta. A semistable vertex set for Xan is a finite set V of
points of Xan of type II such that Xan \V is isomorphic to a disjoint union of a finite number
of open annuli and an infinite number of open balls. By semistable reduction theorem [28],
semistable vertex sets always exist, and more generally, any finite set of points of type II in
Xan is contained in a semistable vertex set. The skeleton Γ = Σ(X,V ) of Xan with respect to
a semistable vertex set V is the subset of Xan defined as the union of V and the skeleton of
each of the open annuli in the semistable decomposition associated to V . Using the canonical
metric on the skeleton of the open annuli, Γ comes naturally equipped with the structure
of a finite metric graph contained in Xan. In addition, Γ has a natural model G = (V,E)
where the edges are in correspondence with the annuli in the semistable decomposition. In
this paper, we only consider semistable vertex sets whose associated model is a simple graph,
i.e., without loops and multiple edges.

Semistable vertex sets for Xan correspond bijectively to semistable formal models X for X
over R [16, 30, 15].

1.4.3. Retraction to the skeleton. Let Γ be a skeleton of Xan defined by a semistable vertex
set V . There is a canonical retraction map τ : Xan � Γ which is in fact a strong deformation
retraction [16]. In terms of the semistable decomposition, τ is identity on Γ, sends the points
of each open ball B to the unique point of Γ in the closure B of B, called the end of B, and
is the retraction to the skeleton for the open annuli [16, 15].

1.4.4. Residue curves and the genus formula. A point x ∈ Xan of type II has a (double)

residue field H̃(x) which is of transcendence degree one over κ. We denote by Cx the unique

smooth proper curve over κ with function field H̃(x), and denote by gx the genus of Cx. If V
is any semistable vertex set for Xan, then for any point of type II in Xan \ V , gx = 0, and by
semistable reduction theorem, we have the following genus formula:

g = g(X) = g(Γ) +
∑
x∈V

gx,

where g(Γ) = |E|− |V |+ 1, for G = (V,E) the model of the skeleton Γ = Σ(X,V ), is the first
Betti number of Γ. We extend the definition of g(·) to all points of Γ by declaring g(x) = 0
if x is not a point of type II in Xan, obtaining in this way an augmented metric graph in the
terminology of [5].
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1.4.5. Tangent vectors. Denote by H(Xan) the set of points of type II and III in Xan. There
is a canonical metric on H(Xan) which restricts to the metric on Γ = Σ(Xan, V ) for any
semistable vertex set V for Xan.

A geodesic segment starting at x ∈ Xan \ X(K) is an isometric embedding α : [0, θ] →
Xan \ X(K) for some θ > 0 such that α(0) = x. Two geodesic segments starting at x are
called equivalent if they agree on a neighborhood of 0. As usual, a tangent direction at a point
x is an equivalence class of geodesic segments starting at x. We denote by Tx = Tx(Xan) the
set of all tangent directions at x.

For any simply connected neighborhood U of x ∈ Xan, there is a natural bijection between
Tx and the connected components of U \ {x}. There is only one tangent direction at x when
x is of type I; for x of type III we have |Tx| = 2. (For x of type IV we have |Tx| = 1.) For
a point x of type II, there is a canonical bijection between Tx and Cx(κ), the set of closed
points of the smooth proper curve Cx associated to x. Points of Cx(κ) correspond to discrete

valuations on H̃(x) which are trivial on κ, and the resulting bijection with Tx associates to a
vector ν ∈ Tx, a discrete valuation ordν : κ(Cx)× → Z: If xν denotes the corresponding point

of Cx(κ) then, for every nonzero rational function f̃ ∈ κ(Cx), we have ordν(f̃) = ordxν (f̃).

1.5. Specialization of divisors from curves to metric graphs.

1.5.1. Reduction of rational functions and the slope formula. Let x ∈ Xan be a point of type
2. For a nonzero rational function f on X, there is an element c ∈ K× such that |f |x = |c|.
Define f̃ ∈ κ(Cx)× to be the image of c−1f in H̃(x) ∼= κ(Cx). Note that if the valuation of
K has a section (which is the case for algebraically closed fields [49, Lemma 2.1.15]), this can
be made well-defined; otherwise, it is well-defined up to a multiplicative scalar.

If H is a K-linear subspace of K(X), the collection of all possible reductions of nonzero

elements of H, together with {0}, forms a κ-vector space H̃. In addition, we have dim H̃ =
dimH (c.f. [4]).

A function F : Xan → R is piecewise linear if for any geodesic segment α : [a, b] ↪→ Xan \V ,
the pullback map F ◦ α : [a, b] → R is piecewise linear. The outgoing slope of a piecewise
linear function F at a point x ∈ Xan along a tangent direction ν ∈ Tx is defined by

dνF (x) = lim
t→0

(F ◦ α)′(t),

where α : [0, θ] ↪→ Xan is a geodesic segment starting at x which represents ν. A piecewise
linear function F is called harmonic at a point x ∈ Xan \ V if the outgoing slope dνF (x) is
zero for all but finitely many ν ∈ Tx, and in addition

∑
ν∈Tx

dνF (x) = 0.
The following theorem will be essential [15, 17, 61]. It is called the slope formula in [15]

and is also a consequence of the non-Archimedean Poincaré-Lelong formula [61].

Theorem 1.2 (Slope formula). Let X be a smooth proper curve over K, and f be a nonzero
rational function in K(X). Let F = − log |f | : Xan → R ∪ {±∞}. Let V be a semistable
vertex set of X such that zeros and poles of f are mapped to vertices in V under the retraction
map τ from Xan to the skeleton Γ = Σ(X,V ). We have

(1) F is piecewise linear with integer slopes, and F is linear on each edge of Γ ↪→ Xan.

(2) If x is a type-2 point of Xan and ν ∈ Tx, then dνF (x) = ordν(f̃x).
(3) F is harmonic at all x ∈ H(Xan).
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(4) Let x be a point in the support of div(f), let e be the ray in Xan with one endpoint x
and another endpoint y ∈ V , and let ν ∈ Ty be the tangent direction represented by e.
Then dνF (y) = ordx(f).

1.5.2. Baker’s Specialization Lemma. Let X be a smooth proper curve over an algebraically
closed complete non-Archimedean field K with a non-trivial valuation.

Consider the deformation retraction τ : Xan → Σ(X,V ). Identifying X(K) with points
of type 1 on Xan, this induces a morphism τ∗ : Div(X) → Div(Σ(X,V )) which is called the
specialization map.

Remark 1.3. For curves defined over an arbitrary non-trivially valued non-Archimedean
field, one can find an equivalent (more classical) definition of the specialization map without
reference to the analytification in [21, 11, 63]. The advantage of the above presentation is
that the analytification of the curve over the algebraic closure of the completion of the base
field, takes care of the renormalization by ramification indices of (the choice of) the finite
base field extension over which the original curve admits semistable reduction.

To each nonzero rational function f on X and each semistable vertex set V for X, one
associates a corresponding rational function F = − log |f | on the skeleton Γ.

As an application of Theorem 1.2, we obtain the following [4, 11]: For every nonzero rational
function f on X,

τ∗(div(f)) = div(F ).

Let X be a smooth proper curve over K and let Γ be a metric graph associated to X.
Baker’s specialization lemma [11] states that for any divisor D on X one has r(D) ≤ r(τ∗(D)).
Formulated in terms of the analytification of the curve, the statement is a direct consequence
of the slope formula [15, 61] for Berkovich curves, stated above, see [4]. A more refined
version of the specialization lemma, taking into account the genus or the geometry of points
of Γ ↪→ Xan can be found in [7, 4].

1.6. Morphisms of curves induce morphisms of tropical curves. Let X and X ′ be
two smooth proper curves over an algebraically closed complete non-Archimedean field K.
Consider a morphism φ‘ : X → X ′, and let φ : Xan → X ′an be the induced morphism between
the Berkovich analytifications of X and X ′an.

The proof of the following theorem, as well as more precise statements concerning stronger
skeletonized versions of some foundational results of Liu-Lorenzini [44], Coleman [23], and
Liu [43] on simultaneous semistable reduction of curves, can be found in [5].

Theorem 1.4. Let φ : X → X ′ be a fintie morphism of smooth proper curves over K of
degree d. Let C and C ′ be the tropical curves associated to X and X ′. Then φ induces a
tropical morphism φ : C → C ′ of degree d.

Note that, in particular, the (algebraic) gonality of X over K is bounded below by the
geometric gonality of C. In general the inequality γ(X) ≥ γ(C) can be strict (see [6] for an
example of a genus 27 tropical curve C of gonality 4 such that any X over K of genus 27 with
associated tropical curve C has gonality at least 5).

In general if the base non-Archimedean field K is not algebraically closed, and φ : X → Y
is a finite morphism between two smooth proper geometrically connected curves X and Y
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over K, then one gets a morphism between two tropical curves C and C ′ by looking at φ over
the completion of an algebraic closure of K.

2. Geometry of graphs

In this section, we discuss some results which concern the geometry of graphs and metric
graphs.

2.1. Eigenvalue estimates in graphs. For any graph G on n vertices, denote by λ0(G) =
0 < λ1(G) ≤ λ2(G) ≤ · · · ≤ λn−1(G) all the eigenvalues of the graph Laplacian ∆ = ∆G.
Recall that ∆ is the positive semidefinite operator defined on the space of real valued functions
on the vertices of G by

∆(f)(v) =
∑

u:uv∈E
f(v)− f(u),

for any function f : V → R.
We first recall basic results concerning the eigenvalues of general graphs, and then restrict to

some special families of graphs. For more details concerning these materials, see e.g., [27, 39].
Let S be a subset of V . The (edge) boundary of S, denoted by B(S), is the set of edges
E(S, Sc) between a vertex in S and a vertex in its complementary Sc = V \ S. Its size is
denoted by b(S). The expansion of a subset S of vertices is by definition b(S)/|S|. The (edge)
expansion of G is defined as follows:

exp(G) = min
S⊂V,|S|≤ |V |

2

b(S)

|S|
.

By definition, the expansion is bounded by minimum degree of G.
The following theorem of Alon-Milman shows that the spectral gap of G, which is by

definition the first non-trivial eigenvalue λ1 of the Laplacian ∆, controls the expansion factor
of G if G is regular.

Theorem 2.1 (Alon-Milman [2]). Let G be a d-regular graph. Then

λ1

2
≤ exp(G) ≤

√
2dλ1 .

The following classical theorem of Alon-Boppana provides a lower bound on the spectral
gap for a regular graph.

Theorem 2.2 (Alon-Boppana [51]). Let G be a d-regular graph. We have

λ1 ≤ d− 2
√
d− 1 + o(1) .

Friedman [34] has proved that for any ε, random d-regular graphs have asymptotically
almost surely |λ1 − d+ 2

√
d− 1| ≤ ε.

We note by passing that a graph is called Ramanujan if for all the non-trivial eigenvalues,
|d− λi(G)| ≤ 2

√
d− 1 [27]. Until recently it was unknown if an infinite family of Ramanujan

existed in all degrees d; constructions were known for d = q + 1 for q a prime power. An
elegant recent paper of Marcus, Speilman and Srivastava [47] solved this problem, by showing
the existence of an infinite family of bipartite Ramanujan graphs of any given degree d.

2.2. Eigenvalue estimates in bounded tree-width and minor closed family of graphs.
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2.2.1. Tree-decomposition, minors, and graph minor theorem. We first recall some basic ter-
minology on tree-decompositions of finite graphs.

Let G = (V,E) be a connected graph. A tree-decomposition of G is a pair (T,X ) where
T is a finite tree on a set of vertices I, and X = {Xi : i ∈ I} is a collection of subsets of V ,
subject to the following three conditions:

(1) V = ∪i∈IXi,
(2) for any edge e in G, there is a set Xi ∈ X which contains both end-points of e,
(3) for any triple i1, i2, i3 of vertices of T , if i2 is on the path from i1 to i3 in T , then

Xi1 ∩Xi3 ⊆ Xi2 .

Note that the point (3) in the above definition simply means that the subgraph of T induced
by all the vertices i which contain a given vertex v of the graph G is connected.

The width of a tree-decomposition (T,X ) is defined as w(T,X ) = maxi∈I |Xi| − 1. The
tree-width of G, denoted by tw(G), is the minimum width of any tree-decomposition of G.

There is a useful duality theorem concerning the tree-width wich allows in practice to
bound the tree-width of graphs. The dual notion for tree-width is bramble (as named by B.
Reed [52]): a bramble in a finite graph G is a collection of connected subsets of V (G) such
that the union of any two of these subsets forms again a connected subset of V (G). (To be
more precise, we should say the graph induced on these subsets is connected.) The order of
a bramble is the minimum size of a subset of vertices which intersect any set in the bramble.
The bramble number of G, denoted by bn(G), is the maximum order of a bramble in G.

Theorem 2.3 (Seymour-Thomas [57]). For any graph G, tw(G) = bn(G)− 1.

More general forms of the duality theorem can be found in [10, 29].

Example 2.4. Let H be an n× n grid. It is easy to see that bn(H) = n by taking brambles
formed by crosses in the grid. This shows that grid graphs can have large tree-width. Thus,
the tree-width can be unbounded on planar graphs.

The other important notion in graph theory is minors in graphs. A graph H is a minor of
another graph G, and we write H � G, if H can obtained from G by a sequence of operations
consisting in
- contracting an edge of G, or
- removing an edge of G.

It is easy to see that tree-width is minor monotone, in the sense that if H � G, then
tw(H) ≤ tw(G). It follows that bounded tree-width graphs cannot have large grid minors.

The main theorem concerning the notion of graph minors is the Robertson-Seymour finite-
ness theorem which states:

Theorem 2.5 (Robertson-Seymour [54]). Let F be a family of graphs which is stable under
minors, i.e., if G ∈ F and H is a minor of G, then H belongs to F . Then there is a finite
number of graphs (possibly empty if F contains all finite graphs) H1, . . . ,Hk such that G
belongs to F if and only if G does not contain any of Hi as minor.

In particular, the above theorem is a far reaching generalization of Kuratowski theorem
which characterizes planar graphs as the family of graphs which do not contain the complete
graph on five vertices K5, and the complete bipartite graph K3,3 on two parts of size three
each.
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Remark 2.6. Robertson and Seymour prove that tree-width is bounded on the class of
graphs with forbidden H-minor if and only if H is planar.

2.2.2. Eigenvalue estimates. Let H be a given graph. Consider the family FH of all connected
graphs G which do not contain H as minor. Note that FH is minor closed. The following
theorem shows that graphs in FH are far from being expanders.

Theorem 2.7 ([41]). There is a constant h = h(H) such that for any graph G in FH and

any 1 ≤ k, we have λk(G) ≤ hdmaxk
|G| where dmax is the maximum valence of vertices in G and

|G| is the number of vertices in G.

For graphs which can be embedded in a surface of genus at most g, the following more
precise statement holds

Theorem 2.8 ([8]). There is a universal constant c such that for any graph G which can be
embedded in a surface of genus at most g, we have

λnrk (G) ≤ cdmax(g + k)

|G|
,

where λnrk are the eigenvalues of the normalized Laplacian of G, and |G| is the number of
vertices of G.

(Note that in any graphG, with min- and max-degrees dmin and dmax, one has dminλ
nr
k (G) ≤

λk(G) ≤ dmaxλ
nr
k (G), and similarly, dmin|G|/2 ≤ m ≤ dmax|G|/2.)

We end this subsection with a discussion of the above results in the case of bounded tree-
width graphs. A graph of tree-width bounded by some constant N does not contain a grid
of size N ×N as minor. It follows that there is an increasing function f : N → N such that
for a graph G of tree-width tw(G), one has λk(G) ≤ f(tw(G))dmaxk/|G|.

For λ1, we have the following more precise result of Chandran-Subramanian [20].

Theorem 2.9 ([20]). For any graph G = (V,E), the following holds

λ1 ≤
12
(
tw(G) + 1)

)
dmax

|G|
.

2.3. Yang-Li-Yau inequality.

2.3.1. Classical Yang-Li-Yau inequality. We first recall the Li-Yau inequality [42]. Let M be a
compact surface with a Riemannian metric g. We denote by dµ the volume form corresponding
to its metric, and by µ(M) the total volume of M . Consider the sphere S2 with its standard
metric g0, and let φ : M → S2 be a non-degenerate conformal map. The group of conformal
diffeomorphisms of S2, denoted by Diffc(S2) acts on the set of non-degenerate conformal maps
from M to S2 in a natural way. Define µc(M,φ) as the supremum volume of M with the
respect to the volume forms induced on M from S2 by the conformal maps in the orbit of φ,
i.e.,

µc(M,φ) := sup
ψ∈Diffc(S2)

∫
M
|∇(ψ ◦ φ)|2dµ.

The conformal area µc(M) of M (with respect to the conformal structure on M induced by
the metric g) is by definition the infimum of µc(M,φ) over non-degenerate conformal maps
φ : M → S2, i.e., µc(M) := infφ µc(M,φ).
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Theorem 2.10 (Li-Yau [42]). Denote by λ1 > 0 the first non-zero eigenvalue of the Laplacian
of (M, g). Then λ1µ(M) ≤ 2µc(M).

This refines earlier results of Hersch [38] and Szegö [59]. As a corollary we get the fol-
lowing previous result of Yang and Yau [62]. Let M be a Riemann surface, equipped with a
metric of constant curvature in its conformal class, λ1 and µ the first non-trivial eigenvalue
of the Laplacian and the volume of M , respectively. Denote by γ(M) the gonality of M , the
minimum degree of a (branched) covering M → P1(C).

Theorem 2.11 (Yang-Yau [62]). For any Riemann surface M ,

λ1 µ(M) ≤ 8πγ(M).

Proof. It is easy to see that for a conformal map of positive degree d from M to N , one has
µc(M) ≤ dµc(N). It follows that

λ1 µ(M) ≤ 2γ(M)µc(S2).

One concludes by observing that µc(S2) = 4π. �

We quickly sketch the proof of Theorem 2.10, which, like the other above mentioned results,
uses Hersch lemma.

Lemma 2.12 (Hersch lemma). Let φ : M → S2 a conformal map. Denote by x1, x2, x3 the
coordinate functions on S2 for the standard embedding S2 ↪→ R3; x2

1 + x2
2 + x2

3 = 1. There
exists ψ ∈ Diffc(S2) such that

∫
M xi ◦ ψ ◦ φdµ = 0 for i = 1, 2, 3.

Proof. Let p be a point of S2 and consider the stereographic projection πp of S2 to the
hyperplane Hp in R3 tangent to S2 at −p. For each t ∈ (0, 1), let αt,p : Hp → H be the
dilation by a factor 1/t in Hp, seen as an affine plane with origin at −p. Consider the family
of conformal maps ψt,p = π−1

p ◦αt,p ◦πp : S2 → S2. We claim the existence of a t such that for

ψ = ψt,p the conclusion of theorem holds. To see this, consider the map T : (0, 1)× S2 → B3,
the closed unite ball in R3, which sends (t, p) to the point with coordinates

∫
M xi ◦ψt,p ◦φdµ

for i = 1, 2, 3. The map T can be extended to a map T : [0, 1] × S2/{1} × S2 ∼ B3, so that
on the boundary {0} × S2 = ∂B3, T restricts to the identity map. Assuming 0 not being in
the image of T , one gets a retraction of B3 to ∂B3, which leads to a contradiction. �

Proof of Theorem 2.10. Fix an ε > 0 and let φ be a non-degenerate conformal map M → S2

such that µc(M,φ) ≤ µ(M) + ε. By Hersch Lemma, up to replacing φ by a conformal map in
its orbit for the action of Diffc(S2), we can assume that

∫
M xi ◦ φdµ = 0 for i = 0, 1, 2, and

in addition
∫
M |∇φ|

2dµ ≤ µc(M,φ) ≤ µc(M) + ε.
By variational characterization of λ1, one has

λ1 = inf

∫
M |∇f |

2 dµ∫
M f2 dµ

,

where the infimum is taken over all Lipschitz functions f on M with
∫
M f dµ = 0. In

particular, one has

λ1

∫
M

(xi ◦ φ)2dµ ≤
∫
M
|∇xi ◦ φ|2 dµ.
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Summing up over i, gives

λ1 µ(M) ≤
∫
M

∑
i

|∇xi ◦ φ|2 dµ =

∫
M
φ∗(
∑
i

|∇xi|2dµS2)

= 2

∫
M
φ∗(dµS2) = 2

∫
M
|∇φ|2 dµ ≤ 2µc(M) + 2ε.

This holds for any ε > 0, from which the theorem follows. �

In the next section, we provide a non-Archimedean version of the Yang-Li-Yau inequality.

2.3.2. Yang-Li-Yau for metric graphs. We state two types of Yang-Li-Yau inequalities, one
concerning the geometric gonality and one concerning the divisorial gonality of metric graphs,
as defined in the previous section. We only give the proof of the former, which is quite short.

Let C be a tropical curve with combinatorial type a graph G with set of vertices V and set
of edges E. Let λ1 be the first non-trivial eigenvalue of the Laplacian ∆ of G. We have

Theorem 2.13 ([26]). There is a constant A such that for any tropical curve C with combi-
natorial type G, we have

γgm(C) ≥ A λ1

dmax
|G|,

where dmax denotes the maximum valence, and |G| is the number of vertices in G.

The following is an alternative simpler proof. First, we have the following basic proposition
relating the geometric gonality of a tropical curve with combinatorial type G to the tree-width
of G.

Proposition 2.14. For any tropical curve C with combinatorial type G = (V,E), we have
2γgm(C) ≥ tw(C).

Proof. Let φ : C → TP1 be a morphism of degree γgm(C). Consider the restriction of φ to a
finite harmonic morphism from a metric graph representative Γ of C with a model graph G
on vertex set V and edge set E, and denote by T the image of Λ in TP1, so T is a finite tree.
Let I1 be a vertex set for T which contains φ(V ), and E1 be the corresponding set of edges.
For each edge e in T1 take a point in the interior of e, and let I be the new vertex set for T
obtained by adding to I1 all these new vertices.

A tree decomposition (T,X ) of G can be defined as follows. For each vertex i in I, consider
the preimage φ−1(i) of i. This set consists of some (possibly empty) vertices v1, . . . , vs ofG and
some (possibly empty) points x1, . . . , xl in the interior of some edges e1 = u1w1, . . . , el = ulwl
of G. Define Xi = {v1, . . . , vs, u1, w1, . . . , ul, wl}. Since φ is of degree γ(C), |φ−1(i)| ≤ γgm(C)
and thus, Xi has cardinality at most 2γgm(C). It is easy to check that (T,X = {Xi}i∈I) is a
tree-decomposition of G. This proves the proposition. �

Proof of Theorem 2.13. This follows from the above proposition and the bound given in The-
orem 2.9. �

As another corollary, note that if a graph G is a model of a tropical curve with bounded
geometric gonality, then the tree-width of G is bounded, and thus, G cannot contain a large
grid as minor. Combined with Proposition 2.14, one obtains the following corollary.
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Corollary 2.15. For any tropical curve C of combinatorial type G, one has f(2γ(C)) ≥
λk(G).|G|dmax

k . In particular, if in a family of tropical curves Ci of combinatorial type Gi, dmax

is bounded and for some constant k, λk(Gi).|Gi| tend to infinity, then one has γgm(Ci)→∞.

Let now Γ be a metric graph, and denote by γdiv the divisorial gonality of Γ, which we
recall, is the smallest integer d such that there exists a divisor of degree d and rank one on
Γ. Since the fibers of any tropical morphism of degree d from the tropical C defined by Γ to
TP1 is a divisor of degree d and rank at least one, it follows that γgm(C) ≥ γdiv(Γ).

Theorem 2.16 ([9]). There exists a constant C such that for any compact metric graph Γ
of total length µ(Γ) with first non-trivial eigenvalue λ1(Γ) of the Laplacian ∆, the following
holds

γdiv(Γ) ≥ Cλ1(Γ)`min(Γ)µ(Γ)

dmax
.

Here `min is the minimum edge length in Γ.

In the above theorem, ∆ is the Laplacian on a metric graph [13, 14, 63].
As a corollary of Theorem 2.16, and the specialization inequality, we get

Theorem 2.17. Let X be a smooth proper curve over a non-Archimedean field K, and let Γ
be a metric graph associated to X. We have

γ(X) ≥ Cµ(Γ)`min(Γ)λ1(Γ)

dmax
.

Here C is the constant provided by Theorem 2.16.

It would be interesting to define an appropriate suitable notion of conformal invariance for
metric graphs, in the spirit of [42].

2.4. Examples of Cayley graphs with large eigenvalues. The basic example is the
example of a family of Cayley graphs of fixed valence which form a family of expanders, i.e.,
such that the first non-trivial eigenvalue of the Laplacian of graphs in the family is lower
bounded by a constant. Consider e.g. a finite index subgroup G of SLn(Z) for n ≥ 3. Then G
satisfies Kazhdan (T) property, and as a consequence, for a fixed symmetric set of generators
S for G, the family of Cayley graphs Cay(H\G;S) where H runs over all finite index subgroup
of G form a family of expanders [46].

Example 2.18. Let X be a smooth curve over a number field k of genus at least two. There
exists an infinite family of étale covers Xi → X such that the Cayley graphs Cay(Xi/X;S),
for S a (profinite) generating set for πét

1 (X), form a family of expanders with sizes tending
to infinity. This is because the topological fundamental group of XC has a quotient which is
isomorphic to SL3(Z). By Yang-Li-Yau, γ(Xi) tends to infinity.

The following recent result of Pyber-Szabó [53] (see also [18]) provides a rich class of
examples of Cayley graphs with large eigenvalues. For earlier results of similar type see [37,
35].

Let m be an integer and consider a family of subgroups Gp of GLm(Fp) indexed by all but
finitely many prime numbers p. Let Sp, Sp = S−1

p , be a generating set for Gp of order at most
a constant s, for any p. Consider the family of Cayley graphs Cay(Gp;Sp).
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Theorem 2.19 (Pyber-Szabó [53]). If the groups Gp are non-trivial perfect groups gener-
ated by their elements of order p, then λ1(Cay(Gp;Sp))|Cay(Gp;Sp)| → ∞, when p tends to
infinity. More precisely, λ1(Cay(Gp;Sp)) >>

1
log |Gp|A for some constant A.

For a survey of recent results see e.g. [55].

3. Applications in Algebraic and Arithmetic Geometry

In this section we discuss some applications of the materials of the previous sections in
algebraic and arithmetic geometry.

3.1. Brill-Noether theorem. Let X be a smooth proper curve of genus g over a field κ.
Brill-Noether theory studies the geometry of the space W r

d of divisors of a given degree d
which move in a linear system of dimension at least a given integer r. The main theorem
of Brill-Noether theory, in rank one, is the Brill-Noether theorem, proved by Griffiths and
Harris, which asserts that

Theorem 3.1. ([36]) Let g, and r and d as above. Define ρ = g − (r + 1)(g − d+ r). Then
for a generic curve X,

(i) If ρ < 0, then there is no divisor of degree d and rank at least r on X.
(ii) If ρ ≥ 0, then W r

d has dimension min{g, ρ}.

We show how to prove (i), which is the more difficult part of the theorem, by using divisor
theory on graphs and by essentially following [24] (note that the presentation is slightly
different from [24]).

Since the assertion is an open property, it will be enough to prove the existence of a smooth
proper curve of genus g satisfying (i). By Baker’s specialization lemma, it will be enough to
show the existence of a metric graph Γ of genus g such that there is no divisor of degree d
and rank at least r on Γ provided that ρ < 0. The simplest graphs for which we can write
down explicitly the whole divisor theory will do the job: these are cycles and, more generally,
(generic) chains of cycles.

3.1.1. Rank of divisors on a generic chain of cycles. It is possible to provide a formula for
the rank of divisors on a metric graph Γ obtained as a connected sum of two metric graphs Γ1

and Γ2, c.f. [4]. This is done as follows. Consider two metric graphs Γ1 and Γ2, and suppose
that two distinguished points v1 ∈ Γ1 and v2 ∈ Γ2 are given. Recall first that the direct sum
of (Γ1, v1) and (Γ2, v2), denoted Γ = Γ1 ∨ Γ2, is the metric graph obtained by identifying the
points v1 and v2 in the disjoint union of Γ1 and Γ2. Denote by v ∈ Γ the image of v1 and

v2 in Γ̃. (By abuse of notation, we will use v to denote both v1 in Γ1 and v2 in Γ2.) We

refer to v ∈ Γ̃ as a cut-vertex and to Γ = Γ1 ∨ Γ2 as the decomposition corresponding to
the cut-vertex v. There is an addition map Div(Γ1)⊕Div(Γ2)→ Div(Γ) which associates to
any pair of divisors D1 and D2 in Div(Γ1) and Div(Γ2) the divisor, D1 + D2 on Γ defined
by pointwise addition of coefficients in D1 and D2. Let r1(·), r2(·), and r(·) = rΓ1∨Γ2(·) be
the rank functions in Γ1,Γ2, and Γ, respectively. For any non-negative integer s, denote by
ηv,D1(s), or simply η(s), the smallest integer n such that r1

(
D1 + n(v)

)
= s. Then for any

divisor D2 in Div(Γ2), we have

(1) r(D1 +D2) = min
s∈N∪{0}

{
s+ r2

(
D2 − η(s) (v)

)}
.
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Formula (1) is very handy for dealing with metric graphs which are direct sum of simple
graphs such as cycles.

Consider a metric graph Γ which is a chain of cycles Ci, i = 1, . . . , g, of length `1, . . . , `g,
respectively. Denote the cut vertices by v1, . . . , vg−1, so that each vi lies in both Ci and
Ci+1. In addition chose points v0 6= v1 and vg 6= vg−1 on C1 and Cg respectively, so that the
corresponding graph with vertex set v0, . . . , vg is a simple graph model of Γ. At some point
later we will suppose that for any cycle Ci in Γ, 1 ≤ i ≤ g, the two vertices vi−1 and vi which
lie on Ci are generically located on Ci. We will refer to such Γ as a generic chain of cycles

Consider now a divisor D =
∑g

i=1Di of degree d on Γ, so that each Di is a divisor on Ci,
and Di has support in Ci \ {vi−1} for i ≥ 2 (note that this decomposition is unique). We are
interested in determining how large the rank of D can be.

Consider the cut-vertex vi, i ∈ {1, . . . , g − 1}, in Γ, and denote by Γi,1 and Γi,2 the two
metric graphs which contain vi−1 and vi+1, respectively, in the decomposition of Γ associated
to vi, i.e., Γi,1 ∨vi Γi,2 = Γ. Denote by Di,1 and Di,2 the restriction of D to Γi,1 and Γi,2
respectively, and let ηi : N ∪ {0} → Z be the function defined above for the cut-vertex vi in
Γ. We have the following relation coming from (1):

(2) rΓ(D) = min
s≥0
{s+ ri,2(Di,2 − ηi(s)(vi))},

where ri,2 denotes the rank function on Γi,2.
It follows that the rank of D is determined as soon as the functions ηi are determined.

Indeed, the functions ηi satisfy similar recursive equations between them. Suppose we already
know the function ηi : N ∪ {0} → Z. To determine ηi+1, we consider in the metric graph
Γi+1,1 the cut-vertex vi whose removal gives the metric graphs Γi,1 and the cycle Ci+1. By
definition, ηi+1(s) is the smallest integer satisfying ri+1,1

(
Di+1,1 + ηi+1(s)(vi+1)

)
= s. The

recursive relation satisfied by the left-hand side of this equation gives

(3) s = ri+1,1

(
Di+1,1 +ηi+1(s)(vi+1)

)
= min

t≥0

{
t+rCi+1

(
Di+1 +ηi+1(s)(vi+1)−ηi(t)(vi)

)}
.

It follows that the function ηi+1 can be calculated from the values of ηi and the rank function
on Ci+1. As a consequence, once we know ηn we can determine the rank of D.

3.1.2. Brill-Noether theory on a generic chain of cycles. Consider now a divisor D =
∑g

i=1Di

on Γ of degree d, that we suppose to be v0-reduced [50, 3]. This means that

(i) For i ≥ 2, each Di is effective of degree at most one.
(ii) Among all divisors D in the linear equivalence class of D, D1 has the maximum

coefficient at v0.

Note that each divisor has a unique v0-reduced divisor in its linear equivalence class.

Denote by d0 the coefficient of D at v0. We now present a criterion for the rank rΓ(D) to
be at least r. It will be convenient to define η0(s) = s− d0, and define ηg by

ηg(s) = min
n

{
n ∈ Z : rΓ

(
D + n(vg)

)
= s

}
,

so that ηg(r) ≤ 0 if and only if rΓ(D) ≥ r. Note that recursive Equation (3) remains valid
for i = g, with the definition Γg+1,1 = Γ (so rg+1,1 = rΓ and Dg+1,1 = D).
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In taking the minimum in (3), the values of any function ηi over t ≥ r+1 are automatically
larger than r. In addition, the recursive equation relating ηi+1 to ηi does not involve the
value of ηi on larger integers. Therefore, if we are just interested in knowing whether or
not rΓ(D) ≥ r, we can restrict all functions ηi to the set {0, . . . , r} and consider the values
ηi(0), . . . , ηi(r).

The following proposition summarizes the basic properties of ηi, and gives a necessary and
sufficient condition for rΓ(D) ≥ r in terms of the values of ηi(r).

Proposition 3.2. Let r be a non-negative integer. Then:

(1) For i = 0, we have η0(s) = s− d0 for all s.
(2) For each i, we have ηi(0) < ηi(1) < · · · < ηi(r).
(3) rΓ(D) ≥ r if any only if for any i = 0, . . . , g we have ηi(r) ≤ 0.

We now make the recursive equation (3) more explicit to relate the values of ηi+1 to the
values of ηi. For fixed i, (3) tells us that

rCi+1(Di+1 + ηi+1(s)(vi+1)− ηi(t)(vi)) ≥ s− t

for every t ≤ s, with equality for some value of t. Moreover, the inequalities for t ≤ s− 2 are
implied by the inequality for t = s− 1. Indeed, since ηi(s− 1)− ηi(t) ≥ s− 1− t and Ci+1 is
of genus one, the inequality for s− 1 implies that

rCi+1

(
Di+1 + ηi+1(s)(vi+1)− ηi(t)(vi)

)
≥ rCi+1

(
Di+1 + ηi+1(s)(vi+1)− ηi(s− 1)(vi)

)
+ s− t− 1

≥ s− t.

Therefore the minimum in (3) is achieved for t = s or t = s− 1. For these two values of t we
have

(4) rCi+1

(
Di+1 + ηi+1(s)(vi+1)− ηi(s)(vi)

)
≥ 0, and

(5) rCi+1

(
Di+1 + ηi+1(s)(vi+1)− ηi(s− 1)(vi)

)
≥ 1,

and ηi+1(s) is defined in such a way that one of the two above inequalities is an equality.
The following cases can happen:

(a) Di+1 = 0.
(b) Di+1 = (zi+1) for a point zi+1 ∈ Ci+1 \ {vi}.

In case (a), equations (4) and (5) tell us that ηi+1(s) = ηi(s) + 1 for any 0 ≤ s ≤ r.
In case (b), since Ci+1 is of genus one, we have ηi+1(s) ∈ {ηi(s), ηi(s) − 1}. In addition,

ηi+1(s) = ηi(s)− 1 if and only if

(1) (zi+1) + (ηi(s)− 1)(vi+1)− ηi(s)(vi) ∼ 0 in Ci+1 (by Equation (4)); and
(2) ηi(s− 1) ≤ ηi(s)− 2 (by Equation (5)).

Since, by genericity assumption, vi and vi+1 are generically located on Ci+1, Relation
(1) above can be satisfied by at most one value of 0 ≤ s ≤ r. In other words, we have
ηi+1(t) = ηi(t) for all 0 ≤ t ≤ r except possibly for one value of s satisfying properties (1)
and (2) above, for which we will have ηi+1(s) = ηi(s)− 1.
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Consider now η0, . . . , ηn as vectors of Zr+1 with basis e0, . . . , er and define

A := {α(0)e0 + · · ·+ α(r)er |α(0) < · · · < α(r) ≤ 0} ⊂ Zr+1.

A lingering lattice path in A of length g is a sequence of vectors α0, . . . , αg in A such that
for each i exactly one of the following holds:

• αi+1 = αi +
∑r

s=0 es
• αi+1 = αi − es for some 0 ≤ s ≤ r
• αi+1 = αi.

A lingering lattice path is called of type (d, d0) if α0 =
∑

s(s − d0)es and the number of
i such that αi+1 = αi − es, for some s, is d − d0. By the above discussion, each v0-reduced
divisor D of degree d and rank at least r defines a lingering path η0, . . . , ηg in A of type (d, d0)
with d = deg(D) and d0 the coefficient of v0.

Let D be a v0-reduced divisor which gives the lingering lattice path η. Since the degree of
D is d and the coefficient of v0 is d0, there are exactly g − d + d0 indices i with Di = 0 and
so ηi+1 = ηi +

∑
s es. The coordinate ηg(r) is thus equal to

η0(r) + g − d+ d0 − ar = r − d0 + g − d+ d0 − ar = r + g − d− ar,

where ar is the number of indices i such that ηi+1 = ηi − er. This shows that ar ≥ r+ g − d.
By the definition of A, and since ηi ∈ A for each i, the number as of indices i such that
ηi+1 = ηi− es is at least ar, i.e., as ≥ ar. so the number of indices i with ηi+1 = ηi is at most
g − (r + 1)ar − n+ d− d0. A simple calculation shows that this is at most ρ+ r − d0, where
ρ = g − (r + 1)(g − d + r). In particular, if ρ < 0, this number would be negative, which
implies there is no divisor of degree d and rank at least r on Γ.

Theorem 3.3. ([24]) Let Γ be a generic chain of cycles of genus g. If ρ < 0, there is no
divisor of degree d and rank at least r on Γ.

As we noted, this theorem implies part (1) of Griffiths-Harris Theorem 3.1.

3.2. Improved Chabauty-Coleman. In this section, we discuss a recent theorem due to
Katz and Zureick-Brown [40]; the presentation follows [4].

Let K be a number field and suppose X is a smooth, proper, geometrically integral curve
over K of genus g ≥ 2. Let J be the Jacobian of X, which is an abelian variety of dimension
g defined over K. If the Mordell-Weil rank r of J(K) is less than g, Coleman [25] adapted
an old method of Chabauty to prove that if p > 2g is a prime which is unramified in K and
p is a prime of good reduction for X lying over p, then #X(K) ≤ #X̄(Fp) + 2g − 2. Here
X̄ denotes the special fiber of a smooth proper model for X over the completion Op of OK
at p and Fp = OK/p. Stoll [58] improved this bound by replacing 2g − 2 with 2r. Lorenzini
and Tucker [45] (see also [48]) proved the same bound as Coleman without assuming that X
has good reduction at p; in their bound, X̄(Fp) is replaced by X̄sm(Fp) where X is a proper
regular model for X over Op and X̄sm is the smooth locus of the special fiber of X. Katz and
Zureick-Brown combine the improvements of Stoll and Lorenzini-Tucker by proving:

Theorem 3.4 ([40]). Let K be a number field and suppose X is a smooth, proper, geometri-
cally integral curve over K of genus g ≥ 2. Suppose the Mordell-Weil rank r of J(K) is less
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than g, and that p > 2g is a prime which is unramified in K. Let p be a prime of OK lying
over p and let X be a proper regular model for X over Op. Then

#X(K) ≤ #X̄sm(Fp) + 2r.

In order to explain the main new idea in the paper of Katz and Zureick-Brown, we first
quickly recall the basic arguments used by Coleman, Stoll, and Lorenzini-Tucker. (See [48]
for a highly readable and more detailed overview.) Assume first that we are in the setting
of Coleman’s paper, so that r < g, p > 2g is a prime which is unramified in K, and X
has good reduction at the prime p lying over p. Fix a rational point P ∈ X(K) (if there
is no such point, we are already done!). Coleman associates to each regular differential ω

on X over Kp (the p-adic completion of K) a “definite p-adic integral”
∫ Q
P ω ∈ Kp. If Vchab

denotes the vector space of all ω such that
∫ Q
P ω = 0 for all Q ∈ X(K), Coleman shows

that dimVchab ≥ g − r > 0. Locally, p-adic integrals are obtained by formally integrating a
power series expansion for ω with respect to a local parameter. Using this observation and
an elementary Newton polygon argument, Coleman proves that

#X(K) ≤
∑

Q̃∈X̄(Fp)

(
1 + n

Q̃

)
,

where n
Q̃

is the minimum over all nonzero ω in Vchab of ord
Q̃
ω̃; here ω̃ denotes the reduction

of a suitable rescaling cω of ω to X̄, where the scaling factor is chosen so that cω is regular
and non-vanishing along the special fiber X̄. If we choose any nonzero ω ∈ Vchab, then the
fact that the canonical divisor class on X̄ has degree 2g − 2 gives∑

Q̃∈X̄(Fp)

n
Q̃
≤

∑
Q̃∈X̄(Fp)

ord
Q̃
ω̃ ≤ 2g − 2,

which yields Coleman’s bound.

Stoll observed that one could do better than this by adapting the differential ω to the point

Q̃ rather than using the same differential ω on all residue classes. Define the Chabauty divisor

Dchab =
∑

Q̃∈X̄(Fp)

n
Q̃

(Q̃).

Then Dchab and KX̄−Dchab are both equivalent to effective divisors, so by Clifford’s inequality
(applied to the smooth proper curve X̄) we have r(Dchab) := h0(Dchab) − 1 ≤ 1

2deg(Dchab).

On the other hand, by the semicontinuity of h0 under specialization we have h0(Dchab) ≥
dimVchab ≥ g − r. Combining these inequalities gives∑

Q̃∈X̄(Fp)

n
Q̃
≤ 2r

which leads to Stoll’s refinement of Coleman’s bound.

Lorenzini and Tucker observed that one can generalize Coleman’s bound to the case of bad
reduction as follows. Let X be a proper regular model for X over Op and note that points of
X(K) specialize to X̄sm(Fp). One obtains by a similar argument the bound

(6) #X(K) ≤
∑

Q̃∈X̄sm(Fp)

(
1 + n

Q̃

)
,
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where n
Q̃

is the minimum over all nonzero ω in Vchab of ord
Q̃
ω̃; here ω̃ denotes the reduction

of (a suitable rescaling of) ω to the unique irreducible component of the special fiber of X

containing Q̃ and dimVchab ≥ g − r > 0 as before. Choosing a nonzero ω ∈ Vchab as in
Coleman’s bound, the fact that the relative dualizing sheaf for X has degree 2g − 2 gives the
Lorenzini-Tucker bound.

In order to combine the bounds of Stoll and Lorenzini-Tucker, we see that it is natural to
form the Chabauty divisor

Dchab =
∑

Q̃∈X̄sm(Fp)

n
Q̃

(Q̃)

and try to prove, using some version of semicontinuity of h0 and Clifford’s inequality, that its
degree is at most 2r. This is the main technical innovation of Katz and Zureick-Brown, so
we state it as a theorem:

Theorem 3.5 (Katz–Zureick-Brown). The degree of Dchab is at most 2r.

Combining Theorem 3.5 with (6) yields Theorem 3.4. As noted by Katz and Zureick-
Brown, if one makes a base change from Kp to an extension field K ′ over which there is a
regular semistable model X′ for X dominating the base change of X, then the corresponding
Chabauty divisors satisfy D′chab ≥ Dchab. (Here D′chab is defined relative to the K ′-vector
space V ′chab = Vchab ⊗K K ′; one does not want to look at the Mordell-Weil group of J over
extensions of K.) In order to prove Theorem 3.5, we may therefore assume that X is a regular
semistable model for X (and also that the residue field of K ′ is algebraically closed).

Let d = deg(Dchab). We now explain how to prove that d ≤ 2r when X is a semistable reg-
ular model using the augmented (weighted) version of Baker’s specialization lemma from [7],
which takes into account the genus of the irreducible components in the semistable model of
the curve X.

Sketch of the proof of Theorem 3.5. Let s = dimK′ V ′chab− 1 ≥ g− r− 1 ≥ 0. We can identify
V ′chab with an (s + 1)-dimensional space W of rational functions on X in the usual way by
identifying H0(X,Ω1

X) with L(KX) = {f : div(f) + KX ≥ 0} for a canonical divisor KX

on X. The divisor Dchab on X̄sm defines in a natural way a divisor D of degree d on the
augmented metric graph Γ, the dual graph of X, with the genus function which gives the
augmentation (in the terminology of [5]).

Denote by K the canonical divisor of the augmented metric graph Γ, which we recall by
definition, is K =

∑
x∈Γ(2 val(x)−2+g(x))(x). As a corollary of the augmented specialization

theorem [7], one sees that the rank of K − D in the augmented metric graph is at least
g − r− 1 ≥ 0. By Clifford’s theorem for augmented metric graphs, which is a consequence of
the Riemann-Roch theorem, 2r(K −D) ≤ deg(K −D), which gives deg(D) ≤ 2r. �

3.3. Rational points and Galois representations. We give now an overview of the recent
applications of Theorem 2.11 to arithmetic geometry over number fields from [32].
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3.3.1. Rational points. Let k be a number field. Let X be a smooth geometrically con-
nected curve over k. Consider a family Xi of étale covers of X defined over k. Consider an
Archimedean place of k, an embedding to C, and denote by Xi,C and XC the corresponding
Riemann surfaces associated to Xi and X. The fundamental group π1(Xi,C) is a subgroup
of π1(XC) (we omit the base points), and fixing a symmetric set of generators S for π1(XC)
(i.e., S = S−1) allows to define the Cayley graph Cay(π1(Xi,C)\π1(XC);S) as the quotient of
Cay(π1(XC);S) by the left action of π1(Xi,C) on Cay(π1(XC);S). To simplify the notation,
we simply write Cay(Xi/X;S) to denote this finite Cayley graph.

Consider the combinatorial Laplacian of Cay(Xi/X;S) and let λ
(i)
1 be its first non-trivial

eigenvalue.

Theorem 3.6 (Burger [19]). There is a constant C > 1 depending only on XC such that

C−1λ1(Xi,C) ≤ λ(i)
1 ≤ Cλ1(Xi,C) for any i.

Here Xi,C is equipped with a metric of constant curvature.

Proof. By going to the universal cover X̃ and taking a tiling of X̃ obtained by fixing a
fundamental domain for the action of π1(XC) on X̃, one can see that each surface Xi,C
admits a decomposition into domains isometric to a fixed domain F with piecewise smooth
boundary (independent of i) such that the dual complex associated to this tiling is precisely
the Cayley graph Cay(Xi/X;S). The theorem now follows by looking at the discretization
functional φ : C∞(Xi,C) → C0(Cay(Xi/X;S)) which sends f to φ(f) taking a value at a
vertex v of Cay(Xi/X;S) equal to the average of f on the domain corresponding to v in the
tiling of Xi,C. The inverse of φ sends a discrete function defined on vertices of the Cayley
graph to a smoothing of the function constant on each domain of the surface Xi,C. The

ratio between λ
(i)
1 and λ1(Xi,C) remains bounded away from zero and infinity, by a non-zero

function depending on the first Neumann eigenvalue of the Laplacian operator on F . �

Corollary 3.7. Assume λ
(i)
1 |Cay(Xi/X;S)| tends to infinity. Then the gonality of Xi tends

to infinity.

Proof. The volume of Xi,C is |Cay(Xi/X;S)| times the volume µ of X. By Yang-Li-Yau in-

equality, λ1(Xi,C)|Cay(Xi/X;S)|µ ≤ 8πγ(Xi,C). Since λ
(i)
1 |Cay(Xi/X;S)| tends to infinity,

and λ
(i)
1 is within a constant factor of λ1(Xi,C), it follows that γ(Xi,C) tends to infinity and

the result follows. �

Theorem 3.8 ([32]). Let Xi/X be a family of étale covers of X. Assume that

λ
(i)
1 |Cay(Xi/X;S)| → ∞.

For any d, the set ⋃
k1:[k1:k]≤d

Xi(k1)

is finite for all but finitely many i.

Proof. Under the hypothesis of the theorem, the gonality γ(Xi) of Xi tends to infinity so
there is Nd such that for i ≥ Nd, γ(Xi) > 2d. By Faltings-Frey theorem [33], the set⋃
k1:[k1:k]≤dXi(k1) is finite for any i ≥ Nd. �
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3.3.2. Galois representations.

Theorem 3.9 (Ellenberg-Hall-Kowalski [32]). Let k be a number field and X/k a smooth
geometrically connected algebraic curve. Let A → X be a principally polarized abelian scheme
over X of dimension g ≥ 1, defined over k, and let

ρ : π1(XC)→ Sp2g(Z)

be the associated monodromy representation. For any finite extension k1/k and a rational
point t ∈ X(k1), let

ρt,` : Gal(k/k1)→ Sp2g(F`)

be the Galois representation associated to the `-torsion points of At.
Assume that the image of ρ is Zariski dense in Sp2g. Then the set⋃

k1: [k1:k]=d

{t ∈ X(k1) | the image of ρt,` does not contain Sp2g(F`)}

is finite for any d ≥ 1 and any but finitely many ` (depending on d).

Proof. By assumption the image I of ρ is dense in Sp2g(Z) which implies that the image I` of
the reduction map I → Sp2g(F`) is the whole Sp2g(F`) for all but finitely many `. Suppose that
for each conjugacy class of a maximal subgroup of Sp2g(`) a fixed representative is designed,
and consider all the pairs (`, J) where ` is such that I` = Sp2g(F`) and J < Sp2g(F`) runs over
the representatives of the conjugacy classes of maximal subgroups of Sp2g(F`). Each such
pair (`, J) gives rise to an étale cover X`,J → X with the property that Cay(X`,J/X;S) =
Cay(J\Sp2g(F`);S).

In particular, the set of all k1-rational points t of X such that I` is not in the image of ρt,`
lies in the image of k1-rational points of a pair (`, J) under the map π`,J . So the theorem
follows as soon as it is shown that the number of k1-rational points of the constructed étale
covers X`,J of X are finite for any fixed d ≥ 1 and for extensions [k1 : k] = d. For this,
it will be enough to show that the family of étale covers X`,J/X verifies the condition of
Theorem 3.8.

The group Sp2g(F`) is perfect for ` ≥ 5 and is generated by its elements of order `. In

addition each maximal subgroup J of Sp2g(F`) is of index at most 1
2(`g−1). By Theorem 2.19,

the Cayley graphs Cay(Sp2g(F`);S) have λ1(Cay(Sp2g(F`);S)) >> 1
log |Sp2g(F`)|A

. The Cayley

graph Cay(J\Sp2g(F`);S) is by definition the quotient of Cay(Sp2g(F`);S) under the left
action of J , and thus have the same λ1. An easy calculation now shows that

λ1(Cay(J\Sp2g(F`);S)) |Cay(J\Sp2g(F`);S)| → ∞

when (`, J) runs over all pairs as above with ` ≥ 5, which finishes the proof. �

3.4. Gonality and rational points of bounded degree of Drinfeld modular curves.
In this section, we discuss arithmetic consequences of the combinatorial Yang-Li-Yau inequal-
ity from [26]. The main theorem is a linear lower bound in the genus for the gonality of
Drinfeld modular curves. This extends the work of Abramovich [1] to positive characteristic
case.
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3.4.1. Lower bound on the gonality of XΓ. Let K be a function field of genus g over the field
of constants k = Fq, of characteristic p. Let ∞ be a fixed place of K of degree δ, and let A
be the ring of functions f ∈ K which have poles at most at ∞.

Let K∞ be the completion of K at ∞, and denote by C∞ the completion of an algebraic
closure of K∞. Let Ω = P1(C∞)\P1(K∞) = C∞ \K∞. The group GL2(K) acts by fractional
linear transformations on Ω.

Consider now Γ an arithmetic subgroup of GL2(K): Γ is a congruent subgroup of GL(Y ) ⊆
GL2(K) for a rank-two A-lattice Y in K∞. This means that Γ contains a subgroup of the
form GL(Y, n) := ker{GL(Y )→ GL(Y/nY )} for an ideal n of A.

The group Γ acts on Ω, and the quotient Γ\Ω is a smooth analytic curve which is the
analytification of a smooth affine curve YΓ defined over a finite (abelian) extension of K∞.
The Drinfeld modular curve XΓ is the compactification of YΓ obtained by adding a finite
number of points, called cusps, to YΓ.

Theorem 3.10 ([26]). Let Γ be an arithmetic subgroup of GL2(K). There is a constant
c = c(K, δ), such that the gonality γ(XΓ) over K satisfies

γ(XΓ) ≥ c . (g(XΓ)− 1),

where g(XΓ) is the genus of XΓ.

We briefly discuss the proof of this theorem.

Reduction graph of XΓ. The group Γ acts by automorphisms on the Bruhat-Tits tree T of
PGL2(K∞), and the quotient is a finite graph G with a finite set of infinite rays corresponding
to the cusps of XΓ. The Drinfeld curve XΓ is a Mumford curve with reduction graph over
Fqδ isomorphic to G.

Maximum valence of G. The Bruhat-Tits tree T is a regular tree of valence qδ + 1. The graph
G being the finite part of a quotient of this tree by a subgroup of the automorphism group,
it has maximum valence dmax bounded by qδ + 1.

First non-trivial eigenvalue of the Laplacian of G for Γ = GL(Y, n). In the case Γ = GL(Y, n),
the Laplacian of G can be described in terms of the projection of the Hecke operator on T
corresponding to the characteristic function of ∞, and a zero-one matrix corresponding to
the infinite rays of the quotient of T by GL(Y, n). Ramanujan-Petersson conjecture for global

function fields, proved by Drinfeld, gives an estimate of the form λ1 ≥ qδ − 2qδ/2 for the first
non-trivial eigenvalue of the Laplacian.

Number of vertices of G for Γ = GL(Y, n). A direct comparison argument between the two
quotient graphs G and G0 associated to GL(Y, n) and GL(Y ), respectively, involving the
stabilizer of the vertex v0 of T corresponding to the root vertex of T, leads to a lower bound
of the type

|G| ≥ 1

q(q2 − 1)
[GL(Y ) : GL(Y, n)],

where |G| is the number of vertices of G.
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Gonality of XΓ for Γ = GL(Y, n). Combining the above estimates with the combinatorial
Yang-Li-Yau inequality, discussed in the previous section, gives the existence of a constant
c0, depending only on q and δ, such that for Γ = GL(Y, n),

(7) γ(XΓ) ≥ c0 . [GL(Y ) : Γ].

The bound on the genus is obtained by applying the Riemann-Hurwitz formula to the cover
XGL(Y,n) → XGL(Y ), and a careful analysis of the degree of the ramification divisor. Riemann-
Hurwitz gives

[GL(Y, n) : GL(Y )] = (g(XGL(Y,n))− 1)
2(q − 1)

2(g(XGL(Y ))− 1) +R
,

so it will be essentially enough to give a lower bound on R since g(XGL(Y )) is a constant,
depending only on K and δ.

Theorem for general Γ. This follows by looking at the cover XGL(Y,n) → XΓ. This gives
γ(XΓ) ≥ γ(XGL(Y,n))|Γ ∩ Z|/[Γ : GL(Y, n)], where Z ' F∗q is the centralizer of GL(Y ).
Combining the theorem for GL(Y, n) with Riemann-Hurwitz for the cover XGL(Y,n) → XΓ

gives the result for general Γ.
Note that the inequality (7) holds for more general Γ, for a constant c0 = c0(q, δ).

3.4.2. Rational points of bounded degree. It is possible to apply the analogue in positive char-
acteristic of Faltings-Frey theorem [56, 22], along with the linear lower bound on the gonal-
ity (7) to prove the following theorem.

Suppose that XΓ is defined over the finite extension L of K.

Theorem 3.11 ([26]). There is a constant c0 = c0(q, δ) such that the set⋃
L′: [L′:L]≤ 1

2
(c0[GL(Y ):Γ]−1)

XΓ(L′)

is finite.

Acknowledgment. Special thanks to Matt Baker, Antoine Chambert-Loir, David Cohen-
Steiner, and Olivier Täıbi for interesting discussions.
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