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Dédié à Jean Lannes

Abstract. We prove equidistribution of Weierstrass points on Berkovich curves. Let X be a

smooth proper curve of positive genus over a complete algebraically closed non-Archimedean

field K of equal characteristic zero with a non-trivial valuation. Let L be a line bundle of

positive degree on X. The Weierstrass points of powers of L are equidistributed according

to the Zhang-Arakelov measure on Xan. This provides a non-Archimedean analogue of a

theorem of Mumford and Neeman.

Along the way we provide a description of the reduction of Weierstrass points, answering

a question of Eisenbud and Harris.

1. Introduction

A theorem of Mumford and Neeman [23, 24] (see also [27]) states that for a compact
Riemann surface S of positive genus, and for a line bundle L of positive degree on S, the
discrete measures µn supported on Weierstrass points of L⊗n converge weakly to the Arakelov-
Bergman measure on S when n goes to infinity. Our aim in this paper is the prove a non-
Archimedean analogue of Mumford-Neeman theorem.

Let K be a complete algebraically closed valued non-Archimedean field with valuation ring
R and residue field κ. We suppose that the valuation of K is non-trivial. In addtion, we
assume that both K and κ are of characteristic zero.

Let X be a smooth proper curve of positive genus over K. The analogue of the Arakelov
measure in non-Archimedean Arakelov theory is the canonical admissible measure constructed
by Zhang [33]. Fixing a skeleton Γ of Xan, which is a finite metric graph, the canonical
admissible measure µad is a measure of total mass one with support in Γ. The skeleton Γ
comes with an inclusion map ι : Γ ↪→ Xan, which allows to pushforward µad to Xan. By the
explicit form of µad, and since µad does not have support on bridge edges, it is easy to see that
the resulting measure ι∗(µad) on Xan does not depend on the choice of the skeleton Γ. This
leads to a well-defined measure µad on the Berkovich analytification Xan of X, supported on
the minimal skeleton of Xan. We will review the definition in Section 1.3.

Let now L be a line bundle of positive degree on X, and denote by Wn =
∑

x∈X(K)wn,x(x)

the Weierstrass divisor of L⊗n, that we view as a divisor with support in X(K) ⊂ Xan.
Consider the discrete measure

1

deg(Wn)
δWn =

1

deg(Wn)

∑
x∈X(K)⊂Xan

wn,xδx

supported on a finite set of points of type I in Xan. We have
1
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Theorem 1.1. Notations as above, the measures 1
deg(Wn)δWn converge weakly to the canonical

admissible measure µad on Xan.

Since continuous functions of the form τ∗(f), for the retraction τ : Xan � Γ of Xan to a
skeleton and continuous function f on Γ, are dense in the space of continuous functions on
Xan, in order to prove Theorem 1.1, it will be enough to fix a skeleton Γ of Xan and prove
the following equidistribution theorem. Denote by Wn = τ∗(Wn) the reduction of Wn on Γ.
Define the discrete measure µn := 1

deg(Wn)δWn .

Theorem 1.2. Notations as above, the measures µn converge weakly to the canonical admis-
sible measure µad on Γ.

A consequence of our results, which seems to be also new, is the following.

Corollary 1.3. Let X be a smooth proper curve of genus g > 0 over a discrete valuation field
K of equicharacteristic zero. Let X be a regular semistable model of X over R′, the valuation
ring of a finite extension K ′ of K. Let L be a line bundle of positive degree on X and denote
by Wn (by an abuse of the notation) the (multi)set of Weierstrass points of L⊗n. Let C0 be an
irreducible component of the special fiber Xs of genus g0, and denote by W0,n the (multi)set
of Weierstrass points whose specialization lie on C0. Then |W0,n|/|Wn| tends to g0/g.

Remark 1.4. A combination of our results and Mumford-Neeman theorem shows the fol-
lowing. Notations as in the above corollary, suppose in addition that the residue field κ ' C,
and g0 ≥ 2. Then the reduction of W0,n in C0 is equidistributed according to the Arakelov
measure on Can

0 . A similar result holds if we assume that κ is an algebraically closed complete
non-Archimedean field, with a residue field of characteristic zero; the equidistribution is then
with respect to the Zhang-Arakelov measure on Can

0 . We omit the details.

The rest of this paper is devoted to the proof of Theorem 1.2.

A useful machinery in the proof is the framework of limit linear series introduced in a
joint paper with M. Baker [2], and further developed in an upcoming paper of the author
in [1]. The limit linear series from [2] provided an extension of crude limit linear series in the
terminology of Eisenbud-Harris [15] to any semistable curve, while the limit linear series that
we consider here correspond to extensions to any semistable curve of the refined limit linear
series in that terminology [15]. We will recall the basic set-up in Section 2, and refer to [1]
for more details and results.

In Section 3, we consider the reduction of Weierstrass divisors on skeleta, and show that
limit linear series allow to provide a complete description of the points in the support as well
as their coefficients in the case κ has characteristic zero, c.f. Theorem 1.5 below. This gives
a complete and quite simple answer to a question of Eisenbud-Harris [16] on the reduction
of Weierstrass points on a (semistable) degenerating family of curves over complex numbers,
furthermore, refining the previous partial result of Esteves-Medeiros [14].

Theorem 1.5. Let L = O(D) be a line bundle of degree d and rank r, and denote by W its
Weierstrass divisor on X. Let Γ be a skeleton of Xan and let (D,S) be the limit grd induced
on Γ by the specialization theorem. Write D =

∑
x∈Γ dx(x). We have

τ∗(W) =
∑
x∈Γ

cx(x),
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where the coefficient cx of a point x has the following expression:

cx = (r + 1)dx +
r(r + 1)

2
(2gx − 2 + val(x))−

∑
ν∈Tx(Γ)

r∑
i=0

sνi .

In the above theorem gx and val(x) denote the genus and the valence of x in Γ, respectively,
Tx(Γ) denotes the set of unit tangent directions to Γ at x, and sνi are the integers underlying
the definition of the limit linear series (D,S) on Γ, which correspond to the slopes along
ν of the reduction of rational functions in the complete linear series defined by O(D), c.f.
Section 2.

The fact that such a simple description of the reduction of Weierstrass divisors in terms
of a combinatorial data exists is probably a specific property of the residue field κ being of
characteristic zero. This is what refrains us from stating the equidistribution theorem in its full
generality. However, in the case κ has positive characteristic, we still have a similar description
of the reduction of the Weierstrass divisor in terms of the reduction of the Wronskian at points
of type II in Γ, see Theorem 3.4. We expect indeed that the equidistribution theorem remains
valid in any characteristic; we discuss in Remark 4.3 what has to be done in order to get such
a result from Theorem 3.4.

A second tool essential in the proof is the theory of Okounkov bodies (in dimension one), and
a well-known equidistribution phenomena for Okounkov bodies [18, 21, 9]. Once Theorem 1.5
has been discovered, the appearance of the Okounkov bodies becomes indeed quite natural if
we remember that to any type II point x of Xan is associated a curve Cx over κ, whose points
are in bijection with the branches of Xan adjacent to x. Fixing such a branch ν ∈ Tx(Xan)
of Xan, and considering the slopes of rational functions along ν in the complete linear series
defined by powers of L allows to define an interval Λν of volume d = deg(L) in R. The local
equidistribution theorem then asserts that the normalized slopes are equidistributed in Λν ,
c.f. Theorem 4.1.

Theorem 1.5 and Theorem 4.1, along with basic properties of limit linear series from Sec-
tion 2, and a careful analysis of the variation of the minimum slope along edges of Γ, then
allow to finish the proof of Theorem 1.2.

We like to mention that the question of existence of a non-Archimedean version of Mumford-
Neeman theorem has been implicitly asked in some places in the literature [10, 17]. We first
came to learn about this through discussions with Matt Baker on the behavior of (divisorial)
Weierstrass points on a metric graph Γ, which, we recall, are intrinsically defined in terms of
the divisor theory on Γ (and without any reference to a choice of an algebraic curve X with
reduction graph Γ). While this general question still remains open, we note that Theorem 1.5
predicts an intrinsic integer number can be assigned to any connected component of the locus
of the (divisorial) Weierstrass points in Γ, thus reducing Baker’s question to the question of
understanding these numbers.

We would like to use this opportunity to thank Matt Baker for sharing his questions and
conjectures, and for his continuous support and collaboration, on related topics. We thank
Matt Baker and Farbod Shokrieh for helpful comments on a preliminary draft of this paper.

In the rest of this introduction, we will fix the notation, and briefly recall some well-known
results which will be used in the next sections.
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1.1. Weierstrass divisor. Let K be an algebraically closed field, X a smooth proper curve
over K, and L a line bundle of positive degree on X. Consider a basis f0, . . . , fr be a basis
for H0(X,L), and set F = {f0, . . . , fr}.

If the characteristic of K is zero, then we consider the Wronskian WrF which is a global

section of Γ(X,L⊗(r+1)Ω⊗
r(r+1)

2 ). Intrinsically, it is defined as follows: consider the jet bundle

Jr = π1∗

(
π∗2(L)/Ir+1

)
, where I is the ideal of the diagonal in X ×X, and π1 and π2 are the

projections into the first and the second factor. There is a natural induced filtration on Jr by
powers of I, and the quotients are identified with L⊗Ω⊗iX . The set of global sections f0, . . . , fr
define sections π∗2(fi) of Jr, whose determinant will be a global section of L⊗(r+1)⊗Ω⊗r(r+1)/2

In local coordinate, for any point p ∈ X(K), we have Lp ' OX,p as an Op-module. Taking a
generator gp of Lp, any global section fi can be written as fi = fi,pgp for fi,p ∈ Op. The local

ring Op is a discrete valuation ring with a uniformizer tp. We can thus define f
(j)
i,p recursively

by f
(j)
i,p = d

dτp
f

(j−1)
i for any j ≥ 0, with f

(0)
i,p = fi,p. The stalk of the Wronskian WrF at p is

given by

WrF ,p = det
(
f

(j)
i,p

)
0≤i,j≤r

g(r+1)
p (dtp)

r(r+1)
2 ∈ H0(Op, L⊗(r+1)

p ⊗ Ω
⊗ r(r+1)

2
p ).

In particular, it does not depend on the choice of gp and the local uniformizer tp.

In positive characteristic char(K) > 0, it is well-known that Weierstrass points are more
subtle, and the definition given above has to be modified, see e.g. [25]. We should instead
consider the Hasse derivative with respect to a separating parameter t for K(X) [28, 29].
There exists t ∈ K(X) such that K(X)/K(t) is a finite separable extension. The Hasse

derivatives D
(j)
t , defined on K[t] by D

(j)
t (tm) =

(
m
j

)
tm−j , uniquely extend to K(X). There

exist a set of (r + 1) integers 0 ≤ b0 < b1 < · · · < br such that det
(
D

(bj)
t fi

)
0≤i,j≤r

6= 0. In

addition, (b0, . . . , br) is chosen to be minimum in the lexicographic order with respect to this

property. The corresponding Wronskian WrF defined by WrF = det
(
D(bj)fi

)r
i,j=0

defines a

well-defined global section of L⊗(r+1) ⊗ Ω⊗
∑r
i=0 bi , whose zero divisor is independent of the

choice of t, and by definition, is called the Weierstrass divisor of L [19, 20, 28, 29]. Note
that the Wronskian admits a similar description in terms of jumps of jet bundles in positive
characteristic [19, 20].

1.2. Berkovich analytic curves. We provide a brief discussion of the structure of Berkovich
analytic curves, and introduce the main notation which will be used later. For further details,
we refer to [5, 7, 13].

Let X/K be an algebraic variety. The topological space underlying the Berkovich analytifi-
cation Xan of X is described as follows. Each point x of Xan corresponds to a scheme-theoretic
point X, with residue field K(x), and an extension | |x of the absolute value on K to K(x).
The topology on Xan is the weakest one for which Uan ⊂ Xan is open for every open affine
subset U ⊂ X and the function x 7→ |f |x is continuous for every f ∈ OX(U). By definition,
the set X(K) of closed points of X is naturally included in Xan, and has a dense image. The
space Xan is locally compact, Hausdorff, and locally path-connected. Furthermore, Xan is
compact iff X is proper, and path-connected iff X is connected. Analytifications of algebraic
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varieties is a subcategory of a larger category of K-analytic spaces, and e.g., open subsets of
Xan come with a K-analytic structure in a natural way [7].

For any point x of Xan, the completion of the residue field K(x) of X with respect to | |x
is denote by H(x), and the residue field of the valuation field (H(x), | |x) is denoted by H̃(x).

1.2.1. Structure of analytic curves. For an analytic curve Xan, the points can be classified

into four types. By Abhyankar’s inequality, tr-deg
(
H̃(x)/κ

)
+ rank

(
|H(x)×|/|K×|

)
≤ 1,

where the rank is that of a finitely generated abelian group. The point x is then of type I if it

belongs to X(K) in which case, H(x) ∼= K, of type II if the transcendence degree of H̃(x)/κ
is one, of type III if the rank of the valuations extension is one, and of type IV otherwise.

Semistable vertex sets and skeleta. A semistable vertex set for Xan is a finite set V of points of
Xan of type II such that Xan \ V is isomorphic to a disjoint union of a finite number of open
annuli and an infinite number of open balls. By semistable reduction theorem, semistable
vertex sets always exist, and more generally, any finite set of points of type II in Xan is
contained in a semistable vertex set. The skeleton Γ = Σ(X,V ) of Xan with respect to a
semistable vertex set V is the subset of Xan defined as the union of V and the skeleton of
each of the open annuli in the semistable decomposition associated to V . Using the canonical
metric on the skeleton of the open annuli, Γ comes naturally equipped with the structure
of a finite metric graph contained in Xan. In addition, Γ has a natural model G = (V,E)
where the edges are in correspondence with the annuli in the semistable decomposition. In
this paper, we only consider semistable vertex sets whose associated model is a simple graph,
i.e., without loops and multiple edges.

Semistable vertex sets for Xan correspond bijectively to semistable formal models X for X
over R.

Retraction to the skeleton. Let Γ be a skeleton of Xan defined by a semistable vertex set
V . There is a canonical retraction map τ : Xan � Γ which is in fact a strong deformation
retraction [7]. In terms of the semistable decomposition, τ is identity on Γ, sends the points
of each open ball B to the unique point of Γ in the closure B of B, called the end of B, and
is the retraction to the skeleton for the open annuli [7, 5].

Residue curves and the genus formula. A point x ∈ Xan of type II has a (double) residue

field H̃(x) which is of transcendence degree one over κ. We denote by Cx the unique smooth

proper curve over κ with function field H̃(x), and denote by gx the genus of Cx. If V is
any semistable vertex set for Xan, then for any point of type II in Xan \ V , gx = 0, and by
semistable reduction theorem, we have the following genus formula:

g = g(X) = g(Γ) +
∑
x∈V

gx,

where g(Γ) = |E|− |V |+ 1, for G = (V,E) the model of the skeleton Γ = Σ(X,V ), is the first
Betti number of Γ. We extend the definition of g(·) to all points of Γ by declaring g(x) = 0
if x is not a point of type II in Xan, obtaining in this way an augmented metric graph in the
terminology of [3].
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Tangent vectors. There is a canonical metric on H(Xan) which restricts to the metric on
Γ = Σ(Xan, V ) for any semistable vertex set V for Xan. Here, by H(Xan), we denote Xan

without the set of points of type I and IV.
A geodesic segment starting at x ∈ Xan \ X(K) is an isometric embedding α : [0, θ] →

Xan \ X(K) for some θ > 0 such that α(0) = x. Two geodesic segments starting at x are
called equivalent if they agree on a neighborhood of 0. As usual, a tangent direction at a point
x is an equivalence class of geodesic segments starting at x. We denote by Tx = Tx(Xan) the
set of all tangent directions at x.

For any simply connected neighborhood U of x ∈ Xan, there is a natural bijection between
Tx and the connected components of U \ {x}. There is only one tangent direction at x when
x is of type I; for x of type III we have |Tx| = 2. (For x of type IV we have |Tx| = 1.) For
a point x of type II, there is a canonical bijection between Tx and Cx(κ), the set of closed
points of the smooth proper curve Cx associated to x. Points of Cx(κ) correspond to discrete

valuations on H̃(x) which are trivial on κ, and the resulting bijection with Tx associates to a
vector ν ∈ Tx, a discrete valuation ordν : κ(Cx)× → Z: If xν denotes the corresponding point

of Cx(κ) then, for every nonzero rational function f̃ ∈ κ(Cx), we have ordν(f̃) = ordxν (f̃).

1.2.2. Reduction of rational functions and the slope formula. Let x ∈ Xan be a point of type
2. For a nonzero rational function f on X, there is an element c ∈ K× such that |f |x = |c|.
Define f̃ ∈ κ(Cx)× to be the image of c−1f in H̃(x) ∼= κ(Cx). Note that if the valuation of
K has a section (which is the case for algebraically closed fields [22, Lemma 2.1.15]), this can
be made well-defined; otherwise, it is well-defined up to a multiplicative scalar.

If H is a K-linear subspace of K(X), the collection of all possible reductions of nonzero

elements of H, together with {0}, forms a κ-vector space H̃. In addition, we have dim H̃ =
dimH (c.f. [2]).

A function F : Xan → R is piecewise linear if for any geodesic segment α : [a, b] ↪→ Xan \V ,
the pullback map F ◦ α : [a, b] → R is piecewise linear. The outgoing slope of a piecewise
linear function F at a point x ∈ Xan along a tangent direction ν ∈ Tx is defined by

dνF (x) = lim
t→0

(F ◦ α)′(t),

where α : [0, θ] ↪→ Xan is a geodesic segment starting at x which represents ν. A piecewise
linear function F is called harmonic at a point x ∈ Xan \ V if the outgoing slope dνF (x) is
zero for all but finitely many ν ∈ Tx, and in addition

∑
ν∈Tx

dνF (x) = 0.
The following theorem will be essential all through the paper [5, 8, 32]. It is called the slope

formula in [5] and is also a consequence of the non-Archimedean Poincaré-Lelong formula [32].

Theorem 1.6 (Slope formula). Let X be a smooth proper curve over K, and f be a nonzero
rational function in K(X). Let F = − log |f | : Xan → R ∪ {±∞}. Let V be a semistable
vertex set of X such that zeros and poles of f are mapped to vertices in V under the retraction
map τ from Xan to the skeleton Γ = Σ(X,V ). We have

(1) F is piecewise linear with integer slopes, and F is linear on each edge of Γ ↪→ Xan.

(2) If x is a type-2 point of Xan and ν ∈ Tx, then dνF (x) = ordν(f̃x).
(3) F is harmonic at all x ∈ H(Xan).
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(4) Let x be a point in the support of div(f), let e be the ray in Xan with one endpoint x
and another endpoint y ∈ V , and let ν ∈ Ty be the tangent direction represented by e.
Then dνF (y) = ordx(f).

To each nonzero rational function f on X and each semistable vertex set V for X, one
associates a corresponding rational function F = − log |f | on the skeleton Γ.

As an application of Theorem 1.6, we obtain the following [2, 4]: For every nonzero rational
function f on X,

τ∗(div(f)) = div(F ).

Here τ∗ is the specialization map on divisors from curves to metric graphs induced from
the retraction map τ , and coincides with the reduction map in [11, 33].

1.3. Zhang’s measure. Let Γ be a metric graph with a simple graph model G = (V,E).
Each edge e in E has a length `e > 0. For any point x of Γ, we denote by Tx(Γ), the set of
all outgoing unit tangent vectors to Γ at x. The directional derivative of f at any point x of
Γ along a tangent vector ν ∈ Tx(Γ) is denoted by dνf(x)

The space of piecewise smooth function on Γ is denoted by S(Γ). The metric graph Γ
has a natural Lebesgue measure denoted by dθ. The Laplacian of Γ is the (measure valued)
operator ∆ on Γ which to a function f ∈ S(Γ) associates the measure

∆(f) := −f ′′dθ −
∑
p

σpδp,

where dθ is the Lebesgue measure on Γ, δp is the Dirac measure at p, and σp is the sum of
the directional derivatives of f along tangent directions in Tp(Γ):

σp =
∑

ν∈Tp(Γ)

dνf(p).

Consider a measure µ on Γ of total mass one. Fix a point x ∈ Γ and consider the following
Laplace equation

(1) ∆y g(x, y) = δx − µ ,

with uniformizing condition
∫

Γ g(x, y) dµ(y) = 0. It has a unique solution denoted by gµ(x, y).
In addition, gµ(x, y) has the following explicit representation in terms of the Green function
gz(x, y) on Γ. Recall first that gz(x, y) is the unique solution to the equation

∆ygz(x, y) = δx − δz,

under the condition gz(x, z) = 0. Then we have gµ(x, y) =
∫

Γ gz(x, y)dµ(z). We refer to [6]
for more details.

1.3.1. Canonical admissible measure µad. Let D be a divisor and µ be a measure on Γ. We
use the conventional notation that gµ(D, y) =

∑
p∈ΓD(p)gµ(p, y).

The following theorem is proved by Zhang [33], and is a generalization of a theorem of
Chinburg-Rumley [11] for D = 0 to any divisor of degree deg(D) 6= −2.
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Theorem 1.7 (Zhang [33]). Let D be a divisor of degree different from −2 on a metric graph
Γ of positive genus. There is a measure µD and a constant cD such that for any point x of
Γ, one has

cD + gµD(D,x) + gµ(x, x) = 0.

In addition, the pair (µD, cD) is unique.

Let now X be a smooth proper connected curve on K, and Γ a skeleton of Xan associated
to a semistable vertex set V . The canonical divisor KX on Γ is the divisor

KX :=
∑
x∈Γ

(
2gx − 2 + val(x)

)
(x).

Note that deg(KX) = 2g(X) − 2. The metric graph Γ is an augmented metric graph in the
terminology of [3], and KX is equal to the sum KΓ + 2Kg, where KΓ is the canonical divisor
of the (unaugmented) metric graph Γ, and Kg is the divisor associated to the genus function
g(·) defined on the points of Γ. The measure associated to the canonical divisor KX of the
augmented metric graph Γ is called the canonical admissible measure and is denoted by µad.
While not needed in the sequel, we note that the measure µ0 (associated to D = 0) is the
canonical measure of [11].

The canonical admissible measure µ has the following explicit form [33]. For any divisor
D we denote by δD the measure

∑
p∈ΓD(p)δp of total mass deg(D).

Theorem 1.8 (Zhang [33]). Notations as above, we have

µad =
1

g
δKg +

1

g

∑
e∈E

1

`e + ρe
dθ,

where g is the genus of X, and for any edge e in E (the set of edges of the graph model of
Γ), ρe denotes the effective resistance between the two end points of e in Γ \ e.

Here the metric graph Γ \ e is defined by removing the interior of the edge e from Γ. The
effective resistance ρe in Γ\e between the two points u and v of the edge e = {u, v} is formally
defined as ρe = geu(v, v), where gez(z, y) is the Green function on Γ \ e, as described above.

Note that ρe = ∞ if Γ \ e is disconnected, and is finite otherwise. In particular, µad does

not have support on the interior of any bridge edge of Γ (in that case, `e
`e+ρe

= 0). This shows

that the measure ι∗(µad) is a well-defined measure on Xan independent of the choice of a
skeleton Γ of Xan, where ι : Γ ↪→ Xan denotes the natural inclusion of Γ in Xan.

2. Limit linear series
In this section, we discuss the framework of limit linear series from [1], and explain how

reduction of rational functions gives rise to limit linear series in this framework. The interested
reader is referred to [1, 2] for more details on relevant materials.

2.1. Slope structures and linear series on metric graphs.
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2.1.1. Rank functions on hypercubes. Denote by [r] the set of integers 0, . . . , r. The hypercube
2dr of dimension d and width r is the product [r]d. An element of 2dr denoted by i is thus an
integral vector i = (i1, . . . , id) with 0 ≤ i1, . . . , id ≤ r. We denote by 0 and em, 1 ≤ m ≤ d, the
origin 0 = (0, . . . , 0) and the vector whose coordinates are all zero expect the m-th coordinate
which is equal to one, respectively.

The partial order on 2dr is denoted by ≤ and is defined by i ≤ j if for any m, im ≤ jm.

There is a lattice structure on 2dr induced by the two operations ∨ and ∧ defined by taking
the maximum and the minimum coordinate-wise, respectively: for i and j in 2dr , we have

i ∨ j = (max(i1, j1), . . . ,max(id, jd)) i ∧ j = (min(i1, j1), . . . ,min(id, jd)).

A function f : 2dr → Z is called supermodular if for any two elements i and j, one has

f(i) + f(j) ≤ f(i ∨ j) + f(i ∧ j).

A rank function ρ : 2dr → Z is a supermodular function satisfying the following conditions:

• The values of ρ are in the set [r] ∪ {−1}.
• ρ is decreasing, i.e., if i ≤ j, then ρ(j) ≤ ρ(i).
• ρ(0) = r, and for any 1 ≤ m ≤ d, ρ(em) = r − 1.

Applying the supermodularity of ρ, one easily sees that ρ(i + em) ≥ ρ(i) − 1. For a rank
function ρ on 2dr , we define the set of jumps Jρ of ρ as follows: A point i belongs to Jρ, if

ρ(i) ≥ 0 and for any 1 ≤ m ≤ d one has ρ(i+ em) = ρ(i)− 1, whenever i+ em belongs to 2dr .
Note that by using the the monotonicity of ρ, the data of Jρ completely determines the rank
function.

The function ρ : 2dr → Z defined by

ρ(i1, . . . , id) = max{−1, r − i1 − · · · − id}

is a rank function. The set of jumps of ρ consists of all the points i = (i1, . . . , id) of 2dr such
that

∑
m im ≤ r. This is called the standard rank function.

2.1.2. Filtered vector spaces and the induced rank functions. Let H be a vector space of

dimension r + 1 over κ. Suppose we are given d decreasing filtrations F (m)
• , indexed by

1 ≤ m ≤ d:

F (m)
0 H = H ) F (m)

1 H ) · · · ) F (m)
r H = 0.

The function ρ : 2dr → Z defined by

ρ(i1, . . . , id) := dimκ

(
F (1)
i1
H ∩ · · · ∩ F (d)

id
H
)
− 1,

is a rank function.
A typical example is obtained by a set of d distinct points x1, . . . , xd on a smooth proper

curve C over κ. For H ⊂ κ(C) a vector space of rational functions of dimension r + 1 over

κ, each point xm provides a decreasing filtration F (m)
• H as above by looking at the orders

of vanishing of functions in H at xm, so F (m)
j is the vector space of all rational functions in

H with an order of vanishing at xi among the first r + 1 − j possible values in a decreasing
order.
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2.1.3. Slope structures of order r on graphs and metric graphs. Let first G = (V,E) be a
simple graph. We denote by A the set of all the oriented edges (arcs) uv for any edge {u, v}
in E (so both uv and vu belong to A). For a vertex v ∈ V , we denote by Av ⊂ A the set of

all the oriented edges vu ∈ ~E (i.e., {v, u} ∈ E).

A slope structure S =
{
Sv;Se

}
v∈V,e∈A

of order r on G, or simply an r-slope structure, is

the data of

• For any oriented edge e = uv ∈ A of G, a set of integers se0 < se1 < · · · < ser, subject to
the requirement that suvi + svur−i = 0 for any (unoriented) edge {u, v} in G. We denote
Se = {sei | i = 0, . . . , r}.
• For any vertex v of G, a rank function ρv on 2

val(v)
r . If Jρv denotes the set of jumps

of ρv, we denote by Sv ⊆
∏
e∈Av S

e, the set of all points si for i ∈ Jρv . Here, for a
point i = (ie)e∈Av of the hypercube, the point si ∈

∏
e∈Av S

e denotes the point in the
product which has coordinate at e ∈ Av equal to seie .

Let now Γ be a metric graph. By an r-slope structure on Γ we mean an r-slope structure
S on a simple graph model G = (V,E) of Γ. We enrich this slope structure on any point of
Γ as follows. For x ∈ Γ, denote by Tx(Γ) the set of all the val(x) (out-going) tangent vectors
to Γ at x. For any point x and ν ∈ Tx(Γ), there exists a unique oriented edge uv of G which
is parallel to ν. Define Sν = Suv. Also for any point x ∈ Γ \ V in the interior of an edge
{u, v}, define ρx to be the standard rank function on 22

r . In particular, Sx ⊆ Suv × Svu can
be identified with the set of all pairs (suvi , s

vu
j ) with i + j ≤ r. The resulting slope structure

is denoted by
{
Sx;Sν

}
x∈Γ,ν∈Tx(Γ)

.

2.1.4. Rational functions on a metric graph compatible with a slope structure. Let Γ be a

metric graph and let S =
{
Sx;Sν

}
x∈Γ,ν∈Tx(Γ)

be a slope structure of order r on Γ. A

continuous piecewise affine function f : Γ → R is said to be compatible with S if the two
following natural conditions are verified:

(i) for any point x ∈ Γ and any tangent direction ν ∈ Tx(Γ), the outgoing slope of f
along ν lies in Sν .

Denote by δx(f) the vector in
∏
ν∈Tx(Γ) S

ν which consists of outgoing slopes of f along

ν ∈ Tx(Γ). Then

(ii) for any point x in Γ, the vector δx(f) belongs to Sx.

The space of rational functions on Γ compatible with S is denoted by Rat(Γ;S), or simply
Rat(S) if there is no risk of confusion.

For any rational function f on Γ, the corresponding principal divisor is denoted by

div(f) =
∑
x

divx(f)(x), divx(f) := −
∑

ν∈Tx(Γ)

slopeν(f).

Note that there is a sign difference between our definition of the divisor of a rational function
and that of [2].



EQUIDISTRIBUTION OF WEIERSTRASS POINTS ON CURVES OVER NON-ARCHIMEDEAN FIELDS 11

2.1.5. Linear equivalence of slope structures. Two slope structures S1 =
{
Sx1 ;Sν1

}
x∈Γ,ν∈Tx(Γ)

and S2 =
{
Sx2 ;Sν2

}
x∈Γ,ν∈Tx(Γ)

on a metric graph Γ are said to be linearly equivalent, written

S1 ' S2, if there exists a rational function f on Γ such that for any point x of Γ and any
ν ∈ Tx(Γ), we have Sν1 = Sν2 − slopeν(f), and Sx1 = Sx2 − δx(f). In this case, we write
S1 = S2 + div(f).

We extend the definition of linear equivalence between slope structures to pairs (D,S) with
D a divisor of degree d and S an r-slope structure on Γ by declaring that (D1,S1) ' (D2,S2)
if there exists a rational function f on Γ such that D1 = D2 + div(f) and S1 = S2 + div(f).

2.1.6. Linear series grd on Γ. A grd on Γ is by definition the linear equivalence class of the
data of a pair (D,S) where D is a divisor of degree d on Γ and S is an r-slope structure on
Γ subject to the following property:

(∗) For any effective divisor E on Γ of degree r, there exists a rational function f ∈ Rat(S)
such that

(1) For any point x ∈ Γ, ρx(δx(f)) ≥ E(x); and in addition,
(2) div(f) +D − E ≥ 0.

If S comes from an r-slope structure on a graph model G = (V,E) of Γ, then for any point
x ∈ Γ\V lying on an edge {u, v}, the rank function ρx is standard and the above condition is
equivalent to i+ j ≤ r−E(x), where suvi and svuj are the two slopes of f at x. In particular,

divx(f) ≥ 0 automatically holds for any point x in the interior of an edge of the model G.

Let (D,S) define a grd on Γ. We denote by Rat(D;S) the space of all f ∈ Rat(S) with
the property that div(f) +D ≥ 0, and define the linear system |(D,S)| associated to (D,S)
as the space of all effective divisors E on Γ of the form div(f) +D for some f ∈ Rat(D;S).
Note that |(D,S)| is independent of the choice of the pair (D,S) in its linear equivalence
class. By an abuse of the notation, we refer to both (D,S) and |(D,S)| as a grd on Γ.

2.1.7. Reduced divisors. Let (D,S) be a grd on Γ and v a point of Γ. The v-reduced divisor
Dv ∈ |(D,S)| is defined as follows. Define the rational function fv by

fv(x) := min
f∈Rat(D;S)

f(x)− f(v)

for any point x of Γ. (In particular, fv(v) = 0.) The function fv belongs to Rat(D;S). The
(effective) divisor Dv ∈ |(D,S)| defined by Dv := D + div(fv) is called the v-reduced divisor
linearly equivalent to D with respect to S. We have the following useful proposition [1].

Proposition 2.1. For any point x ∈ Γ, the coefficient of x in Dx is equal to D(x) −∑
ν∈Tx(Γ) s

ν
0. In addition D(x)−

∑
ν∈Tx(Γ) s

ν
0 ≥ r.

Further properties of reduced divisors are given in [1].

2.2. Limit linear series on the skeleton of a Berkovich curve. Let now X be a smooth
proper curve K. Let D be divisor of degree d on X, and (O(D), H) be a grd on X. We identify
H with a subspace of K(X) of dimension r + 1. Let Γ be a skeleton of Xan. In this section,
we define the reduction of (O(D), H) to Γ which will be a grd on Γ that we call the limit linear
series on Γ induced by (O(D), H), or simply the limit grd. First we recall the following basic
fact from [2].
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Lemma 2.2. Let X be a smooth proper curve over K, and x ∈ Xan a point of type 2. The

κ-vector space Hx defined by the reduction to H̃(x) of an (r + 1)-dimensional K-subspace
H ⊂ K(X) has dimension r + 1.

By the slope formula, the reduction F = − log(|f |) of any function f ∈ H to Γ is a piecewise
affine function on Γ with integer slopes. Let first x be a type II point of Γ, and ν a tangent
direction in Tx(Γ). Denote by xν the point of Cx(κ) which corresponds to ν. By Lemma 2.2,

the dimension of H̃ ⊂ κ(Cx) is (r + 1). The orders of vanishing of f̃ ∈ H̃ at xν define a
sequence of integers sν0 < sν1 < · · · < sνr . Denote by Sν = {sνi }. In addition, the collection
of points xν ∈ Cx(κ) for ν ∈ Tx(Γ) define a rank function ρx associated to the corresponding

filtrations on H̃ as in Section 2.1.2. We define Sx as the set of jumps of ρx. The proof of the
following theorem can be found in [1].

Theorem 2.3 (Specialization of linear series). Let (O(D), H), H ⊆ H0
(
X,O(D)

)
⊂ K(X),

be a grd on X. Let Γ be a skeleton of Xan. There exists a semistable vertex V for X such that
Σ(X,V ) = Γ, and such that the slopes of rational functions f in H along edges in Γ define a
well-defined grd (D,S) on Γ, with D = τ∗(D).

We already defined Sx and Sν for type II points of Γ ⊂ Xan and ν ∈ Tx(Γ). The main
point of the above theorem is that the definitions can be extended to all points of Γ, and

that the collection S =
{
Sx;Sν

}
x∈Γ,ν∈Tx(Γ)

is induced from a simple graph model of Γ (or

equivalently, from a semistable vertex set of Xan). The fact that τ∗(div(f)) = div(− log |f |),
which is a consequence of the slope formula, then shows that (τ∗(D),S) is a grd on Γ, as in
the proof of the specialization theorem for metrized complexes [2]; we omit the details which
can be found in [1]. We should say that in particular, for two linearly equivalent divisors
D ∼ D′ on X, and H a subspace of the space of global sections of the corresponding line
bundles O(D) ' O(D′) of projective dimension r, the above theorem ensures that the two
pairs (D,S) and (D′,S′) are linearly equivalent.

Note that in particular, if (D,S) is a limit linear series on Γ induced by a grd (D, H) on X,
for H ⊆ H0(X,O(D)), then, by Proposition 2.1, for any point x of Γ, we have

(2) D(x)−
∑

ν∈Tx(Γ)

sν0 ≥ r .

3. Reduction of Weierstrass divisors
Let D be a divisor of degree d and rank r on X. We first show that in the case char(κ) = 0,

the induced limit linear grd (D,S) on the skeleton Γ of Xan allows to describe the reduction
of Weierstrass divisor of the line bundle L = O(D) on X. We further give a similar, in
spirit, description of the reduction in positive characteristic case, noting however that, as the
form clearly suggests, the data of limit linear series is not, in general, enough to describe the
reduction of Weierstrass divisor when char(κ) > 0.

3.1. Equal characteristic zero. The main result of this section is the proof of Theorem 1.5.
We will give a simple proof here. However, we note that, strictly speaking, the more conceptual
approach given in the proof of Theorem 3.4 below implies this result.
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Let L = O(D) be a line bundle of degree d and rank r on X, let Γ be a skeleton of Xan

and let (D,S) be the limit grd induced on Γ by the specialization theorem. Denote by W the
Weierstrass divisor of L on X. Write D =

∑
x∈Γ dx(x). We have to show that

τ∗(W) =
∑
x∈Γ

cx(x),

where the coefficient cx of a point x has the following expression:

cx = (r + 1)dx +
r(r + 1)

2
(2gx − 2 + val(x))−

∑
ν∈Tx(Γ)

r∑
i=0

sνi .

We will first prove a local version for standard balls in A1,an as follows. Let B de-
note the standard closed ball with the ring of analytic functions the Tate algebra K{T} ={∑∞

i=0 aiT
i | |ai| → 0

}
, with the supremum norm

|
∞∑
i=0

aiT
i |sup = max |ai|.

The reduction of K{T} with respect to | . |sup is the polynomial ring κ[t] where t denotes the
reduction of T . Denote by ζ the corresponding point of B, and by B+ the open ball of B whose
closure in B corresponds to the point (t = 0) of Specκ[t]. Note that B+(K) = {a ∈ K | |a| < 1}.

Let f0, . . . , fr be (r+ 1) K-linearly independent meromorphic functions on B (each fi is of
the form gi/hi for gi, hi ∈ K{T}, with hi 6= 0). Suppose that the reductions at ζ have orders
of vanishing s0 < · · · < sr at point 0 ∈ Specκ[t]. Let F = {f0, . . . , fr}, and denote by H
the K-vector space generated by fis. To any point a ∈ B+(K), one associates the increasing
sequence sa0 < · · · < sar of all the orders of vanishing of meromorphic functions in H. Define
the weight of a with respect to H by

w(a) = wH(a) := sa0 + · · ·+ sar −
r(r + 1)

2
.

A point a ∈ B+(K) is called a Weierstrass point of H if w(a) 6= 0. The Wronskian WrF is the
meromorphic function on B+ defined by

WrF := det
(
f

(j)
i

)
0≤i,j≤r

, where f
(j)
i =

djfi
dT j

.

The following is straightforward, and holds more generally under the weaker assumption
char(K) = 0, i.e., without any restriction on the characteristic of κ.

Lemma 3.1. The Weierstrass divisor of H is equal to the zero divisor of the meromorphic
function WrF in B+.

Let F = − log |WrF |. Denote by ν the tangent direction in Tζ corresponding to the point
0 ∈ Specκ[t]. Note that F is a piecewise affine function with integral slopes on B, which is
harmonic on B \ ζ. By the previous lemma, the slope of F along the unique tangent direction
νa ∈ Ta for a ∈ B(K), more precisely, along the unique ray from a to ζ in B, is equal to
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−w(a). In addition, the slope of F along ν ∈ Tζ is equal to the order of vanishing at 0 of the

reduction of W̃rF ∈ κ(t). It thus follows by the slope formula [5] that

slopeν(F ) =
∑

a∈B+(K)

w(a).

Lemma 3.2. The total weight
∑

a∈B+(K)w(a) of Weierstrass points with respect to H in B+

is equal to s0 + · · ·+ sr − r(r+1)
2 .

Proof. By the previous lemma, and the above discussion, we need to show that

ord0

(
W̃rF

)
= s0 + · · ·+ sr −

r(r + 1)

2
.

This follows from the standard properties of the Wronskian in characteristic zero: write

f̃i = tsifi ∈ κ(t), with (fi, t) = 1. Let F̃ = {f̃i}. Then W̃rF = WrF̃ , and we have

ord0

(
W̃rF

)
= ord0

(
det
(

(sji t
si−j)ri,j=0

))
,

from which the result follows. �

We need one more fact. Let C be a smooth proper curve of genus g(C) over an algebraically

closed field κ of characteristic zero, and let H̃ ⊂ κ(C) be a vector space of dimension (r + 1)
over κ. For any point x ∈ C(κ), denote by sx0 < · · · < sxr all the different orders of vanishing

of rational functions f ∈ H̃ at x. Define the weight of x by w(x) =
∑r

i=0 s
x
i −

r(r+1)
2 .

Lemma 3.3. Notations as above, we have∑
a∈C

w(a) = (g(C)− 1)r(r + 1).

Proof. The weight of a point, as defined above, corresponds to the order of vanishing of the
Wronskian, which is a meromorphic section of Ωr(r+1)/2. The total sum of weights of points
of C is thus equal to the degree of Ωr(r+1)/2. �

Proof of Theorem 1.5. Let H = H0(X,O(D)), that we view as H ⊆ K(X). The complement
of Γ in Xan is a disjoint union of open balls. Each such open ball Bν corresponds to a unique
ν ∈ Tx \Tx(Γ) for a point of type II x in Γ, and is isomorphic to the standard open ball B+.
The point x is the end of Bν , which is the unique point of type II in the closure of Bν in Xan

which lies in Γ. Denote by xν the point of Cx(κ) corresponding to ν ∈ Tx \ Tx(Γ).
The restriction of H to Bν gives an (r + 1) dimensional vector space of meromorphic

functions on B+ ' Bν . Let sν0 < · · · < sνr be the (r + 1) different orders of vanishing of the

rational functions in H̃ at xν . They correspond to the (r + 1) different slopes along ν of the
reductions − log |f | of rational functions f ∈ H. Thus, by Lemma 3.2, for the weights w(a)
associated to points a ∈ B(κ) with respect to H, we get∑

a∈Bν(K)

w(a) =
r∑
i=0

sνi −
r(r + 1)

2
.
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On the other hand, the (Weierstrass) multiplicity of a point a of Bν(K) ⊂ X(K) is equal
to (r + 1)D(a) + w(a). Combining with the above equations, we get

τ∗(W)(x) =
∑

ν∈Tx\Tx(Γ) , a∈Bν(K)

(
(r + 1)D(a) + w(a)

)

= (r + 1)τ∗(D)(x) +
∑

ν∈Tx\Tx(Γ)

r∑
i=0

sνi −
r(r + 1)

2

= (r + 1)dx + (gx − 1)r(r + 1)−
∑

ν∈Tx(Γ)

( r∑
i=0

sνi −
r(r + 1)

2

)
(By Lemma 3.3)

= (r + 1)dx +
r(r + 1)

2
(2gx − 2 + val(x))−

∑
ν∈Tx(Γ)

r∑
i=0

sνi ,

which gives the result. �

3.2. The case char(κ) = p > 0. In this section we state a generalization of Theorem 1.5 to
arbitrary characteristic. The main tool is the metrization of the sheaf of differential forms,
treated in a recent paper of Temkin [31] and [12]. We use the definition of Weierstrass points
as in [29, 28, 20], which works well in positive characteristic.

Denote by 0 ≤ b0 < · · · < br the gap sequence of O(D) on X. By definition, O(D)
is classical if this is the sequence 0, 1, . . . , r; this happens for example when char(K) is of
characteristic zero. Consider now a basis of global sections f0, . . . , fr ∈ K(X) of O(D), and
let F = {f0, . . . , fr}. We have

Theorem 3.4. Let L = O(D) be a line bundle of degree d and rank r, and denote by W its
Weierstrass divisor on X. Let Γ be a skeleton of Xan, and D = τ∗(D) =

∑
x∈Γ dx(x). We

have

τ∗(W) =
∑
x∈Γ

cx(x),

where the coefficient cx of a point x has the following expression:

cx = (r + 1)dx+
( r∑

i=0

bi

)(
2gx − 2 + val(x)

)
−

∑
ν∈Tx(Γ)

ordxνW̃rF .

Furthermore, if t is a tame parameter at x which gives local parameters t − aν at points
xν ∈ Cx, for ν ∈ Tx(Γ), and for some aν ∈ κ, then

cx = (r + 1)dx+
( r∑

i=0

bi

)(
2gx − 2

)
−

∑
ν∈Tx(Γ)

ordxνW̃rF ,t .

We should say what W̃rF and W̃rF ,t in the above expression stands for, and make them
more explicit. Consider the extensionH(x)/K. By the uniformization theorem of Temkin [30],

H(x) has an unramified parameter, i.e., there exists a parameter t ∈ H(x) such thatH(x)/K̂(t)
is a finite unramified extension. For t a parameter for H(x)/K, i.e., an element t ∈ H(x) such

that H(x)/K̂(t) is finite separable, define the radius of t at x as rt(x) = infc∈K |t− c|x.
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Let |.|Ω be the Kähler seminorm on the module of differentials ΩH(x)/K introduced in [31],
which is by definition the maximal seminorm such that the derivation map d : H(x)→ ΩH(x)/K

is contracting. Denote by Ω̂H(x)/K̂(t)
the completion of the module of Kähler differentials with

respect to the Kähler seminorm |.|Ω.

Let t be a tame parameter for H(x)/K. Define the Hasse derivative on K[t] by D(j)(tm) =(
m
j

)
tm−j , for m > 0, and extend by linearity. This extends uniquely to K(t) and further to

K̂(t). Since H(x)/K̂(t) is separable, it also extends to H(x). Note that j!D(j) is the usual

derivative d(j)/dtj defined as follows: for any f ∈ H(x), since ΩH(x)/K̂(t)
is one dimensional,

there exists h ∈ H(x) such that df = hdt. Define df
dt := h. Then d(j)/dtj is j-times composition

of d/dt.
Let t be a tame parameter at x. Then there exists an analytic subdomain Y of Xan such

that t is a tame parameter for any point of Y [12].

Consider now the basis F = {f0, . . . , fr} of the space of global sections of O(D), which we
view as elements of H(x). To simplify the presentation, set b :=

∑r
i=0 bi, and define

WrF ,t = det
(
D(bj)fi

)r
i,j=0

,

and further define WrF = WrF ,tdt
b. Note that WrF is a well-defined element of Ω⊗b

H(x)/K̂(t)
,

and we have

|WrF |⊗bΩ = rbt . |WrF ,t |x .

Define ordxνW̃rF as the slope of the piecewise linear function − log |WrF | at x along ν.
Therefore, we have

ordxνW̃rF = −b slopeν

(
log rt

)
+ ordxνWrF ,t .

In particular, if t is a parameter with − log(rt) increasing of slope 1 along each ν (if t− aν
is a local parameter at xν ∈ Cx for some aν ∈ κ), then we can rewrite

cx = (r + 1)dx + b
(

2gx − 2 + val(x)
)
−

∑
ν∈Tx(Γ)

ordxνW̃rF(3)

= (r + 1)dx + b
(

2gx − 2
)
−

∑
ν∈Tx(Γ)

ordxνW̃rF ,t ,(4)

which proves the second half of Theorem 3.4. This latter form is the precise analogue of
Theorem 1.5: indeed, in the case where char(κ) = 0, we can easily see that

ordxνW̃rF ,t =

r∑
i=0

sνi − r(r + 1)/2,

which precisely reduces the statement to that of Theorem 1.5.

Proof of Theorem 3.4. The proof uses the recent results in [12] concerning the metrization of
the sheaf of Kähler differentials in G-topology. We follow the terminology of [12], to which
we refer for more details on basic properties of the Kähler seminorm on ΩXG . Let F be a

basis for H0(X,O), and consider the meromorphic section of Ω⊗bXG given by the Wronskian

WrF . For any point of type II x in Γ, and ν ∈ Tx \ Tx(Γ), consider, as in Lemma 3.1, the
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open ball Bν in Xan. By the proof of that lemma 3.1, and the choice of parameter T , the
slope of rT along ν is one, and thus the slope of − log |WrF | along ν ∈ Tx \ Tx(Γ) minus
b =

∑r
i=0 bi is precisely the total weight of Weierstrass points in Bν(K). In other words, for

any ν ∈ Tx \ Tx(Γ), we have

(5)
∑

a∈Bν(K)

w(a) = slopeν

(
− log |WrF |

)
− b .

Let Ω�XG be the unit ball of |.|Ω, and consider the restriction Ω�XG,Cx of Ω�XG to Cx. The

reduction of the twist Ω�XG,Cx(−Cx) is the sheaf of differentials ΩCx/κ. In addition, the number

slopeν

(
− log |WrF |

)
− b is precisely the order of vanishing at xν of the reduction W̃rF seen

as a meromorphic section of ˜ΩXG,CX (−Cx)
⊗b

. Since this latter sheaf is isomorphic to Ω⊗bCx/κ
,

which has total degree b(2gx − 2), it follows that

b(2gx − 2) =
∑
ν∈Tx

(
slopeν

(
− log |WrF |

)
− b

)
=

∑
ν∈Tx

(
ordxνW̃rF − b

)
.

On the other hand, the coefficient cx of x in the reduction τ∗(W) is

cx = (r + 1)dx +
∑

ν∈Tx\Tx(Γ)

∑
a∈Bν(K)

w(a),

which, combined with Equation (5), gives

cx = (r + 1)dx + b(2gx − 2)−
∑

ν∈Tx(Γ)

(
ordxνW̃rF − b

)
= (r + 1)dx + b

(
2gx − 2 + val(x)

)
−

∑
ν∈Tx(Γ)

ordxνW̃rF .

This finishes the proof. �

4. Local equidistribution theorem

In this section we state a local equidistribution theorem which will be essential in the proof
of our main theorem.

Let X be a smooth proper curve over K, L = O(D) a line bundle of positive degree d on
X, and x a point of type II in Xan. Let ν ∈ Tx, and denote by xν the corresponding κ-point
of the curve Cx.

For each integer n ∈ N, let Hn = H0(X,O(nD)) ⊆ K(X), rn = h0(X,nD)− 1, and denote
by Sνn the set of all the slopes of the reductions of rational functions in Hn in Xan along ν.

Denote by H̃n the reduction of Hn in H̃(x) which is a vector space of dimension rn + 1 over
κ.

Since we assume that K is algebraically closed, by [22, Lemma 2.1.15], the valuation of K
has a (non-necessarily canonical) section. Fixing such a section, we have a canonical reduction

which satisfies f̃.g = f̃ .g̃, and thus H̃n.H̃m ⊆ H̃n+m, for all n,m ∈ N. So we can define the
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graded algebra, reduction of the sectional ring of O(D) at x,

Aν :=

∞⊕
n=0

H̃n .

Denote by Λ = Λν the convex hull in R of all the rational numbers of the form s
n for n ∈ N

and s ∈ Sνn,

Λ := conv-hull
( ⋃
n∈N,f∈Hn

{slopeν(− log |f |)
n

})
= conv-hull

( ⋃
n∈N,f̃∈H̃n

{ordxν (f̃)

n

})
.

Note that Λ is precisely the Okounkov body associated to the graded ring of rational functions
Aν and the divisor {xν} ⊂ Cx [18, 21].

Since the dimension of H̃n (=|Sνn|) is equal to rn + 1 = dn− g + 1 for large enough n, we
have vol(Λ) = d, which shows that Λ is an interval of the form [sνmin, s

ν
max] for real numbers

sνmin and sνmax with sνmax = sνmin + d (we drop ν if there is no risk of confusion).

For any n ∈ N, denote now by ηn the discrete probability measure on Λ ⊂ R

ηn :=
1

rn + 1

∑
s∈Sνn

δn−1s.

The following is a special (and quite easy) case of a more general equidistribution theorem
for convex bodies associated to semigroups [26, 18, 9], see e.g., [9, Théorème 0.2] .

Theorem 4.1 (Local equidistribution). The measures ηn converge weakly to the Lebesgue
measure on Λ.

A direct consequence of the above theorem is the following useful corollary.
Denote by sνn,0 < · · · < sνn,rn all the integers in Sνn. First note that for two integers n,m we
have

sνn+m,0 ≤ sνn,0 + sνm,0 , and sνn,rn + sνm,rm ≤ s
ν
n+m,rn+m

,

which shows by Fekete lemma that

lim
n→∞

1

n
sνn,0 = sνmin , and lim

n→∞

1

n
sνn,rn = sνmax .

In particular,

lim
n→∞

sνn,0 + sνn,rn
2nd

=
smin + smax

2d
=

1

d

∫
Λ
θ dθ ,

where dθ is the Lebesgue measure on Λ.

Corollary 4.2. Notations as above, we have

lim
n→∞

[ sνn,0 + sνn,rn
2nd

− 1

nd(rn + 1)

∑
s∈Sνn

s
]

= 0.

Remark 4.3. Consider the case char(κ) > 0. The equidistribution theorem for Weierstrass
points would then follow, by the proof in Section 5, if we could guarantee the following
analogue of Corollary 4.2. Notations as in Theorem 3.4, let t be a tame parameter at x such
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that t−aν reduces to a local parameter at any point xν ∈ Cx, for ν ∈ Tx(Γ) and some aν ∈ κ,
then

1

(rn + 1)2
ordxνWrFn,t −→

sνmin + sνmax

2d
− 1

2
,

where Fn ⊂ K(X) is an arbitrary basis of H0
(
X,O(nD)

)
.

5. Proof of Theorem 1.2

In this section, we use the materials of the previous sections to prove Theorem 1.2. So let
D be a divisor of positive degree on a smooth proper connected curve X of positive genus
g over K, and denote by Wn the Weierstrass divisor of O(nD) on X. Let D = τ∗(D), and
Wn = τ∗(Wn) be the reductions on Γ. Denote by rn the rank of nD, and note that Wn and
Wn are of degree g(rn + 1)2.

We suppose that char(κ) = 0 (however see Remark 4.3). Let Γ be a skeleton of Xan with a
simple graph model G = (V,E) which contains all the points in the support of D as vertices,
and consider the limit linear series (nD,Sn) on Γ induced from the linear series (nD, Hn) on
X, with Hn = H0(X,O(nD)).

Let D =
∑

x∈Γ dx(x). By Theorem 1.5, we have Wn =
∑

x∈Γ cx(x), where

cx = (rn + 1)ndx +
rn(rn + 1)

2
(2gx − 2 + val(x))−

∑
ν∈Tx(Γ)

rn∑
i=0

sνn,i.

Here, as in the previous section, sνn,0 < · · · < sνn,rn are the set of all the integers in Sνn.

We have to show that the sequence of discrete measures 1
g(rn+1)2 δWn converge weakly to

the canonical admissible measure µad.
Recall that Kg =

∑
x∈Γ gx(x), and KΓ =

∑
x∈Γ(val(x)− 2)(x). For any n and x ∈ Γ, let

pn,x :=
∑

ν∈Tx(Γ)

rn∑
i=0

sνn,i , and P :=
∑
x∈Γ

pn,x(x) .

So we can rewrite

Wn = (rn + 1)nD + rn(rn + 1)Kg +
rn(rn + 1)

2
KΓ − Pn , and

1

g(rn + 1)2
δWn =

n

g(rn + 1)
δD +

rn
g(rn + 1)

δKg +
rn

2g(rn + 1)
δKΓ
− 1

g(rn + 1)2
δPn .

Certain terms in the right hand side of the above equation have simple asymptotic:

Proposition 5.1. We have as n goes to infinity

n

g(rn + 1)
δD −→

1

gd
δD ,

rn
g(rn + 1)

δKg −→
1

g
δKg , and

rn
2g(rn + 1)

δKΓ
−→ 1

2g
δKΓ

.

Comparing with the explicit form of µad, and observing that rn = nd − g ∼ nd for large
enough n, we see that
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Proposition 5.2. Notations as above, the following assertions are equivalent:

(∗) 1

g(rn + 1)2
δWn −→ µad, weakly .

(?)
1

d
δD +

1

2
δKΓ
− 1

rnnd
δPn −→

∑
e∈E(G)

1

`e + ρe
dθ, weakly .

The advantage of (?) is that (almost) everything is formulated in terms of the metric graph
Γ, which makes things more flexible to work.

We choose for each n a simple graph model Gn of Γ with vertex set Vn, which we suppose
to be a refinement of G, i.e., V ⊆ Vn, and which we suppose also to be a model for the limit
linear series (nD,Sn).

We will later explain how to easily get Theorem 1.2 from the following particular case:

Theorem 5.3. Let e = {x, y} be an edge of a simple graph model G = (V,E) of Γ, for
x, y ∈ V . Consider the characteristic function 1e of e. Then

1

d

∫
Γ

1eδD +
1

2

∫
Γ

1eδKΓ
− lim
n→∞

1

rnnd

∫
Γ

1eδPn =

∫
e

1

`e + ρe
dθ =

`e
`e + ρe

.

Note that

(6)
1

2

∫
Γ

1eδKΓ
=

1

2

(
val(x) + val(y)

)
− 2 and

1

d

∫
Γ

1eδD =
1

d

(
dx + dy

)
.

We now make the last integral in the left hand side of the above equation more explicit.
Fix an integer n, and let u0 = x, u1, . . . , ul, ul+1 = y be the ordered set of all vertices of Gn
between x and y in Vn on the segment [x, y] of Γ; thus, u0u1u2 . . . ul+1 is a path in Gn.

Since Gn is a model for the limit linear series (nD,Sn), for any point z ∈ [x, y] different
from ui we have pn,z = 0 (indeed, Sνn,z = −S ν̄n,z where Tz(Γ) = {ν, ν̄}). Thus the restriction
of the divisor Pn to the interval [x, y] has support in {u0, u1, . . . , ul, ul+1}.

This shows that

(7)

∫
Γ

1e δPn =
∑

z∈Vn∩[x,y]

pn,z .

Furthermore, for each edge {u, v} of E(Gn) with extremities u, v ∈ {u0, u1, . . . , ul, ul+1},
we have∑

s∈Suvn

s = −
∑
s∈Svun

s .

Thus, denoting by νy ∈ Tx(Γ) (resp. νx ∈ Ty(Γ)) the tangent direction parallel to xy (resp.
yx), we get

(8)
∑

z∈Vn∩[x,y]

pn,z = q
νy
n,x + qνxn,y ,
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where for any point z of Γ, and any tangent direction ν to Γ at z, we denote by qνn,z the
following sum

qνn,z := pn,z −
rn∑
i=0

sνn,i .

For each ν ∈ Tx(Γ) \ {νy}, denote, as before, by xν the corresponding point on the curve

Cx associated to H̃u. By Corollary 4.2 to the local equidistribution theorem 4.1, we get

(9) lim
n→∞

1

rnnd

∑
s∈Sνn

s = lim
n→∞

sνn,0 + sνn,rn
2nd

=
1

2
+ lim
n→∞

sνn,0
nd

.

In the last equality in the above equation, we used the fact that

lim
n→∞

sνn,rn − s
ν
n,0

n
= vol(Λν) = d,

where as in Section 4, Λν is the Okounkov body associated to the point xν of Cx.

Combining Equations (6), (7), (8), (9), and noting that Tx(Γ) and Ty(Γ) are of order val(x)
and val(y), respectively, we see that in order to prove Theorem 5.3, it will be enough to show
that

(10)
dx + dy

d
− 1− lim

n→∞

1

nd

[ ∑
ν∈Tu(Γ)\{νy}

sνn,0 +
∑

ν∈Tv(Γ)\{νx}

sνn,0

]
=

`e
`e + ρe

.

Furthermore, for any point u of Γ, by Proposition 2.1 and Inequality 2, the coefficient of the
u-reduced divisor linearly equivalent to nD with respect to (nD,Sn) is ndu −

∑
ν∈Tu(Γ) s

ν
n,0

which is at least rn and at most dn. Thus,

(11) lim
n→∞

1

nd

(
ndu −

∑
ν∈Tu(Γ)

sνn,0

)
= 1,

which finally reduces Equation (10) to showing that

(12) 1 + lim
n→∞

1

nd

(
s
νy
n,0 + sνxn,0

)
=

`e
`e + ρe

.

Proof of Theorem 5.3. We will prove (12), which by the above discussion proves the theorem.
Denote by Dn,x be the x-reduced divisor linearly equivalent to nD with respect to (nD,Sn),

and denote by fn,x ∈ Rat(D,Sn) the rational function with Dn,x = nD+div(fn,x). Similarly,
let fn,y ∈ Rat(D,Sn) be the rational function which gives the y-reduced divisor with respect
to (nD,Sn). Let fn := fn,y − fn,x. We obviously have

Dn,x + div(fn) = Dn,y.

We consider the slopes of the above defined functions on the interval [x, y]. First note that
by Proposition 2.1,

• The slope of fn,x at x along νy ∈ Tx(Γ) is s
νy
n,0.

For large enough n, by Inequality 2, the coefficient of x in Dn,x is at least rn = nd− g, which
given that Dn,x is effective, shows that the sum of the coefficients of Dn,x at the points in the
open interval (x, y) is at most g. Since nD does not have support in (x, y), this implies that

• The slope of fn,x at y along νx ∈ Ty(Γ) is between −sνyn,0 and g − sνyn,0.
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(Recall that s
νy
n,0 is the slope at x along νy.)

The above reasoning applies to fn,y as well, which gives

• The slope of fn,y at y along νx ∈ Ty(Γ) is sνxn,0. Furthermore, the slope of fn,y at x

along νy ∈ Tx(Γ) is between −sνxn,0 and g − sνxn,0 .

These observations together imply that

Claim 5.4. The slope of fn = fn,y − fn,x at y along νx satisfies

sνxn,0 + s
νy
n,0 − g ≤ dνxfn(y) ≤ sνxn,0 + s

νy
n,0 .

Similarly, for the slope of fn at x along νy, we have

−sνyn,0 − s
νx
n,0 ≤ dνyfn(x) ≤ −sνyn,0 − s

νx
n,0 + g .

Consider now the restriction Fn of fn to the metric graph Γ \ e obtained by removing the
(interior of the) edge e from Γ. Write

∆(Fn) = ayδy − axδx +
∑

z∈Γ\[x,y]

azδz .

Since Dn,x + div(fn) = Dn,y, we get

ay = Dn,y(y)−Dn,x(y) + dνx(fn)(y) .

We use one last time the inequalities

nd− g ≤ Dn,y(y) ≤ nd , nd− g ≤ Dn,x(x) ≤ nd ,

and the fact that Dn,y is effective of degree dn, to get 0 ≤ Dn,y(x) ≤ g. So all together, we
have

(13) nd+ sνxn,0 + s
νy
n,0 − 3g ≤ ay ≤ nd+ sνxn,0 + s

νy
n,0 .

Similarly, we have ax = Dn,x(x)−Dn,y(x)− dνy(fn)(x), and so

(14) nd+ sνxn,0 + s
νy
n,0 − 3g ≤ ax ≤ nd+ sνxn,0 + s

νy
n,0 .

In addition, we have

(15) for all z ∈ Γ \ [x, y], −g ≤ az ≤ g , and

(16) −2g ≤
∑

z∈Γ\[x,y]

az ≤ 2g .

Define tn := sνxn,0 + s
νy
n,0. We consider two cases depending on whether lim infn{|nd + tn|}

is finite or not.
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First case. Suppose that |nd+ tn| → ∞ as n goes to infinity.

We explain how to finish the proof of Theorem 5.3:
Combining Inequalities (13), (14), (15), and (16), we see that 1

nd+tn
Fn satisfies

∆(
Fn

nd+ tn
) = δy − δx + αn ,

where αn is a discrete measure supported on Γ \ e with αn → 0 as n goes to infinity. Normal-
izing Fn to have Fn(x) = 0 if necessary, we conclude the pointwise convergence of

Fn
nd+ tn

−→ F ,

where F satisfies

∆(F ) = δy − δx .

It thus follows that

(17)
1

nd+ tn

(
Fn(x)− Fn(y)

)
−→ F (x)− F (y) = ρe .

To conclude, write

Fn(x)− Fn(y) = fn(x)− fn(y) =

∫ x

y

d

dθ
fn(θ) dθ ,

and note that, since Dn,x + div(fn) = Dn,y is effective, and the sum of all the coefficients of
the points on the interval (x, y) is at most g, we have

(18) −tn − g = sνxn,0 + s
νy
n,0 − g ≤

d

dθ
fn(x+ θ) ≤ sνxn,0 + s

νy
n,0 + g = −tn + g,

which gives

(−tn − g)`e ≤ Fn(x)− Fn(y) ≤ (−tn + g)`e.

Plugging this into Equation (17), we get

tn
nd+ tn

−→ −ρe
`e

,

which finally gives:

lim
n→∞

1

nd

(
sνxn,0 + s

νy
n,0

)
=
−ρe
`e + ρe

.

Adding one to the both sides of the above equation gives (12), and finishes the proof.

Second case. Suppose that |nid+ tni | < C for a constant C and a sequence ni →∞.

In this case, the coefficients of ∆(Fni) will be all bounded by a constant, for all i, and the
total (positive) degree of ∆(Fni) is also bounded by 2C + g. We will prove that e is a bridge
in Γ. For the sake of a contradiction, suppose this is not the case, i.e., Γ \ e is connected. We
can further assume that Fn(x) = 0 for all n. By the compactness of Γ, it then follows that
Fni are all bounded functions on Γ. In other words, there exists C ′ such that Fni(z) < C ′ for
all z ∈ Γ \ e. By Equation (18), we find that the slope of fni at any point on the segment

(y, x) is between −tni − g and −tni + g, which is at least nid
2 , for large i. It follows that
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fni(y) − fni(x) → ∞, as i goes to infinity, which is a contradiction. This shows that e is a
bridge edge in Γ.

We conclude that in this case, the right hand side of (12) is zero (since ρe = ∞), and
it is easy to check that the left hand side is also zero. Indeed, in this case, we will have
Λνy = −Λνx . Now, using our previous notation Λν = [sνmin, s

ν
max], with sνmax = d + sνmin, we

get

1 + lim
n→∞

1

nd
(sνxn,0 + s

νy
n,0) =

1

d

(
d+ sνxmin + s

νy
min

)
= sνxmax + s

νy
min = 0.

This finally finishes the proof of our theorem.
�

Proof of Theorem 1.2. This follows as usual from Theorem 5.3. Let f be a continuous function
on Γ. Take a simple graph model G of Γ such that for any pair of points x and y lying on a
single edge, |f(x)− f(y)| ≤ ε, and the support of D is contained in V (G). Choose a point xe
in the interior of each edge e, and consider the function fε =

∑
e f(xe)1e. By Theorem 5.3,

we have

lim
n→∞

∫
Γ
fεdµn =

∫
Γ
fεdµad.

Since ||fε − f ||∞ ≤ ε , we conclude that for all sufficiently large n, we have

−3ε ≤
∫

Γ
fdµn −

∫
Γ
fdµad ≤ 3ε,

which proves the theorem. �

Proof of Corollary 1.3. We can pass from K to the completion K of an algebraic closure of K,
and reformulate the statement in Xan

K by looking at the type II point x0 which corresponds to
C0 on a fixed skeleton Γ. The assertion, that, the proportion of Weierstrass points which are
mapped to x0, under the retraction map τ , goes to g0/g as n→∞, can be now deduced in a
way similar to the proof of Theorem 5.3 for e = {x0}, or, equivalently, by a direct argument
using Theorem 1.5, Theorem 4.1 which allows to express the sum in Theorem 1.5 in terms of
the sum of minimum slopes sν0,n, ν ∈ Tx0(Γ), and Proposition 2.1 which provide an estimation

for the sum of sν0,n over ν ∈ Tx0(Γ). We omit the details. �

References

[1] O. Amini, Limit Linear Series I: Basic Theory. in preparation.

[2] O. Amini and M. Baker, Linear series on metrized complexes of algebraic curves. Math. Annalen,

to appear.
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42 (2009), 783–835.

[22] D. Maclagan and B. Sturmfels, Introduction to Tropical Geometry, AMS Graduate Texts in Math-

ematics 161, to appear.

[23] D. Mumford, Curves and their Jacobians. Univ. of Mich. Press, Ann Arbor.

[24] A. Neeman, The distribution of Weierstrass points on a compact Riemann surface, Ann. Math. 120

(1984), 317–328.

[25] A. Neeman, Weierstrass points in characteristicp. Invent. math. 75 (1984), 359–376.

[26] A. Okounkov, Brunn-Minkowski inequality for multiplicities. Invent. math. 125 (1996), 405–411.

[27] B. Olsen, On higher order Weierstrass points. Ann. of Math. 95 (1972), 357–364.

[28] F. K. Schmidt, Zur arimetischen theorie des algebraischen Functionen II. Allgemeine Theorie des

Weierstrasspunkte. Math. Z. 45 (1939), 75–96.
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