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ABSTRACT. Let K be an algebraically closed, complete non-Archimedean field. The purpose of this paper
is to carefully study the extent to which finite morphisms of algebraic K-curves are controlled by certain
combinatorial objects, called skeleta. A skeleton is a metric graph embedded in the Berkovich analytifica-
tion of X. A skeleton has the natural structure of a metrized complex of curves. We prove that a finite
morphism of K-curves gives rise to a finite harmonic morphism of a suitable choice of skeleta. We use this
to give analytic proofs of stronger “skeletonized” versions of some foundational results of Liu-Lorenzini,
Coleman, and Liu on simultaneous semistable reduction of curves. We then consider the inverse problem
of lifting finite harmonic morphisms of metrized complexes to morphisms of curves over K. We prove
that every tamely ramified finite harmonic morphism of Λ-metrized complexes of k-curves lifts to a finite
morphism of K-curves. If in addition the ramification points are marked, we obtain a complete classifica-
tion of all such lifts along with their automorphisms. This generalizes and provides new analytic proofs
of earlier results of Saïdi and Wewers. As an application, we discuss the relationship between harmonic
morphisms of metric graphs and induced maps between component groups of Néron models, providing a
negative answer to a question of Ribet motivated by number theory.

This article is the first in a series of two. The second article contains several applications of our lifting
results to questions about lifting morphisms of tropical curves.

Throughout this paper, unless explicitly stated otherwise, K denotes a complete algebraically closed non-
Archimedean field with nontrivial valuation val : K → R ∪ {∞}. Its valuation ring is denoted R, its maximal
ideal is mR, and the residue field is k = R/mR. We denote the value group of K by Λ = val(K×) ⊂ R.

1. INTRODUCTION

This article is the first in a series of two. The second, entitled Lifting harmonic morphisms II: tropical
curves and metrized complexes, will be cited as [ABBR14]; references of the form “Theorem II.1.1” will
refer to Theorem 1.1 in [ABBR14].

1.1. The purpose of this paper is to carefully study the extent to which finite morphisms of algebraic
K-curves are controlled by certain combinatorial objects, called skeleta. Let X be a smooth, proper,
connected K-curve. Roughly speaking, a triangulation (X,V ∪ D) of X (with respect to a finite
set of punctures D ⊂ X(K)) is a finite set V of points in the Berkovich analytification Xan of X
whose removal partitions Xan into open balls and finitely many open annuli (with the punctures
belonging to distinct open balls). Triangulations of (X,D) are naturally in one-to-one correspondence
with semistable models X of (X,D): see Section 5. A triangulation (X,V ∪D) gives rise to a skeleton
Σ(X,V ∪D) of X. The skeleton of a triangulated punctured curve is the dual graph of the special fiber
Xk of the corresponding semistable model, equipped with a canonical metric, along with completed
infinite rays in the directions of the punctures. There are many skeleta in Xan, although if X \ D
is hyperbolic (i.e., has negative Euler characteristic χ(X,D) = 2 − 2g(X) − #D), then there exists
a unique minimal skeleton. A skeleton of (X,D) is by definition a subset Σ ⊂ Xan of the form
Σ(X,V ∪D) for some triangulation of X.

1.2. Skeletal simultaneous semistable reduction. First we will prove that finite morphisms of
curves induce morphisms of skeleta:
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Theorem A. Let ϕ : X ′ → X be a finite morphism of smooth, proper, connected K-curves and let
D ⊂ X(K) be a finite set. There exists a skeleton Σ ⊂ X such that Σ′ := ϕ−1(Σ) is a skeleton of X ′. For
any such Σ the map ϕ : Σ′ → Σ is a finite harmonic morphism of metric graphs.

See Corollaries 4.18 and 4.28. Harmonic morphisms of graphs are defined in Section 2. Due to
the close relationship between semistable models and skeleta, Theorem A should be interpreted as
a very strong simultaneous semistable reduction theorem. In fact, we will show how to formally
derive from Theorem A the simultaneous semistable reduction theorems of Liu–Lorenzini [LL99],
Coleman [Col03], and Liu [Liu06]. Our version of these results hold over any non-Archimedean field
K0, not assumed to be discretely valued. As an example, the following weak form of Liu’s theorem is
a consequence of Theorem A:

Corollary. Let X,X ′ be smooth, proper, geometrically connected curves over a non-Archimedean field K0

and let ϕ : X ′ → X be a finite morphism. Then there exists a finite, separable extension K1 of K0 and
semistable models X,X′ of the curves XK1 , X

′
K1

, respectively, such that ϕK1 extends to a finite morphism
X′ → X.

We discuss simultaneous semistable reduction theorems in Section 5. We wish to emphasize that
Theorem A does not follow from any classical simultaneous semistable reduction theorem, in that
there exist finite morphisms ϕ : X′ → X of semistable models such that the inverse image of the
corresponding skeleton of X is not a skeleton of X ′. (See, however, [CKK] where a skeletal version
of Liu’s theorem is derived from Liu’s method of proof in the discretely valued case.) Our proof of
Theorem A is entirely analytic, resting on an analysis of morphisms between open annuli and open
balls; in particular it makes almost no reference to semistable reduction theory, and is therefore quite
different from Liu and Liu–Lorenzini’s approach.

A skeletal simultaneous semistable reduction theorem is important precisely when one wants to
obtain a well-behaved morphism of graphs from a finite morphism of curves. This is crucial for
obtaining the spectral lower bound on the gonality in [CKK], for instance.

1.3. Lifting harmonic morphisms. Our second goal is in a sense inverse to the first: we wish to
lift finite harmonic morphisms of metric graphs to finite morphisms of curves. More precisely, let
(X,D) be a punctured K-curve as above, let Σ be a skeleton, and let ϕ : Σ′ → Σ be a finite harmonic
morphism of metric graphs. It is natural to ask whether there exists a curve X ′ and a finite morphism
ϕ : X ′ → X such that ϕ−1(Σ) is a skeleton of X ′ and ϕ−1(Σ) ∼= Σ′ as metric graphs over Σ. In general
the answer is “no”: there are subtle “Hurwitz obstructions” to such a lift, as described below. One
solution is to enrich Σ,Σ′ with the extra structure of metrized complexes of curves. A metrized complex
of curves is basically a metric graph Γ and for every (finite) vertex p ∈ Γ, the data of a smooth,
proper k-curve Cp, along with an identification of the edges adjacent to p with distinct k-points of Cp.
There is a notion of a finite harmonic morphism of metrized complexes of curves, which consists of a
finite harmonic morphism ϕ : Γ′ → Γ of underlying metric graphs, and for every vertex p′ ∈ Γ′ with
p = ϕ(p′), a finite morphism ϕp′ : Cp′ → Cp, satisfying various compatibility conditions.

Now let Σ = Σ(X,V ∪ D) for a triangulated punctured curve (X,V ∪ D). We will show that Σ
is naturally a metrized complex of curves, and that finite harmonic morphisms Σ′ → Σ of metrized
complexes do lift to finite morphisms of curves, under a mild tameness hypothesis. Moreover we have
very precise control over the set of such lifts entirely in terms of the morphism of metrized complexes.
The main lifting theorem, stated somewhat imprecisely, is as follows:

Theorem B. (Lifting theorem) Let (X,V ∪D) be a triangulated puncturedK-curve, let Σ be its skeleton,
and let Σ′ → Σ be a tame covering of metrized complexes of curves. Then there exists a curve X ′ and
a finite morphism ϕ : X ′ → X, branched only over D, such that ϕ−1(Σ) is a skeleton of (X ′, ϕ−1(D))
and ϕ−1(Σ) ∼= Σ′ as metrized complexes of curves over Σ. There are finitely many such lifts X ′ up to
X-isomorphism. There are explicit descriptions of the set of lifts and the automorphism group of each lift
(as a cover of X) in terms of the morphism Σ′ → Σ.



LIFTING HARMONIC MORPHISMS I 3

See Theorems 7.4, 7.7, and 7.10 for the precise statements. Tame coverings are defined in Defini-
tion 2.21. The hardest part of the proof of Theorem B is a local lifting result, Theorem 6.18, in which
the target curve X is replaced by a neighborhood of a vertex p ∈ Σ. Theorem 6.18 eventually reduces
to classical results about the tamely ramified étale fundamental group.

It is worth mentioning that given a metrized complex of curves C with edge lengths contained in
Λ, it is not hard to construct a triangulated punctured K-curve (X,V ∪D) such that Σ(X,V ∪D) ∼= C.
See Theorem 3.24.

1.4. Our lifting results extend several theorems in the literature, as well as making them more pre-
cise. Saïdi [Saï97, Théoréme 3.7] proves a version of the lifting theorem for semistable formal curves
(without punctures) over a complete discrete valuation ring. His methods also make use of the tamely
ramified étale fundamental group and analytic gluing arguments. Wewers [Wew99] works more
generally with marked curves over a complete Noetherian local ring using deformation-theoretic ar-
guments, proving that every tamely ramified admissible cover of a marked semistable curve over the
residue field of a complete Noetherian local ring lifts. Wewers classifies the possible lifts (fixing, as we
do, a lift of the target) in terms of certain non-canonical “deformation data” depending on compatible
choices of formal coordinates at the nodes on both the source and target curves.

Our results have several advantages compared to these previous approaches. For one, we are able
to work over non-Noetherian rank-1 valuation rings, and descend the lifting theorems a postiori to an
essentially arbitrary non-Archimedean field: see (7.11). The real novelty, however, is the systematic
use of metrized complexes of curves in the formulation of the lifting theorems, in particular the
classification of the set of lifts X ′ of Σ′ → Σ. For example, in our situation, Wewers’ non-canonical
deformation data are replaced by certain canonical gluing data, which means that the automorphism
group of the morphism of metrized complexes acts naturally on the set of gluing data (but not on the
set of deformation data). This is what allows us to classify lifts up to isomorphism as covers of the
target curve, as well as determine the automorphism group of such a lift. Saïdi’s lifting theorem is
more similar to ours, with generators of inertia groups over nodal points playing the role of gluing
data. It is not clear to the authors whether his methods can be extended to give a classification of lifts.

The question of lifting (and classification of all possible liftings) in the wildly ramified case is more
subtle and cannot be guaranteed in general. See Remark 7.6.

1.5. Homomorphisms of component groups. We will discuss in Section 8 the relationship between
harmonic morphisms of metric graphs and component groups of Néron models, connecting our lifting
results to natural questions in arithmetic algebraic geometry. The idea is as follows. Let X be a
smooth, proper, geometrically connected curve over a discretely valued field K0, and suppose that X
admits a semistable model X over the valuation ring R0 of K0. Let J be the Jacobian of X and let ΦX
be the group of connected components of the special fiber of the Néron model of J .

Given a metric graph Γ with integer edge lengths, there is a naturally associated abelian group
Jacreg(Γ), called its regularized Jacobian. The association Γ 7→ Jacreg(Γ) satisfies Picard and Albanese
funtoriality: that is, given a finite harmonic morphism Γ′ → Γ there are natural push-forward and
pull-back homomorphisms Jacreg(Γ′)→ Jacreg(Γ) and Jacreg(Γ)→ Jacreg(Γ′).

A series of theorems of Raynaud, translated into our language, imply that ΦX ∼= Jacreg(ΣX) canon-
ically, where ΣX is the skeleton induced by the semistable model X. We observe that this isomorphism
respects both Picard and Albanese functoriality.

For modular curves such as X0(N) with N prime, the minimal regular model has a special fiber
consisting of two projective lines intersecting transversely. Maps from such curves to elliptic curves,
and their induced maps on component groups of Néron models, play an important role in arithmetic
geometry; for example, Ribet’s work establishing that the Shimura-Taniyama conjecture implies Fer-
mat’s Last Theorem was motivated by the failure of such induced maps on component groups to be
surjective in general. (The cokernel of such maps controls congruences between modular forms.) Ri-
bet noticed that if one considers instead the case where the target curve has genus at least 2, then in
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all examples he knew of, the induced map on component groups was surjective, and in personal com-
munication with the second author, he asked whether this was a general property of curves whose
reduction looks like that of X0(N). As a concrete application of Theorem B, the next proposition
provides a negative answer to this question.

Proposition C. There exists a finite morphism f : X ′ → X of semistable curves over a discretely valued
field K0 with g(X) ≥ 2 such that:

• the special fiber of the minimal regular model of X ′ consists of two projective lines intersecting
transversely;

• the induced map f∗ : ΦX′ → ΦX on component groups of Néron models of Jacobians is not
surjective.

In order to prove Proposition C, we proceed as follows. As component groups can be calculated in
terms of metric graphs, one first finds a finite harmonic morphism of metric graphs ϕ : Γ′ → Γ such
that Γ′ has two vertices and at least three edges, all of which have length one, and such that ϕ∗ :
Jacreg(Γ′) → Jacreg(Γ) is not surjective. One then enriches ϕ to a morphism of metrized complexes
of curves, with rational residue curves, and uses Theorem 3.24 and Theorem B (along with a descent
argument) to lift this to a finite morphism of curves X ′ → X. Such a morphism satisfies the conditions
of Proposition C.

1.6. Applications to tropical lifting theorems. Tropical geometry has many applications to alge-
braic geometry, in particular enumerative algebraic geometry. The basic strategy is to associate a
combinatorial “tropical” object to an algebraic object, and prove that counting the former is somehow
equivalent to counting the latter. An important ingredient in any such argument is a tropical lifting
theorem, which is a precise description of the algebraic lifts of a given tropical object.

Many of the intended applications of our lifting results are contained in the second paper [ABBR14],
in which we prove a number of tropical lifting theorems. The skeleton of a curve, viewed as a metric
graph, is a tropical object associated to the curve; our lifting results can therefore be interpreted as
tropical lifting theorems for morphisms of metric graphs, in the following sense. Recall that Λ ⊂ R is
the value group of K. A Λ-metric graph is a metric graph Γ whose edge lengths are contained in Λ.
We say that a finite harmonic morphism ϕ : Γ′ → Γ of Λ-metric graphs is liftable provided that there
exists a finite morphism of K-curves ϕ : X ′ → X, a set of punctures D ⊂ X(K), and a skeleton Σ
of (X,D) such that Σ ∼= Γ as metric graphs, ϕ−1(Σ) is a skeleton of (X ′, ϕ−1(D)), and Σ′ ∼= Γ′ as
metric graphs over Σ ∼= Γ. Theorem B (along with Theorem 3.24) shows that the obstruction to lifting
a morphism of metric graphs ϕ : Γ′ → Γ to a morphism of curves is the same as the obstruction to
enriching ϕ with the structure of a morphism of metrized complexes of curves. The following more
precise statement is an immediate consequence of Proposition 7.15 and Theorem 3.24:

Corollary D. Assume char(k) = 0. Let ϕ : Γ′ → Γ be a finite harmonic morphism of Λ-metric graphs.
Suppose that ϕ can be enriched to a morphism of metrized complexes of curves. Then ϕ is liftable.

We remark that we actually take advantage of the stronger form of Theorem B, in particular the
calculation of the automorphism group of a lift, when lifting group actions on metrized complexes
in [ABBR14].

The problem of enriching a morphism of metric graphs to a morphism of metrized complexes is
essentially equivalent to the problem of assigning k-curves Cp, Cp′ to vertices p ∈ Γ, p′ ∈ Γ′ and finding
morphisms of k-curves Cp′ → Cp with prescribed ramification profiles. The latter is a question about
whether certain Hurwitz numbers are nonzero. See Proposition II.3.3. Allowing arbitrary choices of
residue curves Cp, Cp′ , this can always be done:

Theorem. Suppose that char(k) = 0. Any finite harmonic morphism ϕ : Γ′ → Γ of Λ-metric graphs is
liftable to a morphism of curves.

See Theorem II.3.11. Imposing requirements on the lifted curves X,X ′ give rise to variants of this
tropical lifting problem. The most basic such requirement is to specify the genera of the curves. An
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augmented metric graph is a metric graph Γ along with an integer g(p) ∈ Z≥0 for every finite vertex p
of Γ, called the genus. The genus of an augmented graph Γ is defined to be

g(Γ) = h1(Γ) +
∑
p

g(p),

where h1(Γ) is the first Betti number. Any metrized complex of curves has an underlying augmented
metric graph, where g(p) := g(Cp), the genus of the residue curve. If Σ is a skeleton of a curve X,
viewed as an augmented metric graph, then we have g(Σ) = g(X).

A finite harmonic morphism of augmented metric graphs Γ′ → Γ is liftable if the morphism of
underlying metric graphs is liftable to a finite morphism of curves X ′ → X such that the isomorphism
of Γ (resp. Γ′) with a skeleton of X (resp. X ′) respects the augmented metric graph structure. In
this case, g(X) = g(Γ) and g(X ′) = g(Γ′). By our lifting theorem, Γ′ → Γ is liftable to a morphism
of curves if and only if it can be enhanced to a morphism of metrized complexes such that g(Cp) =
g(p) for every finite vertex. Now the obstruction to lifting is nontrivial: there exist finite harmonic
morphisms of metric graphs which cannot be enhanced to a morphism of metrized complexes. This
corresponds to the emptiness of certain Hurwitz spaces over k. See Section II.5 for the following
striking example of this phenomenon:

Theorem. There exists an augmented metric graph Γ admitting a finite morphism of degree d > 0 to an
augmented metric graph T of genus zero, but which is not isomorphic to a skeleton of a d-gonal curve X.

In [ABBR14] we also give applications of the lifting theorem to the following kinds of tropical
lifting problems, among others:

• When T is an augmented metric graph of genus zero, we study a variant of the lifting problem
in which the genus of the source curve is prescribed, but the degree of the morphism is not.
We use this to prove that linear equivalence of divisors on a tropical curve C coincides with the
equivalence relation generated by declaring that the fibers of every finite harmonic morphism
from C to the tropical projective line are equivalent.

• We study liftability of metrized complexes equipped with a finite group action, and as an
application classify all (augmented) metric graphs arising as the skeleton of a hyperelliptic
curve. As mentioned above, this study actually takes advantage of the more precise form of
Theorem B, not just the existence of a lift.

1.7. Organization of the paper. In Section 2 we recall some basic definitions of graphs with addi-
tional structures, including metrized complexes of curves, and define harmonic morphisms between
them. We provide somewhat more detail than is strictly necessary for the exposition in this paper, but
will prove necessary in [ABBR14].

In Section 3 we review the structure theory of analytic curves, and define the skeleton of a curve.
We show that the skeleton is naturally a metrized complex of curves, and we prove that any metrized
complex arises in this way. In Section 4 we develop “relative” versions of the results of Section 3.
We prove that a finite morphism of curves induces a finite morphism between suitable choices of
skeleta, and that the map on skeleta is a finite harmonic morphism of metrized complexes of curves.
In Section 5 we show how the previous two sections can be used to derive various simultaneous
semistable reduction theorems.

In Section 6 we prove a local lifting theorem, which essentially says that a tame covering of
metrized complexes of curves can be lifted in a unique way to a tame covering of analytic K-curves
in a neighborhood of a vertex. This is the technical heart of the lifting theorem. In Section 7 we
globalize the considerations of the previous section, giving the classification of lifts of a tame covering
of metrized complexes of curves to a tame covering of triangulated punctured K-curves.

Section 8 contains an example application, in which we construct a morphism of curves over a dis-
cretely valued field such that the covariantly associated morphism of component groups of Jacobians
has a prescribed behavior. We use this to answer a question of Ribet.
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1.8. Related work. Another framework for the foundations of tropical geometry has been proposed
by Kontsevich-Soibelman [KS01, KS06] and Mikhalkin [Mik06, Mik05], in which tropical objects are
associated to real one-parameter families of complex varieties. We refer to [KS01, KS06] for some
conjectures relating this framework to Berkovich spaces. In this setting, the notion of metrized com-
plex of curves is similar to the notion of phase-tropical curves, and Proposition 7.15 is a consequence
of Riemann’s Existence Theorem. We refer the interested reader to the forthcoming paper [Mik] for
more details (see also [BBM11] where this statement is implicit, as well as Corollary II.3.8).

Harmonic morphisms of finite graphs were introduced by Urakawa in [Ura00] and further explored
in [BN09]. Harmonic morphisms of metric graphs have been introduced independently by several
different people. Except for the integrality condition on the slopes, they appear already in Anand’s
paper [Ana00]. The definition we use is the same as the one given in [Mik06, Cha12].

Finite harmonic morphisms of metrized complexes can be regarded as a metrized version of the
notion of admissible cover due to Harris and Mumford [HM82] (where, in addition, arbitrary ramifi-
cation above smooth points is allowed). Recall that for two semistable curves Y ′ and Y over a field
k, a finite surjective morphism ϕ : Y ′ → Y is an admissible cover if ϕ−1(Y sing) = Y ′sing and for each
singular point y′ of Y ′, the ramification indices at y′ along the two branches intersecting at y′ coin-
cide. (In addition, one usually imposes that all the other ramifications of ϕ are simple). An admissible
cover naturally gives rise to a finite harmonic morphism of metrized complexes: denoting by C the
regularization of Y (the metrized complex associated to Y in which each edge has length one), define
C′ as the metrized complex obtained from Y ′ by letting the length of the edge associated to the double
point y′ be 1/ry′ (where ry′ is the ramification index of ϕ at y′ along either of the two branches). The
morphism ϕ of semistable curves naturally extends to a finite harmonic morphism ϕ : C′ → C: on
each edge e′ of C′ corresponding to a double point y′ of Y ′, the restriction of ϕ to e′ is linear with
slope (or “expansion factor”) ry′ . Conversely, a finite harmonic morphism of metrized complexes of
curves gives rise to an admissible cover of semistable curves (without the supplementary condition on
simple ramification) by forgetting the metrics on both sides, remembering only the expansion factor
along each edge.

A related but somewhat different Berkovich-theoretic point of view on simultaneous semistable
reduction for curves can be found in Welliaveetil’s recent preprint [Wel13]; harmonic morphisms of
metrized complexes of curves play an implicit role in his paper.

2. METRIC GRAPHS AND METRIZED COMPLEXES OF CURVES

In this section we recall several definitions of graphs with some additional structures and mor-
phisms between them. A number of these definitions are now standard in tropical geometry; we refer
for example to [BN07], [Mik06], [BBM11], and [AB12]. We also provide a number of examples.
Some of the definitions in this section are not necessary in the generality or the form in which they
are presented for the purposes of this paper, but will be useful in [ABBR14].

Throughout this section, we fix Λ a non-trivial subgroup of (R,+).

2.1. Metric graphs. Given r ∈ Z≥1, we define Sr ⊂ C to be a “star with r branches”, i.e., a topologi-
cal space homeomorphic to the convex hull in R2 of (0, 0) and any r points, no two of which lie on a
common line through the origin. We also define S0 = {0}.

A finite topological graph Γ is the topological realization of a finite graph. That is to say, Γ is a
compact 1-dimensional topological space such that for any point p ∈ Γ, there exists a neighborhood
Up of p in Γ homeomorphic to some Sr; moreover there are only finitely many points p with Up
homeomorphic to Sr with r 6= 2.

The unique integer r such that Up is homeomorphic to Sr is called the valence of p and denoted
val(p). A point of valence different from 2 is called an essential vertex of Γ. The set of tangent directions
at p is Tp(Γ) = lim−→Up

π0(Up \ {p}), where the limit is taken over all neighborhoods of p isomorphic to

a star with r branches. The set Tp(Γ) has val(p) elements.
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Definition 2.2. A metric graph is a finite connected topological graph Γ equipped with a complete
inner metric on Γ\V∞(Γ), where V∞(Γ) ( Γ is some (finite) set of 1-valent vertices of Γ called infinite
vertices of Γ. (An inner metric is a metric for which the distance between two points x and y is the
minimum of the lengths of all paths between x and y.)

Let Γ be a metric graph containing a finite essential vertex. We say that Γ is a Λ-metric graph if the
distance between any two finite essential vertices of Γ lies in Λ. A Λ-point of Γ is a point of Γ whose
distance to any finite essential vertex of Γ lies in Λ.

Let Γ be a metric graph such that all essential vertices are infinite, so Γ is homeomorphic to a
circle or a completed line. We say that Γ is a Λ-metric graph if it is a completed line or a circle whose
circumference is in Γ. Choose a point v ∈ Γ of valency equal to 2. A Λ-point of Γ is a point of Γ whose
distance to v lies in Λ.

One can equip Γ with a degenerate metric in which the infinite vertices are at infinite distance from
any other point of Γ. When no confusion is possible about the subgroup Λ, we will sometimes write
simply metric graph instead of Λ-metric graph.

Definition 2.3. Let Γ be a Λ-metric graph. A vertex set V (Γ) is a finite subset of the Λ-points of Γ
containing all essential vertices. An element of a fixed vertex set V (Γ) is called a vertex of Γ, and the
closure of a connected component of Γ \ V (Γ) is called an edge of Γ. An edge which is homeomorphic
to a circle is called a loop edge. An edge adjacent to an infinite vertex is called an infinite edge. We
denote by Vf (Γ) the set of finite vertices of Γ, and by Ef (Γ) the set of finite edges of Γ.

Fix a vertex set V (Γ). We denote by E(Γ) the set of edges of Γ. Since Γ is a metric graph, we can
associate to each edge e of Γ its length `(e) ∈ Λ∪{+∞}. Since the metric on Γ\V∞(Γ) is complete, an
edge e is infinite if and only if `(e) = +∞. The notion of vertices and edges of Γ depends, of course,
on the choice of a vertex set; we will fix such a choice without comment whenever there is no danger
of confusion.

Definition 2.4. Fix vertex sets V (Γ′) and V (Γ) for two Λ-metric graphs Γ′ and Γ, respectively, and
let ϕ : Γ′ → Γ be a continuous map.

• The map ϕ is called a (V (Γ′), V (Γ))-morphism of Λ-metric graphs if we have ϕ(V (Γ′)) ⊂ V (Γ),
ϕ−1(E(Γ)) ⊂ E(Γ′), and the restriction of ϕ to any edge e′ of Γ′ is a dilation by some factor
de′(ϕ) ∈ Z≥0.

• The map ϕ is called a morphism of Λ-metric graphs if there exists a vertex set V (Γ′) of Γ′ and
a vertex set V (Γ) of Γ such that ϕ is a (V (Γ′), V (Γ))-morphism of Λ-metric graphs.

• The map ϕ is said to be finite if de′(ϕ) > 0 for any edge e′ ∈ E(Γ′).

An edge e′ of Γ′ is mapped to a vertex of Γ if and only if de′(ϕ) = 0. Such an edge is said to be
contracted by ϕ. A morphism ϕ : Γ′ → Γ is finite if and only if there are no contracted edges, which
holds if and only if ϕ−1(p) is a finite set for any point p ∈ Γ. If ϕ is finite, then p′ ∈ Vf (Γ′) if and only
if ϕ(p′) ∈ Vf (Γ).

The integer de′(ϕ) ∈ Z≥0 in Definition 2.4 is called the degree of ϕ along e′ (it is also sometimes
called the weight of e′ or expansion factor along e′ in the literature). Since `(ϕ(e′)) = de′(ϕ) · `(e′), it
follows in particular that if de′(ϕ) ≥ 1 then e′ is infinite if and only if ϕ(e′) is infinite. Let p′ ∈ V (Γ′), let
v′ ∈ Tp′(Γ′), and let e′ ∈ E(Γ′) be the edge in the direction of v′. We define the directional derivative
of ϕ in the direction v′ to be dv′(ϕ) B de′(ϕ). If we set p = ϕ(p′), then ϕ induces a map

dϕ(p′) :
{
v′ ∈ Tp′(Γ′) : dv′(ϕ) 6= 0

}
−→ Tp(Γ)

in the obvious way.

Example 2.5. Figure 1 depicts four examples of morphisms of metric graphs ϕ : Γ′ → Γ. We use the
following conventions in our pictures: black dots represent vertices of Γ′ and Γ; we label an edge with
its degree if and only if the degree is different from 0 and 1; we do not specify the lengths of edges of
Γ′ and Γ.
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The morphisms depicted in Figure 1(a), (b), and (c) are finite, while the one depicted in Figure
1(d) is not.

d

ϕ

d

ϕ

2

2

ϕ

d d

p′ ϕ

a) b) c) d)

FIGURE 1

Definition 2.6. Let ϕ : Γ′ → Γ be a morphism of Λ-metric graphs, let p′ ∈ Γ′, and let p = ϕ(p′). The
morphism ϕ is harmonic at p′ provided that, for every tangent direction v ∈ Tp(Γ), the number

dp′(ϕ) :=
∑

v′∈Tp′ (Γ
′)

v′ 7→v

dv′(ϕ)

is independent of v. The number dp′(ϕ) is called the degree of ϕ at p′.
We say that ϕ is harmonic if it is surjective and harmonic at all p′ ∈ Γ′; in this case the number

deg(ϕ) =
∑
p′ 7→p dp′(ϕ) is independent of p ∈ Γ, and is called the degree of ϕ.

Remark 2.7. In the above situation, if Γ consists of a single vertex v and ϕ : Γ′ → Γ is a morphism of
metric graphs, then ϕ is by definition harmonic. In this case the quantity dp′(ϕ) is not defined, so we
include the choice of a positive integer dp′(ϕ) for each p′ ∈ Vf (Γ′) as part of the data of the morphism
ϕ. Note that if ϕ is finite and Γ = {p}, then Γ′ = {p′}.

If both Γ′ and Γ have at least one edge, then a non-constant morphism which is harmonic at all
p′ ∈ V (Γ′) is automatically surjective.

Example 2.8. The morphism depicted in Figure 1(a) is not harmonic, while the ones depicted in
Figure 1(b), (c), and (d) are (for suitable choices of lengths).

2.9. Harmonic morphisms and harmonic functions. Given a metric graph Γ and a non-empty
open set U in Γ, a function f : U → R is said to be harmonic on U if f is piecewise affine with integer
slopes and for all x ∈ U , the sum of the slopes of f along all outgoing tangent directions at x is equal
to 0.

Since we will not use it elsewhere in the paper, we omit the proof of the following result (which is
very similar to the proof of [BN09, Proposition 2.6]):

Proposition 2.10. A morphism ϕ : Γ′ → Γ of metric graphs is harmonic if and only if for every open
set U ⊆ Γ and every harmonic function f : U → R, the pullback function ϕ∗f : ϕ−1(U) → R is also
harmonic.

Equivalently, a morphism of metric graphs is harmonic if and only if germs of harmonic functions
pull back to germs of harmonic functions.

2.11. For a metric graph Γ, we let Div(Γ) denote the free abelian group on Γ. Given a harmonic
morphism ϕ : Γ′ → Γ of metric graphs, there are natural pull-back and push-forward homomorphisms
ϕ∗ : Div(Γ)→ Div(Γ′) and ϕ∗ : Div(Γ′)→ Div(Γ) defined by

ϕ∗(p) =
∑
p′ 7→p

dp′(ϕ) (p′) and ϕ∗(p
′) = (ϕ(p′))

and extending linearly. It is clear that for D ∈ Div(Γ) we have deg(ϕ∗(D)) = deg(ϕ) · deg(D) and
deg(ϕ∗(D)) = deg(D).
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2.12. Augmented metric graphs. Here we consider Λ-metric graphs together with the data of a
non-negative integer at each point. For a finite point p, this integer should be thought as the genus of
a “virtual algebraic curve” lying above p.

Definition 2.13. An augmented Λ-metric graph is a Λ-metric graph Γ along with a function g : Γ →
Z≥0, called the genus function, such that g(p) = 0 for all points of Γ except possibly for finitely many
(finite) Λ-points p ∈ Γ. The essential vertices of Γ are the points p for which val(p) 6= 2 or g(p) > 0. A
vertex set of Γ is a vertex set V (Γ) of the underlying metric graph which contains all essential vertices
of Γ as an augmented graph.

An augmented metric graph is said to be totally degenerate if the genus function is identically zero.
The genus of Γ is defined to be

g(Γ) = h1(Γ) +
∑
p∈Γ

g(p),

where h1(Γ) = dimQH1(Γ,Q) is the first Betti number of Γ. The canonical divisor on Γ is

(2.13.1) KΓ =
∑
p∈Γ

(val(p) + 2g(p)− 2) (p).

A harmonic morphism of augmented Λ-metric graphs ϕ : Γ′ → Γ is a map which is a harmonic
morphism between the underlying metric graphs of Γ′ and Γ.

Note that both summations in the above definition are in fact over essential vertices of Γ. The
degree of the canonical divisor of an augmented Λ-metric graph Γ is deg(KΓ) = 2g(Γ) − 2. An
augmented metric graph of genus 0 will also be called a rational augmented metric graph.

2.14. Let ϕ : Γ′ → Γ be a harmonic morphism of augmented Λ-metric graphs. The ramification divisor
of ϕ is the divisor R =

∑
Rp′(p

′), where

(2.14.1) Rp′ = dp′(ϕ) ·
(
2− 2g(ϕ(p′))

)
−
(
2− 2g(p′)

)
−

∑
v′∈Tp′ (Γ′)

(
dv′(ϕ)− 1

)
.

Note that if p′ ∈ V∞(Γ′), then Rp′ ≥ 0 if dp′(ϕ) > 0, and Rp′ = −1 if dp′(ϕ) = 0. The definition
of Rv′ in (2.14.1) is rigged so that we have the following graph-theoretic analogue of the Riemann–
Hurwitz formula:

(2.14.2) KΓ′ = ϕ∗(KΓ) +R.

In particular, the sum R =
∑
Rp′(p

′) is in fact finite.

Definition 2.15. Let ϕ : Γ′ → Γ be a finite harmonic morphism of augmented Λ-metric graphs. We
say that ϕ is étale at a point p′ ∈ Γ′ provided that Rp′ = 0. We say that ϕ is generically étale if R is
supported on the set of infinite vertices of Γ′ and that ϕ is étale if R = 0.

2.16. Metrized complexes of curves. Recall that k is an algebraically closed field. A metrized
complex of curves is, roughly speaking, an augmented metric graph Γ together with a chosen vertex
set V (Γ) and a marked algebraic k-curve of genus g(p) for each finite vertex p ∈ V (Γ). More precisely:

Definition 2.17. A Λ-metrized complex of k-curves consists of the following data:

• An augmented Λ-metric graph Γ equipped with the choice of a distinguished vertex set V (Γ).
• For every finite vertex p of Γ, a smooth, proper, connected k-curve Cp of genus g(p).
• An injective function redp : Tp(Γ) → Cp(k), called the reduction map. We call the image of

redp the set of marked points on Cp.

Example 2.18. Figure 2 depicts a particular metrized complex of curves over C. At each finite vertex
p there is an associated compact Riemann surface Cp, together with a finite set of marked points (in
red).

Definition 2.19. A harmonic morphism of metrized complexes of curves consists of a harmonic
(V (Γ′), V (Γ))-morphism ϕ : Γ′ → Γ of augmented metric graphs, and for every finite vertex p′ of Γ′
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FIGURE 2

with dp′(ϕ) > 0 a finite morphism of curves ϕp′ : C ′p′ → Cϕ(p′), satisfying the following compatibility
conditions:

(1) For every finite vertex p′ ∈ V (Γ′) and every tangent direction v′ ∈ Tp′(Γ′) with dv′(ϕ) > 0,
we have ϕp′(redp′(v

′)) = redϕ(p′)(dϕ(p′)(v′)), and the ramification degree of ϕp′ at redp′(v
′)

is equal to dv′(ϕ).
(2) For every finite vertex p′ ∈ V (Γ′) with dp′(ϕ) > 0, every tangent direction v ∈ Tϕ(p′)(Γ), and

every point x′ ∈ ϕ−1
p′ (redϕ(p′)(v)) ⊂ C ′p′(k), there exists v′ ∈ Tp′(Γ′) such that redp′(v

′) = x′.
(3) For every finite vertex p′ ∈ V (Γ′) with dp′(ϕ) > 0 we have dp′(ϕ) = deg(ϕp′).

A harmonic morphism of metrized complexes of curves is called finite if the underlying harmonic
morphism of (augmented) metric graphs is finite. Metrized complexes of curves with harmonic mor-
phisms between them form a category, with finite harmonic morphisms giving rise to a subcategory.

If Γ has at least one edge, then (3) follows from (1) and (2), since the sum of the ramification
degrees of a finite morphism of curves along any fiber is equal to the degree of the morphism.

Let ϕ : C ′ → C be a finite morphism of smooth, proper, connected k-curves. Recall that ϕ is tamely
ramified if either char(k) = 0 or the ramification degree of ϕ at every closed point of C ′ is prime to
the characteristic of k.

Remark 2.20.

(1) Let ϕ : C ′ → C be a finite morphism. Let D be the (finite) set of branch points, let D′ =
ϕ−1(D) ⊂ C ′(k), and let U = C \D and U ′ = C ′ \D′. Then ϕ is tamely ramified if and only
if ϕ|U ′ : U ′ → U is a tamely ramified cover of U over C relative to D in the sense of [SGA1,
XIII.2.1.3]: see the discussion in §2.0 of loc. cit.

(2) A tamely ramified morphism is separable (i.e. generically étale).
(3) The Riemann–Hurwitz formula applies to a tamely ramified morphism.

Definition 2.21. Let ϕ : C′ → C be a finite harmonic morphism of metrized complexes of curves. We
say that ϕ is a tame harmonic morphism if either char(k) = 0, or char(k) = p > 0 and ϕp′ is tamely
ramified for all finite vertices p′ ∈ V (Γ′). We call ϕ a tame covering if in addition ϕ : Γ′ → Γ is a
generically étale finite morphism of augmented metric graphs.

Let ϕ : C′ → C be a tame harmonic morphism. Then each ϕp′ : Cp′ → Cϕ(p′) is a separable
morphism. Note that if char(k) = p then de′(ϕ) is prime to p for all edges e′ of Γ′. We have the
following kind of converse statement:

Proposition 2.22. Let ϕ : C′ → C be a finite harmonic morphism of metrized complexes of curves.
Suppose that ϕ is generically étale and that ϕp′ : Cp′ → Cp is a separable morphism of curves for all
finite vertices p′ of Γ′. Let p′ be a finite vertex of Γ′, and suppose that ϕp′ is ramified at a point x′ ∈ C ′p′(k).
Then there exists v′ ∈ Tp′(Γ′) such that redp′(v

′) = x′. In particular, if char(k) = p > 0 and de′(ϕ) is
prime to p for all edges e′ of C′, then ϕp′ is tamely ramified and ϕ is a tame covering.

Proof. Let p = ϕ(p′). Since ϕ is generically étale we have

0 = Rp′ = dp′(ϕ)(2− 2g(p))− (2− 2g(p′))−
∑

v′∈Tp′ (Γ′)

(dv′(ϕ)− 1).
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Since g(p) = g(Cp), g(p′) = g(C ′p′), and dp′(ϕ) is the degree of ϕp′ : C ′p′ → Cp, this gives∑
v′∈Tp′ (Γ′)

(dv′(ϕ)− 1) = deg(ϕp′)(2− 2g(Cp))− (2− 2g(C ′p′)).

The Riemann–Hurwitz formula as applied to ϕp′ says that the right-hand side of the above equation
is equal to the degree of the ramification divisor of ϕp′ (this holds whenever ϕp′ is separable), so the
proposition follows because for all v′ ∈ Tp′(Γ′), the ramification degree of ϕp′ at redp′(v

′) is dv′(ϕ). n

Remark 2.23. Loosely speaking, Proposition 2.22 says that all ramification of all morphisms ϕp′ is
“visible” in the edge degrees of the underlying morphism of metric graphs. It follows from Proposi-
tion 2.22 that if Γ′ = {p′}, then ϕp′ is étale.

3. ANALYTIC CURVES AND THEIR SKELETA

In this section we recall the definition and basic properties of the skeleton of the analytification
of an algebraic curve as outlined in [Tem] and elaborated in [BPR11, §5]. These foundational re-
sults are well-known to experts, and appear in various guises in the literature. See for example
Berkovich [Ber90, Ber99], Thuillier [Thu05], and Ducros [Duc08]. In this section we also show that
the skeleton is naturally a metrized complex of curves, and prove that any metrized complex arises as
the skeleton of a curve. Finally, we introduce the important notion of a triangulated punctured curve,
which is essentially a punctured curve along with the data of a skeleton with a distinguished set of
vertices.

Recall that K is an algebraically closed field which is complete with respect to a nontrivial non-
Archimedean valuation val : K → R∪{∞}. Its valuation ring is R, its maximal ideal is mR, its residue
field is k = R/mR, and its value group is Λ = val(K×) ⊂ R.

By an analytic curve we mean a strictly K-analytic space X of pure dimension 1. For our purposes
the most important example of an analytic curve is the analytification of a smooth, connected, projec-
tive algebraic K-curve. If X is an analytic curve, then we define H(X) = X \ X(K) as in [BPR11,
3.10].

3.1. Analytic building blocks. We identify the set underlying the analytification of the affine line
with the set of multiplicative seminorms ‖ · ‖ : K[t] → R≥0 which extend the absolute value on K.
We let val : A1,an → R ∪ {∞} denote the valuation map

val(x) = − log |x| = − log ‖t‖x.
For a ∈ K× the standard closed ball of radius |a| is the affinoid domain

B(a) = val−1([val(a),∞]) ⊂ A1,an

and the standard open ball of radius |a| is the open analytic domain

B(a)+ = val−1((val(a),∞]) ⊂ A1,an.

Note that scaling by a gives isomorphisms B(1)
∼−→ B(a) and B(1)+

∼−→ B(a)+. We call B(1) (resp.
B(1)+) the standard closed (resp. open) unit ball. For a ∈ K× with val(a) ≥ 0 the standard closed
annulus of modulus val(a) is the affinoid domain

S(a) = val−1([0, val(a)]) ⊂ A1,an

and if val(a) > 0 the standard open annulus of modulus val(a) is the open analytic domain

S(a)+ = val−1((0, val(a))) ⊂ A1,an.

The standard punctured open ball is the open analytic domain

S(0)+ = val−1((0,∞)) = B(1)+ \ {0} ⊂ A1,an.

By a closed unit ball (resp. open unit ball, resp. closed annulus, resp. open annulus, resp. punctured
open ball) we will mean a K-analytic space which is isomorphic to the standard closed unit ball
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(resp. the standard open unit ball, resp. the standard closed annulus of modulus val(a) for some
a ∈ R \ {0}, resp. the standard open annulus of modulus val(a) for some a ∈ mR \ {0}, resp. the
standard punctured open ball). A generalized open annulus is a K-analytic space which is either an
open annulus or a punctured open ball. It is a standard fact that the modulus of a closed (resp. open)
annulus is an isomorphism invariant; see for instance [BPR11, Corollary 5.6]. We define the modulus
of a punctured open ball to be∞.

Let a ∈ mR (so a = 0 is allowed). There is a natural section σ : (0, val(a))→ S(a)+ of the valuation
map val : S(a)+ → (0, val(a)) sending r to the maximal point of the affinoid domain val−1(r) if r ∈ Λ,
resp. the only point of val−1(r) if r /∈ Λ. The skeleton of S(a)+ is defined to be the image of σ and is
denoted Σ(S(a)+) = σ((0, val(a))). We will always identify the skeleton of the standard generalized
open annulus S(a)+ with the interval or ray (0, val(a)). It follows from [BPR11, Proposition 5.5] that
the skeleton of a standard open annulus or standard punctured open ball is an isomorphism invariant,
so if A is a generalized open annulus, then we can define the skeleton Σ(A) of A to be the image of the
skeleton of a standard open annulus or standard punctured open ball S(a)+ under any isomorphism
S(a)+

∼−→ A.
Let T be a metric space and let x, y ∈ T . A geodesic segment from x to y is the image of a locally

isometric embedding [a, b] ↪→ T with a 7→ x and b 7→ y. We often identify a geodesic segment with its
image in T . Recall that an R-tree is a metric space T with the following properties:

(i) For all x, y ∈ T there is a unique geodesic segment [x, y] from x to y.
(ii) For all x, y, z ∈ T , if [x, y] ∩ [y, z] = {y}, then [x, z] = [x, y] ∪ [y, z].

See [BR10, Appendix B]. It is proved in §1.4 of loc. cit. that H(B(1)) is naturally an R-tree. Since
any path-connected subspace of an R-tree is an R-tree as well, if X is a standard open annulus or
standard (punctured) open ball then H(X) is an R-tree. It is proved in [BPR11, Corollary 5.61] that
the metric structure on H(X) is an isomorphism invariant, so the same statement applies to open balls
and generalized open annuli. For a ∈ mR the section σ : (0, val(a))→ S(a)+ is an isometry.

It also follows from the results in [BR10, §1.4] that for any x ∈ H(B(1)) and any type-1 point
y ∈ B(1), there is a unique continuous injection α : [0,∞] ↪→ B(1) with α(0) = x and α(∞) = y,
α([0,∞)) ⊂ H(B(1)), and such that α is an isometry when restricted to [0,∞). We let [x, y] denote
the image of α and we call [x, y] the geodesic segment from x to y. Similarly, if x and y are both
type-1 points then there is a unique continuous injection α : [−∞,∞] → B(1) with α(−∞) = x and
α(∞) = y, α(R) ⊂ H(B(1)), and such that α|R is an isometry; the image of α is called the geodesic
segment from x to y and is denoted [x, y]. Restricting to a suitable analytic subdomain of B(1) allows
us to define geodesic segments between any two points of an open ball or generalized open annulus.

3.2. Open balls. The closure of B(1)+ in B(1) consists of B(1)+ and a single type-2 point x, called
the end of B(1)+. The end is the Shilov boundary point of B(1): see for instance the proof of [BPR11,
Lemma 5.16]. The valuation map val : B(1)+ → (0,∞] extends to a continuous map val : B(1)+ ∪
{x} → [0,∞]. The set B(1)+ ∪ {x} is path-connected and compact, being a closed subspace of the
compact space B(1). (In fact B(1)+ ∪ {x} is the one-point compactification of B(1)+.) For any
y ∈ B(1)+ the geodesic segment [x, y] ⊂ B(1) is contained in B(1)+ ∪ {x}.
Lemma 3.3. Let X = Spec(A) be an irreducible affine K-curve and let ϕ : B(1)+ → Xan be a
morphism with finite fibers. Then ϕ extends in a unique way to a continuous map B(1)+ ∪ {x} → Xan,
and the image of x is a type-2 point of Xan.

Proof. Let f ∈ A be nonzero and define F : (0,∞) → R by F (r) = − log |f ◦ ϕ(σ(r))|, where
σ : (0,∞) → S(0)+ ⊂ B(1)+ is the canonical section of val. By [BPR11, Proposition 5.10], F is a
piecewise affine function which is differentiable away from finitely many points r ∈ Λ ∩ (0,∞), and
for any point r ∈ (0,∞) at which F is differentiable, the derivative of F is equal to the number of
zeros y of f ◦ϕ with val(y) > r. It follows that F (Λ∩ (0,∞)) ⊂ Λ. Since f ◦ϕ has finitely many zeros,
the limit limr→0 F (r) exists and is contained in Λ. We define ‖f‖0 = exp(− limr→0 F (r)). It is easy to
see that f 7→ ‖f‖0 is a multiplicative seminorm on A extending the absolute value on K, so ‖ · ‖0 is
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a point in Xan. Define ϕ(x) = ‖ · ‖0. One shows as in the proof of [BPR11, Lemma 5.16] that ϕ is
continuous on B(1)+ ∪ {x}.

It remains to show that ϕ(x) = ‖ · ‖0 is a type-2 point of Xan. Let f ∈ A be a non-constant
function that has a zero on ϕ(B(1)+). Since − log ‖f‖0 ∈ Λ, there exists α ∈ K× such that ‖αf‖0 = 1;
replacing f by αf , we may and do assume that ‖f‖0 = 1. Since ϕ◦f has a zero, by the above we have
that F = − log |f ◦ϕ◦σ| is monotonically increasing, so F (r) > 0 for all r ∈ (0,∞). For any r ∈ (0,∞),
the maximal point of val−1(r) ⊂ B(1)+ is equal to σ(r), so for any y ∈ B(1)+ such that val(y) = r we
have F (r) ≤ − log |f ◦ϕ(y)|. It follows that |f ◦ϕ(y)| < 1 for all y ∈ B(1)+, so ϕ(f(B(1)+)) ⊂ B(1)+.
Since B(1)+ is dense in B(1)+∪{x}, the image of x under ϕ◦f is contained in the closure B(1)+∪{x}
of B(1)+ in B(1). Since 1 = ‖f‖0 = |f ◦ϕ(x)|, the point f ◦ϕ(x) /∈ B(1)+, so f ◦ϕ(x) = x, which is a
type-2 point of A1,an. Therefore ϕ(x) is a type-2 point of Xan. n

Applying Lemma 3.3 to a morphism ϕ : B(1)+ → B(1)+ ⊂ A1,an, we see that any automorphism
of B(1)+ extends (uniquely) to a homeomorphism B(1)+ ∪ {x} → B(1)+ ∪ {x}, so it makes sense to
speak of the end of any open ball. If B is an open ball with end x, we let B denote B ∪ {x}.

Let B be an open ball with end x. We define a partial ordering on B by declaring y ≤ z if y ∈ [x, z];
again see [BR10, §1.4]. Equivalently, for y, z ∈ B we have y ≤ z if and only if |f(y)| ≥ |f(z)| for all
analytic functions f on B. The following lemma is proved as in [BPR11, Proposition 5.27].

Lemma 3.4. Let B be an open ball and let y ∈ B be a type-2 point. Then B \ {y} is a disjoint union of
the open annulus A = {z ∈ B : z 6≥ y} with infinitely many open balls, and By = {z ∈ B : z ≥ y} is
an affinoid subdomain of B isomorphic to the closed ball B(1).

3.5. Open annuli. Let a ∈ mR \ {0}. The closure of S(a)+ in B(1) consists of S(a)+ and the two
type-2 points x = σ(0) and y = σ(val(a)), called the ends of S(a)+: again see the proof of [BPR11,
Lemma 5.16]. The valuation map val : S(a)+ → (0, val(a)) extends to a continuous map val : S(a)+ ∪
{x, y} → [0, val(a)], and for any z ∈ S(a)+ the geodesic segments [x, z] and [y, z] are contained in
S(a)+ ∪ {x, y}. The following lemma is proved in the same way as the first part of Lemma 3.3.

Lemma 3.6. Let X = Spec(A) be an irreducible affine K-curve, let a ∈ mR \ {0}, and let ϕ : S(a)+ →
Xan be a morphism with finite fibers. Let x = σ(0) and y = σ(val(a)) be the ends of S(a)+. Then ϕ
extends in a unique way to a continuous map S(a)+ ∪ {x, y} → Xan.

It follows from Lemma 3.6 that any automorphism of S(a)+ extends to a homeomorphism S(a)+ ∪
{x, y} ∼−→ S(a)+ ∪ {x, y}, so it makes sense to speak of the ends of any open annulus. If A is an open
annulus with ends x, y, then we let A denote the compact space A ∪ {x, y}.

The closure of the punctured open ball S(0)+ in B(1) is equal to S(0)+ ∪ {0, x}, where x is the
end of B(1)+. We define x to be the end of S(0)+ and 0 to be the puncture. As above, the end and
puncture of S(0)+ are isomorphism invariants, so it makes sense to speak of the end and the puncture
of any punctured open ball. If A is a punctured open ball with end x and puncture y, then we let A
denote the compact space A ∪ {x, y}.

LetA be a generalized open annulus. Each connected component ofA\Σ(A) is an open ball [BPR11,
Lemma 5.12], and if B is such a connected component with end x, then the inclusion B ↪→ A extends
to an inclusion B ↪→ A with x mapping into Σ(A); the image of B is the closure of B in A. We define
the retraction to the skeleton τ : A→ Σ(A) by fixing Σ(A) and sending each connected component of
A \Σ(A) to its end. If A = S(a)+, then the retraction τ coincides with σ ◦ val : S(a)+ → Σ(S(a)+); in
particular, if (r, s) ⊂ (0, val(a)) = S(a)+, then τ−1((r, s)) = val−1((r, s)).

3.7. The skeleton of a curve. Let X be a smooth, connected, proper algebraic K-curve and let
D ⊂ X(K) be a finite set of closed points. The set H(Xan) is natually a metric space [BPR11,
Corollary 5.62], although the metric topology on H(Xan) is much finer than the topology induced
by the topology on the K-analytic space Xan. The metric on H(Xan) is locally modeled on an R-
tree [BPR11, Proposition 5.63].
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Definition 3.8. A semistable vertex set of X is a finite set V of type-2 points of Xan such that Xan \ V
is a disjoint union of open balls and finitely many open annuli. A semistable vertex set of (X,D) is
a semistable vertex set of X such that the points of D are contained in distinct open ball connected
components of Xan \ V .

It is a consequence of the semistable reduction theorem of Deligne-Mumford that there exist
semistable vertex sets of (X,D): see [BPR11, Theorem 5.49]. In the sequel it will be convenient
to consider a curve along with a choice of semistable vertex set, so we give such an object a name.

Definition 3.9. A triangulated punctured curve (X,V ∪D) is a smooth, connected, proper algebraic
K-curve X equipped with a finite set D ⊂ X(K) of punctures and a semistable vertex set V of (X,D).

Remark 3.10. This terminology is loosely based on that used in [Duc08] as well as the forthcoming
book of Ducros on analytic spaces and analytic curves. Strictly speaking, what we have defined should
be called a semistably triangulated punctured curve, but as these are the only triangulations that we
consider, we will not need the added precision.

3.11. Let (X,V ∪D) be a triangulated punctured curve, so

(3.11.1) Xan \ (V ∪D) = A1 ∪ · · · ∪An ∪
⋃
α

Bα,

where each Ai is a generalized open annulus and {Bα} is an infinite collection of open balls. The
skeleton of (X,V ∪D) is the subset

Σ(X,V ∪D) = V ∪D ∪ Σ(A1) ∪ · · · ∪ Σ(An).

(This set is denoted Σ̂(X,V ∪D) in [BPR11].) For each i and each α the inclusions H(Ai) ↪→ H(Xan)
and H(Bα) ↪→ H(Xan) are local isometries [BPR11, Proposition 5.60]. For each open ball Bα the
map Bα ↪→ Xan extends to an inclusion Bα ↪→ Xan sending the end of Bα to a point xα ∈ V . We say
that Bα is adjacent to xα. For each open annulus Ai the map Ai ↪→ Xan extends to a continuous map
Ai ↪→ Xan sending the ends of Ai to points xi, yi ∈ V . We say that Ai is adjacent to xi and yi. The
length `(ei) ∈ Λ of the geodesic segment ei = Σ(Ai) ∪ {xi, yi} is then the modulus of Ai. We say that
V is strongly semistable if xi 6= yi for each open annulus Ai. For each generalized open annulus Ai the
map Ai ↪→ Xan extends to a continuous map Ai ↪→ Xan sending the end of Ai to a point xi ∈ V and
sending the puncture to a point yi ∈ D. We say that Ai is adjacent to xi and yi. We define the length
of ei = Σ(Ai) ∪ {xi, yi} to be `(ei) =∞.

The skeleton Σ = Σ(X,V ∪D) naturally has the structure of a Λ-metric graph with distinguished
finite vertex set Vf (Σ) = V , infinite vertex set V∞(Σ) = D, and edges {e1, . . . , en} as above. Note
that the Λ-points of Σ are exactly the type-2 points of Xan contained in Σ. For x ∈ V the residue field
H̃ (x) of the completed residue field H (x) at the type-2 point x is a finitely generated field extension
of k of transcendence degree 1; we let Cx be the smooth k-curve with function field H̃ (x). For x ∈ V
we let g(x) be the genus of Cx, and for x ∈ Σ \ V we set g(x) = 0. These extra data give Σ the
structure of an augmented Λ-metric graph. (In (3.22) we will see that Σ is in fact naturally a metrized
complex of k-curves.) By the genus formula [BPR11, (5.45.1)], the genus of X is equal to the genus
of the augmented Λ-metric graph Σ.

The open analytic domain Xan \Σ is isomorphic to an infinite disjoint union of open balls [BPR11,
Lemma 5.18(3)]. If B is a connected component of Xan \ Σ, then the inclusion B ↪→ Xan extends to
a map B ↪→ Xan sending the end of B to a point of Σ. We define the retraction τ = τΣ : Xan → Σ by
fixing Σ and sending a point x ∈ Xan not in Σ to the end of the connected component of x in Xan \Σ.
This is a continuous map. If x ∈ Bα is in an open ball connected component of Xan \ (V ∪D), then
τ(x) ∈ V is the end of Bα, and if x ∈ Ai, then τ(x) coincides with the image of x under the retraction
map τ : Ai → Σ(Ai).

Here we collect some additional facts about skeleta from [BPR11, §5].

Proposition 3.12. Let (X,V ∪D) be a triangulated punctured curve with skeleton Σ = Σ(X,V ∪D).
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(1) The skeleton Σ is the set of points in Xan that do not admit an open neighborhood isomorphic to
B(1)+ and disjoint from V ∪D.

(2) Let V1 be a semistable vertex set of (X,D) such that V1 ⊃ V . Then Σ(X,V1 ∪D) ⊃ Σ(X,V ∪D)
and τΣ(X,V ∪D) = τΣ(X,V ∪D) ◦ τΣ(X,V1∪D).

(3) Let W ⊂ Xan be a finite set of type-2 points. Then there exists a semistable vertex set of (X,D)
containing V ∪W .

(4) Let W ⊂ Σ be a finite set of type-2 points. Then V ∪W is a semistable vertex set of (X,D) and
Σ(X,V ∪D) = Σ(X,V ∪W ∪D).

(5) Let x, y ∈ Σ ∩H(Xan). Then any geodesic segment from x to y in H(Xan) is contained in Σ.
(6) Let x, y ∈ Xan be points of type-2 or 3 and let [x, y] be a geodesic segment from x to y in H(Xan).

Then there exists a semistable vertex set V1 of (X,D) such that V1 ⊃ V and [x, y] ⊂ Σ(X,V1∪D).

Definition 3.13. A skeleton of (X,D) is a subset of Xan of the form Σ = Σ(X,V ∪ D) for some
semistable vertex set V of (X,D). Such a semistable vertex set V is called a vertex set for Σ. A skeleton
of X is a skeleton of (X, ∅).

The augmented Λ-metric graph structure of a skeleton Σ of (X,D) does not depend on the choice
of vertex set for Σ.

3.14. Modifying the skeleton. Let X be a smooth, proper, connected K-curve and let D ⊂ X(K)
be a finite set. Let Σ be a skeleton of (X,D), let y ∈ Xan \ Σ, let B be the connected component
of Xan \ Σ containing y, and let x = τ(y) ∈ Σ be the end of B. If y ∈ H(Xan), then the geodesic
segment [x, y] ⊂ B is the unique geodesic segment in H(Xan) connecting x and y. If y ∈ X(K), then
we define [x, y] to be the geodesic segment [x, y] ⊂ B as in (3.1). The following strengthening of
Proposition 3.12(3) will be important in the sequel.

Lemma 3.15. Let V be a semistable vertex set of (X,D), let Σ = Σ(X,V ∪D), let W ⊂ Xan be a finite
set of type-2 points, and let E ⊂ X(K) be a finite set of type-1 points.

(1) There exists a minimal semistable vertex set V1 of (X,D∪E) which contains V ∪W , in the sense
that any other such semistable vertex set contains V1.

(2) Let B be a connected component of Xan \ Σ with end x and let y1, . . . , yn be the points of
(W ∪ E) ∩B. Then

Σ(X,V1 ∪D ∪ E) ∩B = [x, y1] ∪ · · · ∪ [x, yn]

if n > 0, and Σ(X,V1 ∪D ∪ E) ∩B = {x} otherwise. Therefore

Σ(X,V1 ∪D ∪ E) = Σ ∪
⋃

y∈W∪E
[τΣ(y), y].

(3) The skeleton Σ1 = Σ(X,V1 ∪D ∪ E) is minimal in the sense that any other skeleton containing
Σ and W ∪ E must contain Σ1.

Proof. To prove the first part we may assume that W = {y} consists of a single type-2 point not
contained in Σ and E = ∅, or E = {y} is a single type-1 point not contained in D and W = ∅. In
the first case one sees using Lemma 3.4 that V1 = V ∪ {y, τ(y)} is the minimal semistable vertex set
of (X,D) containing V and y, and in the second case V1 = V ∪ {τ(y)} is the minimal semistable
vertex set of (X,D ∪ {y}) containing V . For W and E arbitrary, let V1 be the minimal semistable
vertex set of (X,D ∪ E) containing V ∪ W and let Σ1 = Σ(X,V1 ∪ D). If E = ∅, then it is clear
from Proposition 3.12(5) that [x, yi] ⊂ Σ1 for each i; the other inclusion is proved by induction on
n, adding one point at a time as above. The case E 6= ∅ is similar and is left to the reader. The final
assertion follows easily from the first two and Proposition 3.12. n

Remark 3.16. The above lemma shows in particular that the metric graph Σ(X,V1 ∪ D ∪ E) is
obtained from Σ(X,V ∪ D) by a sequence of tropical modifications and their inverses (see Defini-
tion II.2.12 and Example II.2.16). It is easy to see that any tropical modification of Σ(X,V ∪ D) is
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of the form Σ(X,V1 ∪ D ∪ E) for a semistable vertex set V1 which contains V and a finite subset
E ⊂ X(K).

3.17. The minimal skeleton. The Euler characteristic of X \ D is defined to be χ(X \ D) = 2 −
2g(X)−#D, where g(X) is the genus of X. We say that (X,D) is stable if χ(X \D) < 0. A semistable
vertex set V of (X,D) is minimal if there is no semistable vertex set of (X,D) properly contained in
V , and V is stable if there is no x ∈ V of genus zero (resp. one) and valency less than 3 (resp. one) in
Σ(X,V ∪D). It is clear that minimal semistable vertex sets exist. A skeleton Σ of (X,D) is minimal if
there is no skeleton of (X,D) properly contained in Σ.

The following consequence of the stable reduction theorem can be found in [BPR11, Theorem 5.49].

Proposition 3.18. Let V be a minimal semistable vertex set of (X,D) and let Σ = Σ(X,V ∪D).

(1) If χ(X \D) ≤ 0, then Σ is the unique minimal skleton of (X,D); moreover, Σ is equal to the set
of points of Xan \D that do not admit an open neighborhood isomorphic to B(1)+ and disjoint
from D.

(2) If χ(X \D) < 0, then V is the unique minimal semistable vertex set of (X,D), V is stable, and

V = {x ∈ Σ : x has valency ≥ 3 or genus ≥ 1}.

Remark 3.19. We have χ(X \D) > 0 if and only if X ∼= P1 and D contains at most one point; in this
case, any type-2 point of Xan serves as a minimal semistable vertex set of (X,D), and there does not
exist a unique minimal skeleton. If χ(X \D) = 0, then either X ∼= P1 and D consists of two points,
or X is an elliptic curve and D is empty. In the first case, the minimal skeleton Σ of (X,D) is the
extended line connecting the points of D and any type-2 point on Σ is a minimal semistable vertex
set. If X is an elliptic curve and Xan contains a type-2 point x of genus 1, then {x} is both the unique
minimal semistable vertex set and the minimal skeleton. Otherwise X is a Tate curve, Σ is a circle,
and any type-2 point of Σ is a minimal semistable vertex set. See [BPR11, Remark 5.51].

3.20. Tangent directions and the slope formula. As above we letX be a smooth, proper, connected
algebraic K-curve. A continuous function F : Xan → R ∪ {±∞} is called piecewise affine provided
that F (H(Xan)) ⊂ R and F ◦ α : [a, b]→ R is a piecewise affine function for every geodesic segment
α : [a, b] ↪→ H(Xan). To any point x ∈ Xan is associated a set Tx of tangent directions at x, defined as
the set of germs of geodesic segments in Xan beginning at x. If F : Xan → R ∪ {±∞} is a piecewise
affine function and v ∈ Tx we denote by dvF (x) the outgoing slope of F in the direction v. We say that
F is harmonic at a point x ∈ Xan provided that there are only finitely many v ∈ Tx with dvF (x) 6= 0,
and

∑
v∈Tx dvF (x) = 0. See [BPR11, 5.65].

Let x ∈ Xan be a type-2 point, let H (x) be the completed residue field ofXan at x, and let H̃ (x) be
its residue field, as in (3.11). Then H̃ (x) is a finitely generated field extension of k of transcendence
degree 1, and there is a canonical bijection between the set Tx of tangent directions to Xan at x
and the set DV(H̃ (x)/k) of discrete valuations on H̃ (x) which are trivial on k. For v ∈ Tx we let
ordv : H̃ (x) → Z denote the corresponding valuation. Let f be a nonzero analytic function on Xan

defined on a neighborhood of x, let c ∈ K× be such that |c| = |f(x)|, and let f̃x ∈ H̃ (x) denote the
residue of c−1f . Then f̃x is defined up to multiplication by k×, so for any v ∈ Tx the integer ordv(f̃x)
is well-defined.

The following theorem is called the slope formula in [BPR11, Theorem 5.69]:

Theorem 3.21. Let f ∈ K(X)× be a nonzero rational function on X and let F = − log |f | : Xan →
R ∪ {±∞}. Let D ⊂ X(K) contain the zeros and poles of f and let Σ be a skeleton of (X,D). Then:

(1) F = F ◦ τ , where τ : Xan → Σ is the retraction.
(2) F is piecewise affine with integer slopes, and F is affine on each edge of Σ (with respect to a

choice of vertex set V ).
(3) If x is a type-2 point of Xan and v ∈ Tx, then dvF (x) = ordv(f̃x).
(4) F is harmonic at all points of Xan \D.
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(5) Let x ∈ X(K) and let v be the unique tangent direction at x. Then dvF (x) = ordx(f).

3.22. The skeleton as a metrized complex of curves. Let (X,V ∪D) be a triangulated punctured
curve with skeleton Σ = Σ(X,V ∪ D). Recall that Σ is an augmented Λ-metric graph with infinite
vertices D. We enrich Σ with the structure of a Λ-metrized complex of k-curves as follows. For x ∈ V
let Cx be the smooth, proper, connected k-curve with function field H̃ (x) as in (3.11). By definition
Cx has genus g(x). We have natural bijections

(3.22.1) Tx ∼= DV(H̃ (x)/k) ∼= Cx(k)

where the first bijection v 7→ ordv is defined in (3.20) and the second associates to a closed point ξ ∈
Cx(k) the discrete valuation ordξ on the function field H̃ (x) of Cx. Let v ∈ Tx be a tangent direction
and define redx(v) to be the point of Cx corresponding to the discrete valuation ordv ∈ DV(H̃ (x)/k).
These data make Σ into a Λ-metrized complex of k-curves.

3.23. Lifting metrized complexes of curves. We now prove that every metrized complex of curves
over k arises as the skeleton of a smooth, proper, connectedK-curve. This fact appears in the literature
in various contexts (over discretely-valued fields): see for instance [Bak08, Appendix B] and [Saï96,
Lemme 6.3]. For this reason we only sketch a proof using our methods.

Theorem 3.24. Let C be a Λ-metrized complex of k-curves. There exists a triangulated punctured curve
(X,V ∪D) such that the skeleton Σ(X,V ∪D) is isomorphic to C.

Proof. Let C be a smooth, proper, connected k-curve. By elementary deformation theory, there is
a smooth, proper admissible formal R-scheme C with special fiber C. By GAGA the analytic generic
fiber CK is the analytification of a smooth, proper, connected K-curve C . There is a reduction map
red : CK → C from the analytic generic fiber of C to (the set underlying) C, under which the inverse
image of the generic point of C is a single distinguished point x. The set {x} is a semistable vertex
set of C , with associated skeleton also equal to {x}. Moreover, there is a canonical identification of
H̃ (x) with the field of rational functions on C by [Ber90, Proposition 2.4.4]. See (5.6) for a more
detailed discussion of the relationship between semistable vertex sets and admissible formal models.

Let Γ be the metric graph underlying C. Let V be the vertices of Γ and let E be its edges. By
adding valence-2 vertices we may assume that Γ has no loop edges. Assume for the moment that
Γ has no infinite edges. For a vertex x ∈ V let Cx denote the smooth, proper, connected k-curve
associated to x, and choose an admissible formal curve Cx with special fiber isomorphic to Cx as
above. For clarity we let redCx denote the reduction map (Cx)K → Cx. By [BL93, Proposition 2.2],
for every x ∈ Cx(k) the formal fiber red−1

Cx
(x) is isomorphic to B(1)+. Let e be an edge of Γ with

endpoints x, y, and let xe ∈ Cx(k), ye ∈ Cy(k) be the reductions of the tangent vectors in the direction
of e at x, y, respectively. Remove closed balls from red−1

Cx
(xe) and red−1

Cy
(ye) whose radii are such

that the remaining open annuli have modulus equal to `(e). We form a new analytic curve Xan by
gluing these annuli together using some isomorphism of annuli for each edge e. The resulting curve
is proper, hence is the analytification of an algebraic curve X. By construction the image of the set of
distinguished points of the curves (Cx)K in Xan is a semistable vertex set, and the resulting skeleton
(considered as a metric graph) is isomorphic to Γ.

If Γ does have infinite edges, then we apply the above procedure to the finite part of Γ, then punc-
ture the curve X in the formal fibers over the smooth points of the residue curves which correspond
to the directions of the infinite tails of Γ. n

As an immediate application, we obtain the following property of the “abstract tropicalization map”
from the moduli space of stable marked curves to the moduli space of stable abstract tropical curves:

Corollary 3.25. If g and n are nonnegative integers with 2−2g−n < 0, the natural map trop : Mg,n →
M trop
g,n (see [BPR11, Remark 5.52]) is surjective.

See [ACP12] for an interpretation of the above map as a contraction from Man
g,n onto its skeleton

(which also implies surjectivity).
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4. MORPHISMS BETWEEN CURVES AND THEIR SKELETA

This section is a relative version of the previous one, in that we propose to study the behavior of
semistable vertex sets and skeleta under finite morphisms of curves. We introduce finite morphisms
of triangulated punctured curves and we prove that any finite morphism of punctured curves can be
enriched to a finite morphism of triangulated punctured curves. This powerful result can be used
to prove the simultaneous semistable reduction theorems of Coleman, Liu–Lorenzini, and Liu, which
we do in Section 5. It is interesting to note that we use only analytic methods on analytic K-curves,
making (almost) no explicit reference to semistable models; hence our proofs of the results of Liu–
Lorenzini and Liu are very different from theirs. Using a relative version of the slope formula, we
also show that a finite morphism of triangulated punctured curves induces (by restricting to skeleta)
a finite harmonic morphism of metrized complexes of curves, which will be crucial in the sequel.

4.1. Morphisms between open balls and generalized open annuli. The main results of this section
rest on a careful study of the behavior of certain morphisms between open balls and generalized open
annuli. Some of the lemmas and intermediate results appear in some form in the literature — see in
particular [Ber90] and [Ber93] — although they are hard to find in the form we need them. As the
proofs are not difficult, for the convenience of the reader we include complete arguments.

Lemma 4.2. Let a, a′ ∈ mR and let ϕ : S(a′)+ → S(a)+ be a morphism.

(1) If val ◦ϕ is constant on Σ(S(a′)+), then ϕ(S(a′)+) is contained in S(a)+ \ Σ(S(a)+).
(2) If val ◦ϕ is not constant on Σ(S(a′)+), then ϕ(Σ(S(a′)+)) ⊂ Σ(S(a)) and the restriction of ϕ to

Σ(S(a′)+) has the form x 7→ m · x+ b for some nonzero integer m and some b ∈ Λ.
(3) If ϕ extends to a continuous map ϕ : S(a′)+ → S(a)+ taking an end of S(a′)+ to an end of

S(a)+, then val ◦ϕ is not constant on Σ(S(a′)+).

Proof. Part (2) is exactly [BPR11, Proposition 5.5], so suppose that val ◦ϕ is constant on Σ(S(a)).
The map ϕ : S(a′)+ → S(a)+ ⊂ Gan

m is given by a unit f on S(a′)+. By [BPR11, Proposition 5.2], we
can write f = α (1 + g), where α ∈ K× and |g(x′)| < 1 for all x′ ∈ S(a′)+. Hence |ϕ(x′)−α| < |α| for
all x′ ∈ S(a′)+; here |ϕ(x′) − α| should be interpreted as the absolute value of the function f − α in
H (x′), or equivalently as the absolute value of the function t−α in H (ϕ(x)), where t is a parameter
on Gm. But |t(x)− α| ≥ |α| for every x ∈ Σ(S(a)), so ϕ(S(a′)+) ∩ Σ(S(a)) = ∅.

Let x′ be an end of S(a′)+, let x be an end of S(a)+, and suppose that ϕ(x′) = x. Since x′ is
a limit point of Σ(S(a′)+), there exists a sequence of points x′1, x

′
2, . . . ∈ Σ(S(a′)+) converging to

x′. Then ϕ(x′1), ϕ(x′2), . . . converge to x, so val(ϕ(x′1)), val(ϕ(x′2)), . . . converges to val(x). Since each
val(ϕ(x′i)) ∈ (0, val(a)) but val(x) /∈ (0, val(a)), val ◦ϕ is not constant on Σ(S(a′)+). n

Lemma 4.3. Let B′ be an open ball, let A be a generalized open annulus, and let ϕ : B′ → A be a
morphism. Then ϕ(B′) ∩ Σ(A) = ∅, and ϕ extends to a continuous map B′ → A.

Proof. The assertions of the Lemma are clear if ϕ is constant, so assume that ϕ is non-constant.
We identify A with S(a)+ for a ∈ mR and B′ with B(1)+. Any unit on B′ has constant absolute value,
so val ◦ϕ is constant on B′. Since B(1)+ \ {0} is a generalized open annulus, and since the type-1
point 0 maps to a type-1 point of A, it follows from Lemma 4.2 that ϕ(B′) ∩ Σ(A) = ∅. Let B be the
connected component of A \ Σ(A) containing ϕ(B′). Then the morphism B′ → B ↪→ A extends to a
continuous map B′ → B ↪→ A. n

Definition 4.4. Let T be a metric space and let m ∈ R>0. A continuous injection ϕ : [a, b] ↪→ T is an
embedding with expansion factor m provided that r 7→ ϕ(r/m) : [ma,mb] ↪→ T is a geodesic segment.
A continuous injection ϕ : [a, b] ↪→ T is piecewise affine provided that there exist a = a0 < a1 < · · · <
ar = b and m1, . . . ,mr ∈ R>0 such that ϕ|[ai−1,ai] is an embedding with expansion factor mi for each
i = 1, . . . , r.

Lemma 4.5. Let B,B′ be open balls, let x′ be the end of B, and let ϕ : B′ → B be a morphism with
finite fibers. Let y′ ∈ B′, let y = ϕ(y′), and let x = ϕ(x′). Then the restriction of ϕ to the geodesic
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segment [x′, y′] is injective, and ϕ([x′, y′]) is equal to the geodesic segment [x, y]. If in addition there exists
N > 0 such that all fibers of ϕ have fewer than N elements, then ϕ|[x′,y′] is piecewise affine.

Proof. First suppose that y′ does not have type 4. Choose isomorphisms B′ ∼= B(1)+ such that 0 >
y′ and B ∼= B(1)+ such that ϕ(0) = 0. Since y′ ∈ [x′, 0] we may replace [x′, y′] by the larger geodesic
segment [x′, 0] to assume that y′ = 0. Define F : Σ(S(0)+) → R by F (x) = val ◦ϕ(x) = − log |ϕ(x)|.
By [BPR11, Proposition 5.10], F is a piecewise affine function, and for any point z′ ∈ Σ(S(0)+) at
which F is differentiable, the derivative of F is equal to the number of zeros q′ of ϕ with val(q′) >
val(z′). It follows that F is monotonically increasing, so ϕ is injective on [x′, 0]. Let

Z = {τ(q′) : q′ ∈ S(0)+, ϕ(q′) = 0} ⊂ Σ(S(0)+).

If C ⊂ Σ(S(0)+) \ Z is a connected component, then A′ = τ−1(C) is a generalized open annulus
mapping to S(0)+. By the above, val ◦ϕ is not constant on Σ(A′) = Σ(S(0)+) ∩ A′, so by Lemma 4.2,
ϕ(Σ(A′)) ⊂ Σ(S(0)+). Since Σ(S(0)+) \Z is dense in Σ(S(0)+), we have that [x′, 0] = Σ(S(0)+)∪{0}
maps bijectively onto [x, 0]. It is clear in this case that the restriction of ϕ to the closure of any
connected component of Σ(S(0)+) \ Z is an embedding with integer expansion factor, so ϕ|[x′,0] is
piecewise affine. Note that ϕ|[x′,0] changes expansion factor at most #ϕ−1(0) times.

Now suppose that y′ has type 4. Suppose that z′, w′ ∈ [x′, y′] are two distinct points such that
ϕ(z′) = ϕ(w′). Assume without loss of generality that z′ < w′. Since w′ and z′ have the same image
under ϕ, they both have the same type, so w′ 6= y′ because y′ is the only type-4 point in [x′, y′].
Applying the above to the geodesic [x′, w′] gives a contradiction. Therefore, ϕ is injective on [x′, y′],
so ϕ([x′, y′]) = [x, y] since B is uniquely path-connected ([BR10, Corollary 1.14]).

Assume now that all fibers of ϕ have size bounded by N . The above argument proves that for all
z′ < y′, the restriction of ϕ to [x′, z′] is piecewise affine, and ϕ|[x′,z′] changes expansion factor at most
N times. Therefore there exists z′0 < y′ and m ∈ Z>0 such that for all z′ ∈ [z′0, y

′], the restriction of
ϕ to [z′0, z

′] is an embedding with expansion factor m. It follows that ϕ|[z′0,y′] is an embedding with
expansion factor m, so ϕ|[x′,y′] is piecewise affine. n

Lemma 4.6. Let B,B′ be open balls and let ϕ : B′ → B be a morphism. Suppose that ϕ is open,
separated, and has finite fibers, so it extends canonically to a continuous map ϕ : B′ → B by Lemma 3.3.
Let x′ be the end of B′ and let x = ϕ(x′) ∈ B. Then B1 = ϕ(B′) is an open ball connected component
of B \ {x} and ϕ : B′ → B1 is finite and order-preserving. In particular, if x is the end of B, then
ϕ : B′ → B is finite and order-preserving.

Proof. Let y′ ∈ B′. By Lemma 4.5, the restriction of ϕ to the geodesic [x′, y′] is injective, so
ϕ(y′) 6= x. Therefore x /∈ B1. Let C be the connected component of B \ {x} containing B1. Since x is
an end of C and x′ maps to x, Lemma 4.3 implies that C is not an open annulus, so it is an open ball.
By hypothesis, B1 is an open subset of C; since B′∪{x′} is compact, ϕ(B′∪{x′}) = B1∪{x} is closed
in B, and therefore B1 = (B1 ∪ {x}) ∩ C is closed in C. Since C is connected, we have B1 = C.

Since ϕ has finite fibers, ϕ : B′ → B1 is finite if and only if it is proper by [Ber90, Corollary 3.3.8].
If D ⊂ B1 is compact, then ϕ−1(D) is compact since ϕ−1(D) is closed as a subset of the compact space
B′. One has Int(B′/B1) = B′ by [Ber90, Proposition 3.1.3(i)] since B′ is a boundaryless K-analytic
space. Therefore ϕ is proper.

The fact that ϕ : B′ → B1 is order-preserving follows immediately from Lemma 4.5. n

4.7. Let ϕ : B′ → B be a finite morphism of open balls. Since an open ball is a smooth curve, ϕ is flat
in the sense that if M (A) ⊂ B is an affinoid domain and ϕ−1(M (A)) = M (A′), then A′ is a (finite)
flat A-algebra. For x ∈M (A) the fiber over x is

ϕ−1(x) = M
(
A′⊗̂AH (x)

)
= M

(
A′ ⊗AH (x)

)
,

where the second equality holds because A′ is a finite A-algebra. It follows that for x ∈ B the quantity∑
x′ 7→x dimH (x) Oϕ−1(x),x′ is independent of x; we call this number the degree of ϕ.

Proposition 4.8. Let B,B′ be open balls and let ϕ : B′ → B be a finite morphism. Let x′ be the end
of B′, let x = ϕ(x′) be the end of B, let y ∈ B, and let y′1, . . . , y

′
n ∈ B′ be the inverse images of y in B′.
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Then
ϕ−1([x, y]) = [x′, y′1] ∪ · · · ∪ [x′, y′n].

Proof. Let T ′ = [x′, y′1] ∪ · · · ∪ [x′, y′n]. The inclusion T ′ ⊂ ϕ−1([x, y]) follows from Lemma 4.5.
First we claim that for z ∈ [x, y] near enough to x, there is only one preimage of z in B′. Shrinking
[x, y] if necessary, we may assume that y has type 2. Choose a type-1 point w ∈ B such that w > y,
so (x, y] ⊂ (x,w) = Σ(B \ {w}). Let w′ ∈ B′ be a preimage of w and choose z′ ∈ Σ(B′ \ {w′}) such
that z′ ≤ τ(q′) for all q′ ∈ ϕ−1(w), where τ : B′ \ {w′} → Σ(B′ \ {w′}) is the retraction. Let A′ be the
open annulus τ−1((x′, z′)) ⊂ B′. Then ϕ(A′) ⊂ B \ {w}, and ϕ takes the end x′ of A′ to the end x of
B \{w}, so by Lemma 4.2(2,3), ϕ(Σ(A′)) ⊂ Σ(B \{w}) and the map Σ(A′)→ Σ(B \{w}) is injective.
If u′ ∈ A′ \ Σ(A′), then u′ is contained in an open ball in A′, so ϕ(u′) /∈ Σ(B \ {w}) by Lemma 4.3.
Therefore every point of Σ(B \ {w}) has at most one preimage in A′. Let u′ ∈ B′ \ A′, so u′ ≥ z′.
Then ϕ(u′) ≥ ϕ(z′), so every point u ∈ (x, y] with u < ϕ(z′) has exactly one preimage in B′ (note that
ϕ(z′) ∈ Σ(B \ {w}) by Lemma 4.5).

Let d be the degree of the finite morphism ϕ, so for every z ∈ B we have

d =
∑

z′∈ϕ−1(z)

dimH (z) Oϕ−1(z),z′ .

For y ∈ B as in the statement of the Proposition, define a function δ : (x, y]→ Z by

δ(z) =
∑

z′∈ϕ−1(z)
z′∈T ′

dimH (z) Oϕ−1(z),z′ .

Clearly δ(z) ≤ d for all z ∈ (x, y], and δ(z) = d if and only if ϕ−1(z) ⊂ T ′. By definition of T ′ we have
δ(y) = d, and by the above, δ(z) = d for z ∈ (x, y] close enough to x (any geodesic segment [x′, y′i]
surjects onto [x, y], hence contains the unique preimage of z). Therefore it is enough to show that
δ(z1) ≥ δ(z2) if z1 ≤ z2.

If z ∈ B is a point of type 2 or 3, then Bz B {w ∈ B : w ≥ z} is a (not necessarily strict)
affinoid subdomain of B. If w′ ∈ B′ is such that ϕ(w′) ≥ z, then ϕ([x′, w′]) = [x, ϕ(w′)] is a geodesic
containing z, so there exists z′ ∈ [x′, w′] mapping to z. It follows that

ϕ−1(Bz) =
∐
z′ 7→z
{w′ ∈ B′ : w′ ≥ z′} =

∐
z′ 7→z

B′z′

is a disjoint union of affinoid domains. Hence each map Bz′ → Bz is finite, and its degree is equal to
dimH (z) Oϕ−1(z),z′ . Let z1, z2 ∈ (x, y] and assume that z1 < z2, so z1 has type 2 or 3. For z′1 ∈ ϕ−1(z1)
we have

dimH (z1) Oϕ−1(z1),z′1
=
∑
z′2 7→z2
z′2≥z

′
1

dimH (z2) Oϕ−1(z2),z′2
.

Summing over all z′1 ∈ ϕ−1(z1) ∩ T ′, we obtain

δ(z1) =
∑
z′1 7→z1
z′1∈T

′

dimH (z1) Oϕ−1(z1),z′1
=
∑
z′1 7→z1
z′1∈T

′

∑
z′2 7→z2
z′2≥z

′
1

dimH (z2) Oϕ−1(z2),z′2

≥
∑
z′1 7→z1
z′1∈T

′

∑
z′2 7→z2
z′2≥z

′
1

z′2∈T
′

dimH (z2) Oϕ−1(z2),z′2
= δ(z2),

where the final equality holds because if z′2 ∈ ϕ−1(z2) ∩ T ′, then there exists z′1 ∈ ϕ−1(z1) ∩ T ′ such
that z′2 ≥ z′1, namely, the unique point of [x′, z′2] mapping to z1. n

Proposition 4.9. Let a ∈ mR \ {0}, let A′ = S(a)+, let B be an open ball, and let ϕ : A′ → B be
a morphism with finite fibers. Suppose that each end of A′ maps to the end of B or to a type-2 point
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of B under the induced map A′ → B. Let α = ϕ ◦ σ : [0, val(a)] → B. Then there exist finitely many
numbers r0, r1, r2, . . . , rn ∈ Λ with 0 = r0 < r1 < r2 < · · · < rn = val(a) such that α is an embedding
with nonzero integer expansion factor when restricted to each interval [ri, ri+1]. In other words, α is
piecewise affine with integer expansion factors. Moreover, the image of α is a geodesic segment between
type-2 points of B.

Proof. Let x′ be the end σ(0) of A′ and let x = ϕ(x′). Suppose first that x is the end of B. Choose
an identification B ∼= B(1)+, and let r+ = min{val(y′) : ϕ(y′) = 0} > 0. Let A′+ be the open annulus
val−1((0, r+)) ⊂ A′. Then ϕ(A′+) ⊂ B(1)+ \ {0} = S(0)+ and the end x′ of A′+ maps to the end x
of S(0)+, so by Lemma 4.2(2,3), α is an embedding with (nonzero) integer expansion factor when
restricted to [0, r+].

Now suppose that x is not the end of B. Let r = min{val(y′) : ϕ(y′) = x} > 0 and let A′′ =
val−1((0, r)). Then ϕ(A′′) is contained in a connected component C of B \ {x}, and ϕ takes the end
x′ of A′′ to the end x of C. If C is an open annulus, then α is an embedding with integer expansion
factor when restricted to [0, r] by Lemma 4.2(2,3), and if C is an open ball, then we proceed as above
to find r+ ∈ (0, r) ∩ Λ such that α is an embedding with integer expansion factor when restricted to
[0, r+].

Applying the above argument to the morphism ϕ composed with the automorphism t 7→ a/t of
S(a)+ (which interchanges the two ends), we find that there exists r− ∈ [0, val(a)) ∩ Λ such that α
is an embedding with integer expansion factor when restricted to [r−, val(a)]. Let s ∈ (0, val(a)) ∩
Λ. Replacing A′ with the annulus val−1((0, s)) (resp. val−1((s, val(a)))), the above arguments then
provide us with s+ ∈ (s, val(a)] ∩ Λ (resp. s− ∈ [0, s) ∩ Λ) such that α is an embedding with integer
expansion factor when restricted to [s, s+] (resp. [s−, s]). The first assertions now follow because there
is a finite subcover of the open covering

{[0, r+)} ∪ {(r−, val(a)]} ∪ {(s−, s+) : s ∈ (0, r) ∩ Λ}

of the compact space [0, r].
As for the final assertion, choose 0 = r0 < r1 < r2 < · · · < rn = val(a) such that α is an embedding

with integer expansion factor on each [ri, ri+1]. Let i0 ∈ {0, 1, . . . , n} be the largest integer such that
α(ri0) > α(ri) (in the canonical partial ordering on B) for all i < i0. If i0 = n, then we are done,
so assume that i0 < n. Let y = α(ri0) ∈ B, and choose an identification B ∼= B(1)+ such that
0 > y. If F = − log |ϕ|, then by [BPR11, Proposition 5.10], at every point r ∈ (0, val(a)) the change
in slope of F at r is equal to the negative of the number of zeros of ϕ with valuation r (cf. the proof
of Lemma 4.5); in particular, the slope of F can only decrease. By construction F is monotonically
increasing on [0, ri0 ]. Since α([ri0 , ri0+1]) is a geodesic segment, it meets y only at α(ri0). The image
of (ri0 , ri0+1] under α is not contained in an open ball connected component of B \ {y} because
α(ri0+1) 6> y; hence F is decreasing on an interval [ri0 , ri0 + ε] for some ε > 0. Since the slope of F
can only decrease, it follows that F is monotonically decreasing on [ri0 , rn]. It follows immediately
from this that α([0, val(a)]) = [x, y] or α([0, val(a)]) = [α(val(a)), y], whichever segment is larger. n

4.10. Morphisms between curves and skeleta. In what follows we fix smooth, connected, proper
algebraic K-curves X,X ′ and a finite morphism ϕ : X ′ → X. Let D ⊂ X(K) and D′ ⊂ X ′(K) be
finite sets of closed points. The map on analytifications ϕ : X ′an → Xan is finite and open by [Ber90,
Lemma 3.2.4].

Proposition 4.11. Let Σ′ be a skeleton of (X ′, D′) and let Σ be a skeleton of (X,D). There exists a
skeleton Σ1 of (X,D ∪ ϕ(D′)) containing Σ ∪ ϕ(Σ′), and there is a minimal such Σ1 with respect to
inclusion.

Proof. First we will prove the Proposition in the case D = D′ = ∅. Let V be a vertex set for Σ and
let V ′ be a vertex set for Σ′ containing {τ(y′) : y′ ∈ ϕ−1(V )}. Let A′ be an open annulus connected
component of X ′an \ V ′ and let e′ ⊂ Σ′ be the associated edge. We claim that ϕ(e′) is a geodesic
segment between type-2 points of Xan. Let C be the connected component of Xan \ V containing
ϕ(A′).
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(i) If C is an open ball then the claim follows immediately from Proposition 4.9.
(ii) If C is an open annulus and ϕ(A′)∩Σ(C) = ∅, then A′ is contained in an open ball in C because

each connected component of C \ Σ(C) is an open ball, so the claim is true as in (i).
(iii) If C is an open annulus and ϕ(A′) ∩ Σ(C) 6= ∅, then ϕ(e′) is a geodesic segment in Xan by

Lemma 4.2.
Applying the above to each edge e′ of Σ′, we find that there exists a finite set of type-2 points

x1, y1, x2, y2, . . . , xn, yn ∈ Xan such that ϕ(Σ′) =
⋃n
i=1[xi, yi], where [xi, yi] denotes a geodesic seg-

ment from xi to yi. Let

Σ1 = Σ ∪
n⋃
i=1

(
[xi, τΣ(xi)] ∪ [yi, τΣ(yi)]

)
.

By Lemma 3.15(2) as applied to W = {x1, y1, . . . , xn, yn}, we have that Σ1 is a skeleton of X, so by
Proposition 3.12(5), Σ1 contains Σ∪ϕ(Σ′) since Σ1 contains each geodesic segment [xi, yi]. Any other
skeleton of X containing Σ and all xi, yi also contains the geodesics [xi, τΣ(xi)] and [yi, τΣ(yi)], so Σ1

is the minimal such skeleton.
Now assume that D qD′ 6= ∅. By Lemma 3.15(3) there is a minimal skeleton Σ1 of X containing

Σ and ϕ(D′); replacing Σ by Σ1 and D by D ∪ ϕ(D′), we may assume without loss of generality that
ϕ(D′) ⊂ D. We will proceed by induction on the size of D qD′. As above we let V be a vertex set for
Σ and we let V ′ be a vertex set for Σ′ containing {τ(y′) : y′ ∈ ϕ−1(V ∪D)}.

(i) Suppose that D′ is not empty. Let x′ ∈ D′ and let Σ1 be the minimal skeleton of (X,D)
containing Σ∪ϕ(Σ(X ′, V ′ ∪D′ \ {x′})). Let A′ be the connected component of X ′an \ (V ′ ∪D′)
whose closure contains x′, let x = ϕ(x′) ∈ D, and let A be the connected component of
Xan \ (V ∪D) whose closure contains x. Note that Σ′ = Σ(X ′, V ′ ∪D′ \ {x′}) ∪ Σ(A′) ∪ {x′}.
Clearly ϕ(A′) ⊂ A, and ϕ−1(x) ∩ A′ = ∅ by construction. Since ϕ takes the puncture of A′ to
the puncture of A, one shows as in the proof of Lemma 4.2 that ϕ(Σ(A′)) ⊂ Σ(A). Therefore
Σ1 contains Σ ∪ ϕ(Σ′).

(ii) Now suppose that D′ = ∅ and D 6= ∅. Let x ∈ D and let Σ1 be the minimal skeleton of
(X,D \ {x}) containing Σ(X,V ∪ D \ {x}) ∪ ϕ(Σ′). Let Σ2 = Σ1 ∪ [x, τ(x)]. It follows from
Lemma 3.15(3) that Σ2 is the minimal skeleton of (X,D) containing Σ1.

n

Let V be a semistable vertex set of (X,D). Recall from (3.11) that a connected component C
of Xan \ (V ∪ D) is adjacent to a vertex x ∈ V provided that the closure of C in Xan contains x.
Proposition 4.12(1) below is exactly [Ber90, Theorem 4.5.3] when D = D′ = ∅.
Proposition 4.12. Suppose that D′ = ϕ−1(D) and that one of the following two conditions holds:

(1) χ(X \D) ≤ 0 (hence also χ(X ′ \D′) ≤ 0), or
(2) ϕ−1(V ) ⊂ V ′.

In the situation of (1) let Σ (resp. Σ′) be the minimal skeleton of (X,D) (resp. (X ′, D′)), and in (2) let
Σ = Σ(X,V ∪D) and Σ′ = Σ(X ′, V ′ ∪D′). Then ϕ−1(Σ) ⊂ Σ′.

Proof. First suppose that (2) holds. Let x′ ∈ X ′an \ Σ′ and let B′ be the connected component
of X ′an \ Σ′ containing x′, so B′ is an open ball. By hypothesis, ϕ(B′) is contained in a connected
component C ofXan\(V ∪D). If C is an open ball, then ϕ(B′)∩Σ = ∅ by the definition of Σ(X,V ∪D).
If C is a generalized open annulus, then ϕ(B′) ∩ Σ = ϕ(B′) ∩ Σ(C) = ∅ by Lemma 4.3. Therefore
ϕ(x′) /∈ Σ.

Now suppose that (1) holds. Let V be a semistable vertex set of (X,D) such that Σ = Σ(X,V ∪D).
By subdividing edges of Σ and enlarging V if necessary, we may and do assume that Σ has no loop
edges. By Proposition 3.18(2), no point in V of genus zero has valence one in Σ. First we claim that
if B′ ⊂ X ′an \ D′ is an open analytic domain which is isomorphic to B(1)+, then ϕ(B′) ∩ V = ∅. If
ϕ−1(V ) ∩ B′ contains more than one point, then it easy to see that there exists a smaller open ball
B′′ ⊂ B′ such that ϕ−1(V )∩B′′ contains exactly one point. Replacing B′ by B′′, we may assume that
there is a unique point y′ ∈ ϕ−1(V ) ∩B′. Let y = ϕ(y′) ∈ V . Since g(y′) = 0 we have g(y) = 0.
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The open analytic domain B′ \ {y′} is the disjoint union of an open annulus A′ and an infinite
collection of open balls by Lemma 3.4. Each connected component C ′ of B′ \ {y′} maps into a
connected component C of Xan \ (V ∪D) adjacent to y, with the end y′ of C ′ mapping to the end y
of C. By Lemma 4.3, no open ball connected component of B′ \ {y′} can map to a generalized open
annulus connected component of Xan \ (V ∪ D). There are at least two generalized open annulus
connected components A of Xan \ (V ∪D) adjacent to y, so some such A must satisfy ϕ(B′) ∩A = ∅.
But the map ϕ : X ′an → Xan is open by [Ber90, Lemma 3.2.4], so ϕ(B′) is an open neighborhood of
y, which contradicts the fact that y is a limit point of A. This proves the claim.

Let V ′ be a semistable vertex set of (X ′, D′) such that Σ′ = Σ(X ′, V ′ ∪ D′). Since X ′ \ Σ′ is a
disjoint union of open balls, by the above we have ϕ−1(V ) ⊂ Σ′. Hence we may enlarge V ′ to contain
ϕ−1(V ) without changing Σ′, so we are reduced to (2). n

Theorem 4.13. Let Σ′ be a skeleton of (X ′, D′) and let Σ be a skeleton of (X,D). Suppose that ϕ(Σ′) ⊂
Σ, and if X ∼= P1 assume in addition that there exists a type-2 point z ∈ Σ such that ϕ−1(z) ⊂ Σ′. Then
ϕ−1(Σ) is a skeleton of (X ′, ϕ−1(D)).

We will require the following lemmas. Lemma 4.14 is similar to [Ber90, Corollary 4.5.4].

Lemma 4.14. Let B′ ⊂ X ′an be an open analytic domain isomorphic to B(1)+ and let B = ϕ(B′) ⊂
Xan. Then B is an open analytic domain of Xan, and one of the following is true:

(1) B is an open ball and ϕ : B′ → B is finite and order-preserving.
(2) X ∼= P1 and B = Xan.

Proof. Suppose that the genus ofX is at least one, soX ′ also has genus at least one. By Lemma 4.6
we only need to show that B is contained in an open ball in Xan. Let Σ (resp. Σ′) be the minimal
skeleton of X (resp. X ′). By Proposition 3.18(1) we have B′ ⊂ X ′an \ Σ′, so by Proposition 4.12(1)
we have B ⊂ Xan \ Σ. But every connected component of Xan \ Σ is an open ball, so B is contained
in an open ball.

In the case X = P1, suppose first that B′(K) → P1(K) is not surjective, so we may assume that
∞ /∈ B after choosing a suitable coordinate on P1. Let x′ be the end of B′ and let x = ϕ(x′). Then x
is a type-2 point, so ϕ(B′ ∪{x′}) = B ∪{x} is a compact subset of A1,an. Since A1,an is covered by an
increasing union of open balls, B is contained in an open ball.

Now suppose thatB′(K)→ P1(K) is surjective. Since P1(K) is dense in P1,an andB∪{x} is closed
in P1,an, it follows that B ∪ {x} = P1,an. If x /∈ B, then B is contained in a connected component of
P1,an \ {x}, which contradicts the surjectivity of B′(K)→ P1(K). Therefore B = P1,an. n

Remark 4.15. Case (2) of Lemma 4.14 does occur. For instance, let ϕ : P1 → P1 be the finite
morphism t 7→ t2, and let B′ be the open ball in P1,an obtained by deleting the closed ball of radius
1/2 around 1 ∈ P1(K). If char(k) 6= 2, then for every point x ∈ P1(K), either x ∈ B′(K) or
−x ∈ B′(K), so B′ → P1,an is surjective.

Lemma 4.16. Let V be a semistable vertex set of (X,D), let Σ = Σ(X,V ∪D), and let B ⊂ X be an
open analytic domain isomorphic to B(1)+ whose end x is contained in Σ. Then

Σ ∩B =
⋃

y∈B∩(V ∪D)

[x, y].

Proof. We may assume without loss of generality that x ∈ V . Let V0 = V \ (V ∩ B) and D0 =
D \ (D ∩ B). Then V0 is a semistable vertex set of (X,D0): indeed, every connected component of
Xan\(V ∪D) is either a connected component ofXan\(V0∪D0) or is contained in B, soXan\(V0∪D0)
is a disjoint union of open balls and finitely many generalized open annuli. Let Σ0 = Σ(X,V0∪D0), so
x ∈ Σ0 butB∩Σ0 = ∅ by Proposition 3.12(1). By Lemma 4.6 we have thatB is a connected component
of Xan \ Σ0, so the Lemma now follows from Lemma 3.15 as applied to Σ = Σ0, W = V ∩ B, and
E = D ∩B. n
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Proof of Theorem 4.13. Note that ϕ(Σ′) ⊂ Σ implies ϕ(D′) ⊂ D. Let V (resp. V ′) be a vertex set
for Σ (resp. Σ′). We claim that

ϕ−1(Σ) = Σ′ ∪
⋃

x′∈ϕ−1(V ∪D)

[x′, τΣ′(x
′)],

which by Lemma 3.15 is the minimal skeleton of (X ′, ϕ−1(D)) containing Σ′ and ϕ−1(V ).
Let B′ be a connected component of X ′an \ Σ′, let x′ ∈ Σ′ be its end, and let x = ϕ(x′) ∈ Σ. Then

B = ϕ(B′) is an open ball and x is its end: if X 6∼= P1, then this follows directly from Lemma 4.14,
and if X ∼= P1, then B ⊂ Xan \ {z}, so ϕ(B) 6= Xan and therefore B is an open ball in this case as
well. Hence

Σ ∩B =
⋃

y∈B∩(V ∪D)

[x, y]

by Lemma 4.16, so

ϕ−1(Σ) ∩B′ =
⋃

y′∈B′∩ϕ−1(V ∪D)

[x′, y′]

by Proposition 4.8. n

Remark 4.17. When X ∼= P1, the extra hypothesis on Σ′ in Theorem 4.13 is necessary. Indeed, let
ϕ : P1 → P1 be a finite morphism and let x′ ∈ P1,an be a type-2 point such that ϕ−1(ϕ(x′)) has more
than one element. Then Σ = {ϕ(x′)} is a skeleton containing the image of the skeleton Σ′ = {x′}, but
ϕ−1(Σ) is not a skeleton.

Corollary 4.18. Let Σ (resp. Σ′) be a skeleton of (X,D) (resp. (X ′, D′)). There exists a skeleton Σ1 of
(X,D ∪ ϕ(D′)) such that Σ1 ⊃ Σ∪ ϕ(Σ′) and such that ϕ−1(Σ1) is a skeleton of (X ′, ϕ−1(D ∪ ϕ(D′))).
Moreover, there is a minimal such Σ1 with respect to inclusion.

Proof. If X 6∼= P1 then this is an immediate consequence of Proposition 4.11 and Theorem 4.13:
if Σ1 is the minimal skeleton of (X,D ∪ ϕ(D′)) containing Σ ∪ ϕ(Σ′), then ϕ−1(Σ1) is a skeleton of
(X ′, ϕ−1(D∪ϕ(D′))). Suppose then that X ∼= P1. Let x′ ∈ Σ′ be a type-2 point, let x = ϕ(x′), and let
x′, x′1, x

′
2, . . . , x

′
n be the points of X ′ mapping to x. Let

Σ′1 = Σ′ ∪
n⋃
i=1

[x′i, τΣ′(x
′
i)].

This is the minimal skeleton of (X ′, D′) containing Σ′ and ϕ−1(x) by Lemma 3.15(3). Let Σ1 be the
minimal skeleton of (X,D∪ϕ(D′)) containing Σ∪ϕ(Σ′1). Then ϕ−1(Σ1) is a skeleton of (X ′, ϕ−1(D∪
ϕ(D′))) by Theorem 4.13. If Σ2 is a skeleton of (X,D∪ϕ(D′)) such that Σ2 ⊃ Σ∪ϕ(Σ′) and ϕ−1(Σ2)
is a skeleton of (X ′, ϕ−1(D ∪ ϕ(D′))), then ϕ−1(Σ2) contains each geodesic [x′i, τΣ′(x

′
i)], so ϕ−1(Σ2)

contains Σ′1 and therefore Σ2 ⊃ Σ1. n

Remark 4.19. Suppose that ϕ : X ′ → X is a finite morphism such that ϕ−1(D) = D′ and ϕ−1(V ) =
V ′. Let Σ = Σ(X,V ∪ D) and Σ′ = Σ(X ′, V ′ ∪ D′). In this case we can describe the skeleton Σ1

of Corollary 4.18 more explicitly, as follows. Let e′ be an open edge of Σ′ with respect to the given
choice of vertex set and let A′ = τ−1(e′). This is a connected component of X ′an \ (V ′ ∪ D′). Let A
be the connected component of Xan \ (V ∪D) containing ϕ(A′). Since A′ is a connected component
of ϕ−1(A), the map A′ → A is finite, hence surjective. If A′ is a punctured open ball, then so is A, so
by Lemma 4.2, ϕ maps e′ homeomorphically with nonzero integer expansion factor onto e = Σ(A). If
A′ is an open annulus, then A could be an open annulus or an open ball; in the former case we again
have e′ mapping homeomorphically onto e = Σ(A) with nonzero integer expansion factor. If A is an
open ball, then by Proposition 4.9, e′ maps onto a geodesic segment in A; clearly both vertices of e′

map to the end of A, so e′ “goes straight and doubles back” under ϕ.
It follows from this and Proposition 4.12(2) that ϕ(Σ′) is equal to Σ union a finite number of

geodesic segments T1, . . . , Tr contained in open balls B1, . . . , Br ⊂ Xan \ (V ∪ D) and with one
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endpoint at elements of V . These are precisely the images of the edges of Σ′ not mapping to edges of
Σ. By Lemma 3.15, Σ ∪ (T1 ∪ · · · ∪ Tr) is again a skeleton of X, so in this case

Σ1 = ϕ(Σ′) = Σ ∪ (T1 ∪ · · · ∪ Tr)

(the inverse image of Σ1 is a skeleton by Theorem 4.13).

4.20. Tangent directions and morphisms of curves. Our next goal is to prove that a finite morphism
of curves induces a finite harmonic morphism of metrized complexes of curves for a suitable choice
of skeleta. First we need to formulate and prove a relative version of Theorem 3.21. Let X,X ′ be
smooth, proper, connected K-curves.

Definition 4.21. A continuous function ϕ : X ′an → Xan is piecewise affine provided that, for every
geodesic segment α : [a, b] ↪→ X ′an, the composition ϕ ◦ α is piecewise affine with integer expansion
factors in the sense of Definition 4.4.

Let ϕ : X ′an → Xan be a piecewise affine function, let x′ ∈ X ′an, and let x = ϕ(x′) ∈ Xan. Let
v′ ∈ Tx′ and let α : [a, b] ↪→ X ′an be a geodesic segment representing v′ (so a = −∞ if x′ has type 1).
Taking b small enough, we can assume that ϕ ◦ α is an embedding with integer expansion factor m.
Let v ∈ Tx be the tangent direction represented by ϕ ◦ α. We define

dϕ(x′) : Tx′ → Tx by dϕ(x′)(v′) = v;

this is independent of the choice of α. We call the expansion factor m the outgoing slope of ϕ in the
direction v′ and we write m = dv′ϕ(x′).

Definition 4.22. A piecewise affine function ϕ : X ′an → Xan is harmonic at a point x′ ∈ X ′an

provided that, for all v ∈ Tϕ(x′), the integer ∑
v′∈Tx′
dϕ(v′)=v

dv′ϕ(x′)

is independent of the choice of v.

Let ϕ : X ′ → X be a finite morphism of smooth, proper, connected K-curves, let x′ ∈ X ′an be a
type-2 point, and let x = ϕ(x′). Let Cx and Cx′ denote the smooth proper connected k-curves with
function fields H̃ (x) and H̃ (x′), respectively. We denote by ϕx′ the induced morphism Cx′ → Cx.
We have the following relative version of the slope formula of Theorem 3.21:

Theorem 4.23. Let ϕ : X ′ → X be a finite morphism of smooth, proper, connected K-curves.

(1) The analytification ϕ : X ′an → Xan is piecewise affine and harmonic.
(2) Let x′ ∈ X ′an be a type-2 point, let x = ϕ(x′), let v′ ∈ Tx′ , let v = dϕ(v′) ∈ Tx, and let ξv′ ∈ Cx′

and ξv ∈ Cx be the closed points associated (3.22.1) to v′ and v, respectively. Then ϕx′(ξv′) = ξv,
and the ramification degree of ϕx′ at ξv′ is equal to dv′ϕ(x′).

(3) Let x′ ∈ X ′an be a type-1 point and let v′ ∈ Tx′ be the unique tangent direction. Then dv′ϕ(x′)
is the ramification degree of ϕ at x′.

Proof. First we claim that ϕ is piecewise affine. Let [x′, y′] ⊂ X ′an be a geodesic segment. Suppose
first that x′ and y′ have type 2 or 3. Then there exists a skeleton Σ′ of X ′ containing [x′, y′] by [BPR11,
Corollaries 5.56 and 5.64]. From this we easily reduce to the case that [x′, y′] is an edge of Σ′ with
respect to some vertex set; now the claim follows from Lemma 4.2 and Proposition 4.9 as in the proof
of Proposition 4.11. If x′ has type 1 or 4, then there is an open neighborhood B of x = ϕ(x′) and an
open neighborhood B′ ⊂ ϕ−1(B) of x′ such that B and B′ are open balls. Shrinking B′ if necessary
we can assume that y′ /∈ B′, so the end z′ of B′ is contained in [x′, y′] (removing z′ disconnects X ′an).
The restriction of ϕ to [x′, z′] is piecewise affine by Lemma 4.5, so this proves the claim.

Next we prove (2). By functoriality of the reduction map, for any non-zero rational function f on
X, we have ϕ∗x′(f̃x) = ϕ̃∗(f)x′ . By the slope formula (Theorem 3.21), the point ξv corresponds to the
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discrete valuation on H̃ (x) given by ordξv (f̃x) = dvF (x), where F = − log |f |. Similarly, the slope

formula applied to ϕ∗(f) on X ′ gives ordξv′ (ϕ̃
∗(f)x′) = dv′ϕ(x′)dvF (x). Therefore, we get

ordξv′ (ϕ
∗
x′(f̃x)) = dv′ϕ(x′) ordξv (f̃x).

Since any non-zero element of H̃ (x) is of the form f̃x for some non-zero rational function f on X,

this shows that the center of the valuation ξv′ on H̃ (x)
ϕ∗
x′

↪−→ H̃ (x′) coincides with the center of ξv,
that is ϕx′(ξv′) = ξv, and at the same time, the ramification degree of ϕx′ at ξv′ is equal to dv′ϕ(x′).

The proof of (3) proceeds in the same way as (2), applying the slope formula to a non-zero rational
function f on X with a zero at x = ϕ(x′), and to ϕ∗(f) on X ′. n

4.24. Morphisms of curves induce morphisms of metrized complexes. More precisely, this occurs
when the morphism of curves respects a choice of triangulations, in the following sense.

Definition 4.25. Let (X,V ∪D) and (X ′, V ′∪D′) be triangulated punctured curves. A finite morphism
ϕ : (X ′, V ′∪D′)→ (X,V ∪D) is a finite morphism ϕ : X ′ → X such that ϕ−1(D) = D′, ϕ−1(V ) = V ′,
and ϕ−1(Σ(X,V ∪D)) = Σ(X ′, V ′ ∪D′) (as sets).

Corollary 4.26. Let ϕ : X ′ → X be a finite morphism of smooth, connected, proper K-curves, let
D ⊂ X(K) be a finite set, and let D′ = ϕ−1(D). There exists a strongly semistable vertex set V of (X,D)
such that V ′ = ϕ−1(V ) is a strongly semistable vertex set of (X ′, D′) and such that

Σ(X ′, V ′ ∪D′) = ϕ−1(Σ(X,V ∪D)).

In particular, ϕ extends to a finite morphism of triangulated punctured curves.
Proof. By Corollary 4.18, there is a skeleton Σ of (X,D) such that Σ′ = ϕ−1(Σ) is a skeleton of

(X ′, D′). Let V ′0 be a strongly semistable vertex set of Σ′, let V be a strongly semistable vertex set of
Σ containing ϕ(V ′0), and let V ′ = ϕ−1(V ). Then V ′ is again a strongly semistable vertex set of Σ′. n

4.27. Let ϕ : (X ′, V ′ ∪ D′) → (X,V ∪ D) be a finite morphism of triangulated punctured curves.
Let Σ = Σ(X,V ∪ D) and Σ′ = Σ(X ′, V ′ ∪ D′). Let e′ be an open edge of Σ′ and let e = ϕ(e′), an
open edge of Σ. The image of the annulus A′ = τ−1(e′) is contained in A = τ−1(e), so the restriction
of ϕ to e′ is an embedding with integer expansion factor by Lemma 4.2(2). It is clear from this and
Theorem 4.23 that ϕ|Σ′ : Σ′ → Σ is a harmonic (V ′, V )-morphism of Λ-metric graphs. For x′ ∈ V ′
with image x = ϕ(x′) we have a finite morphism of k-curves ϕx′ : Cx′ → Cx. It now follows from
Theorem 4.23 that these extra data enrich ϕ|Σ′ : Σ′ → Σ with the structure of a finite harmonic
morphism of Λ-metrized complexes of curves:

Corollary 4.28. Let ϕ : (X ′, V ′ ∪ D′) → (X,V ∪ D) be a finite morphism of triangulated punctured
curves. Then ϕ naturally induces a finite harmonic morphism of Λ-metrized complexes of curves

Σ(X ′, V ′ ∪D′) −→ Σ(X, V ∪D).

Remark 4.29. More generally, suppose that (X,V ∪D) and (X ′, V ′∪D′) are triangulated punctured
K-curves and that ϕ : X ′ → X is a finite morphism such that ϕ−1(D) = D′ and ϕ−1(V ) ⊂ V ′. Then
ϕ−1(Σ) ⊂ Σ′ by Proposition 4.12(2). One can show using Theorem 4.23 that the map Σ′ → Xan

followed by the retraction Xan → Σ is a (not necessarily finite) harmonic morphism of metric graphs
Σ′ → Σ.

4.30. Tame coverings of triangulated curves. Many of the results in this paper involve constructing
a curveX ′ and a morphism ϕ : X ′ → X inducing a given morphism of skeleta as in Corollary 4.28. For
these purposes it is useful to introduce some mild restrictions on the morphism ϕ. Fix a triangulated
punctured curve (X,V ∪D) with skeleton Σ = Σ(X,V ∪D), regarded as a metrized complex of curves
as in (3.22).
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Definition 4.31. Let (X ′, V ′∪D′) be a triangulated punctured curve with skeleton Σ′ = Σ(X ′, V ′∪D′)
and let ϕ : (X ′, V ′ ∪ D′) → (X,V ∪ D) be a finite morphism. We say that ϕ is a tame covering of
(X,V ∪D) provided that:

(1) D contains the branch locus of ϕ,
(2) if char(k) = p > 0, then for every edge e′ ∈ E(Σ′) the expansion factor de′(ϕ) is not divisible

by p, and
(3) ϕx′ is separable (= generically étale) for all x′ ∈ V ′.

Remark 4.32.

(1) Since D is finite, it follows from (1) and Theorem 4.23(3) that a tame covering of (X,V ∪D)
is a tamely ramified morphism of curves.

(2) If Σ has at least one edge, then (2) implies (3).
(3) Let ϕ : (X ′, V ′ ∪ D′) → (X,V ∪ D) be a tame covering, let S ⊂ Σ be a finite set of type-2

points, and let S′ = ϕ−1(S). Then S′ ⊂ Σ(X ′, V ′ ∪D′) is also a finite set of type-2 points, so
ϕ also defines a tame covering (X ′, S′ ∪ V ′ ∪D′)→ (X,S ∪ V ∪D).

Lemma 4.33. Let ϕ : (X ′, V ′ ∪D′) → (X,V ∪D) be a tame covering and let Σ = Σ(X,V ∪D) and
Σ′ = Σ(X ′, V ′ ∪D′). Then ϕ|Σ′ : Σ′ → Σ is a tame covering of metrized complexes of curves.

Proof. Let Γ (resp. Γ′) be the augmented metric graph underlying Σ (resp. Σ′). By Proposition 2.22
we only have to show that ϕ|Γ′ is generically étale. Let R =

∑
x′∈V ′∪D′ Rx′ (x

′) be the ramification
divisor of ϕ|Γ′ as defined in (2.14.1), and let S =

∑
x′∈D′ Sx′ (x

′) be the ramification divisor of
ϕ : X ′ → X. We will show that R = S. Since ϕx′ is generically étale for all x′ ∈ V ′, we see
from (2.14.1) and the Riemann–Hurwitz formula as applied to ϕx′ that Rx′ ≥ 0. If x′ ∈ D′, then there
is a unique edge e′ adjacent to x′ and de′(ϕ) = dx′(ϕ), so

Rx′ = 2 dx′(ϕ)− 2− dx′(ϕ) + 1 = dx′(ϕ)− 1 = Sx′ ,

where the final equality is Theorem 4.23(3). Since Rx′ ≥ 0 for all x′ ∈ V ′, it is enough to show that
deg(R) = deg(S). By (2.14.2) we have KΓ′ = (ϕ|Γ′)∗(KΓ) +R, so counting degrees gives

deg(R) = deg(ϕ|Γ′) (2− 2g(Γ))− (2− 2g(Γ′)).

The Lemma now follows from the equalities deg(ϕ) = deg(ϕ|Γ′), g(Γ) = g(X), g(Γ′) = g(X ′), and the
Riemann–Hurwitz formula as applied to ϕ : X ′ → X. n

Remark 4.34. We showed in the proof of Lemma 4.33 that the ramification divisor of ϕ|Γ′ coincides
with the ramification divisor of ϕ. Moreover, it follows from Proposition 2.22 that for every x′ ∈ V ′,
every ramification point x′ ∈ Cx′ is the reduction of a tangent direction in Γ′. In other words, for a
tame covering all ramification points of all residue curves are “visible” in the morphism of underlying
metric graphs Γ′ → Γ.

Proposition 4.35. Let ϕ : (X ′, V ′ ∪D′)→ (X,V ∪D) be a finite morphism of triangulated punctured
curves. Then ϕ is a tame covering if and only if

(1) D contains the branch locus of ϕ and
(2) ϕx′ : Cx′ → Cϕ(x) is tamely ramified for every type-2 point x′ ∈ X ′an.

Moreover, if ϕ is a tame covering and x′ ∈ X ′an is a type-2 point not contained in Σ′, then ϕ is an
isomorphism in a neighborhood of x′.

Proof. It is clear that conditions (1)–(2) imply that ϕ is a tame covering, so suppose that ϕ is a
tame covering and x′ ∈ X ′an is a type-2 point. We have the following cases:

• If x′ ∈ V ′, then ϕx′ is tamely ramified by Lemma 4.33 and Proposition 2.22.
• Suppose that x′ is contained in the interior of an edge e′ of Σ′. Since ϕ is a tame covering of

(X, (V ∪ {ϕ(y′)}) ∪D) by Remark 4.32(3), we are reduced to the case treated above.
• Suppose that x′ /∈ Σ′ but y′ = τ(x′) is contained in V ′. Let X (resp. X′) be the semistable

formal model of X (resp. X ′) corresponding to the semistable vertex set V (resp. V ′) and let
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ϕ denote the unique finite morphism X′ → X extending ϕ : X ′ → X (see Theorem 5.13). Let
x′ = red(x′) ∈ X′(k) and let x = ϕ(x′) and x = red(x) = ϕk(x′). The connected component
B′ of x′ in X ′an \ Σ′ is equal to red−1(x′), and the connected component B of x in Xan \
Σ is equal to red−1(x). Since Σ ∩ B = ∅, ϕk is not branched over x by Lemma 4.33 and
Proposition 2.22. Therefore ϕ−1(B) is a disjoint union of deg(ϕ) open balls (one of which is
B′) mapping isomorphically onto B. In particular, ϕ is an isomorphism in a neighborhood of
x′.

• Suppose that x′ /∈ Σ′ but y′ = τ(x′) is contained in the interior of an edge of Σ′. We claim that
ϕ is an isomorphism in a neighborhood of x′. Let y = ϕ(y′) ∈ Σ. Then ϕ is a tame covering of
(X, (V ∪{y})∪D), so replacing V with V ∪{y} and V ′ with V ′∪ϕ−1(y) (see Remark 4.32(3)),
we are reduced to the previous case.

n

Remark 4.36. It follows from Proposition 4.35 that if ϕ is a tame covering then the set-theoretic
branch locus of ϕ : X ′an → Xan (i.e. the set of all points in Xan with fewer than deg(ϕ) points in its
fiber) is contained in Σ. See [Fab13a, Fab13b] for more on the topic of the Berkovich ramification
locus in the case of self-maps of P1.

5. APPLICATIONS TO MORPHISMS OF SEMISTABLE MODELS

In this section we show how Section 4 formally implies a large part of the results of Liu [Liu06]
on simultaneous semistable reduction of morphisms of curves (see also [Col03]) over an arbitrary
valued field. In addition to establishing these results over a more general ground field, we feel that
the “skeletal” point of view on simultaneous semistable reduction is enlightening (see Remark 5.23).
To this end, we let K0 be any field equipped with a nontrivial non-Archimedean valuation val : K0 →
R ∪ {∞}. Its valuation ring will be denoted R0, its maximal ideal mR0

, and its residue field k0.
Let X be a smooth, proper, geometrically connected algebraic K0-curve. By a (strongly) semistable

R0-model of X we mean a flat, integral, proper relative curve X → Spec(R0) whose special fiber
Xk0 is a (strongly) semistable curve (i.e. Xk0 is a reduced curve with at worst ordinary double point
singularities; it is strongly semistable if its irreducible components are smooth) and whose generic
fiber is equipped with an isomorphism XK0

∼= X. By properness of X , any K0-point x ∈ X(K0)
extends in a unique way to an R0-point x ∈ X (R0); the special fiber of this point is the reduction of
x and is denoted red(x) ∈ X (k0). Let D ⊂ X(K0) be a finite set. A semistable model X of X is a
semistable R0-model of (X,D) provided that the points of D reduce to distinct smooth points of Xk0 .
The model X is a stable R0-model of (X,D) provided that every rational (resp. genus-1) component
of the normalization Xk contains at least three points (resp. one point) mapping to a singular point of
Xk or to the reduction of a point of D.

If K0 = K is complete and algebraically closed, we define a (strongly) semistable formal R-model of
X to be an integral, proper, admissible formal R-curve X whose analytic generic fiber XK is equipped
with an isomorphism to Xan and whose special fiber Xk is a (strongly) semistable curve. There is a
natural map of sets red : Xan → Xk, called the reduction; it is surjective and anti-continuous in the
sense that the inverse image of a Zariski-open subset of Xk is a closed subset of Xan (and vice-versa).
Using the reduction map, for a finite set D ⊂ X(K) we define semistable and stable formal R-models
of (X,D) as above.

As we will be passing between formal and algebraic R-models of K-curves, it is worth stating the
following lemma; see [BPR11, Remark 5.30(2)].

Lemma 5.1. Let X be a smooth, proper, connected K-curve. The $-adic completion functor defines an
equivalence from the category of semistable R-models of X to semistable formal R-models of X.

The inverse of the $-adic completion functor of Lemma 5.1 will be called algebraization.

5.2. Descent to a general ground field. We will use the following lemmas to descend the geometric
theory of Section 4 to the valued field K0. Fix an algebraic closure K0 of K0 and a valuation val on
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K0 extending the given valuation on K0. For any field K1 ⊂ K0 we consider K1 as a valued field with
respect to the restriction of val, and we write R1 for the valuation ring of K1. Let K be the completion
of K0 with respect to val. This field is algebraically closed by [BGR84, Proposition 3.4.1/3].

Lemma 5.3. Let X0 be a smooth, proper, geometrically connected curve over K0 and let X = X0⊗K0
K.

Let Ksep
0 be the separable closure of K0 in K. Then the image of X0(Ksep

0 ) under the natural inclusion

X0(Ksep
0 ) ⊂ X0(K) = X(K) ⊂ Xan

is dense in Xan.
Proof. Let K̂0 ⊂ K denote the completion of K0 and let (K̂0)sep ⊂ K be its separable closure.

By [BGR84, Proposition 3.4.1/6], (K̂0)sep is dense in K. Let K̂1 ⊂ (K̂0)sep be a finite, separable
extension of K̂0. By Krasner’s lemma (see §3.4.2 of loc. cit.), there exists a finite, separable extension
K1/K0 contained in Ksep

0 which is dense in K̂1. It follows that Ksep
0 is dense in (K̂0)sep, so Ksep

0 is
dense in K. Since P1

K(K) is dense in P1,an
K and the subspace topology on P1

K(K) ⊂ P1,an
K coincides

with the ultrametric topology, this proves the lemma for X0 = P1
K0

.
For general X0, choose a finite, generically étale morphism ϕ : X0 → P1

K0
. Let D ⊂ P1

K(K) be
the branch locus, so ϕ : Xan \ ϕ−1(D) → P1,an

K \D is étale, hence open by [Ber93, Corollary 3.7.4].
It follows that if U ⊂ Xan is a nonempty open set, then ϕ(U) \ D contains a nonempty open subset
of P1,an

K \ D. Let x ∈ P1
K0

(Ksep
0 ) be a point contained in ϕ(U) \ D. Then ϕ−1(x) ⊂ X0(Ksep

0 ) and
ϕ−1(x) ∩ U 6= ∅. n

Lemma 5.4. Let X0 be a smooth, proper, geometrically connected curve over K0, let D ⊂ X0(K0) be
a finite subset, let X = X0 ⊗K0 K, and let X be a semistable model of (X,D). There exists a finite,
separable extension K1 of K0 and a semistable model X1 of X1 = X0⊗K0 K1 with respect to D such that
X1 ⊗R1

R ∼= X .
Proof. Let X be the $-adic completion of X . For x ∈ Xk(k) the subset red−1(x) ⊂ Xan is open

in Xan. By Lemma 5.3, there exists a point x ∈ X0(Ksep
0 ) with red(x) = x, so after passing to a

finite, separable extension of K0 if necessary, we may enlarge D ⊂ X0(K0) to assume that X is a
stable model of (X,D). On the other hand, by the stable reduction theorem (i.e. the properness of
the Deligne-Mumford stack Mg,n parameterizing stable marked curves) there exists a stable model
X0 of (X0, D0) after potentially passing to a finite, separable extension of K0. By uniqueness of stable
models we have X0 ⊗R0

R ∼= X . n

Lemma 5.5. Let X0, X
′
0 be smooth, proper, geometrically connected K0-curves and let ϕ : X ′0 → X0 be

a finite morphism. Let X0 (resp. X ′0) be a semistable model of X0 (resp. X ′0), let X = X0 ⊗K0 K and
X = X0 ⊗R0 R (resp. X ′ = X ′0 ⊗K0 K and X ′ = X ′0 ⊗R0 R), and suppose that ϕK : X ′ → X extends to
a morphism X ′ → X . Then ϕ extends to a morphism X ′0 → X0 in a unique way.

Proof. The morphism ϕ gives rise to a section X ′0 → X0 ×K0 X
′
0 of pr2 : X0 ×K0 X

′
0 → X ′0. Let Z

be the schematic closure of the image of X ′0 in X0×R0
X ′0. It is enough to show that pr2 : Z → X ′0 is an

isomorphism. Since schematic closure respects flat base change, the schematic closure of the image
of X ′ in X ×R X ′ is equal to Z ⊗R0

R. By properness of X ′, the image of X ′ in X ×R X ′ is then equal
to Z ⊗R0 R, so pr2 : Z ⊗R0 R → X ′ is an isomorphism. Since R0 → R is faithfully flat, this implies
that pr2 : Z → X ′0 is an isomorphism. n

5.6. The relation between semistable models and skeleta. Let X be a smooth, proper, connected
K-curve. The following theorem is due to Berkovich and Bosch-Lütkebohmert; see [BPR11, Theo-
rem 5.34] for more precise references.

Theorem 5.7. Let X be a semistable formal model of X and let x ∈ Xk be a point. Then

(1) x is a generic point if and only if red−1(x) consists of a single type-2 point of Xan.
(2) x is a smooth closed point if and only if red−1(x) is an open ball.
(3) x is an ordinary double point if and only if red−1(x) is an open annulus.
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It follows from Theorem 5.7 that if X is a semistable formal model of X, then

V (X) =
{

red−1(ζ) : ζ ∈ Xk is a generic point
}

is a semistable vertex set of X: indeed,

(5.7.1) X \ V (X) =
∐
x∈Xk

singular

red−1(x) ∪
∐
x∈Xk
smooth

red−1(x)

is a disjoint union of open balls and finitely many open annuli. The following folklore theorem is
proved in [BPR11, Theorem 5.38].

Theorem 5.8. Let X be a smooth, proper, connected algebraic K-curve and let D ⊂ X(K) be a finite
set of closed points. The association X 7→ V (X) sets up a bijection between the set of (strongly) semistable
formal models of (X,D) (up to isomorphism) and the set of (strongly) semistable vertex sets of (X,D).

5.9. Let X be a semistable formal model of (X,D). One can construct the metrized complex of
curves Σ(X,V (X) ∪ D) directly from X, as follows. Let V be the set of irreducible components of
Xk, regarded as a set of vertices of a graph. For x ∈ V we will write Cx to denote the corresponding
component of Xk. To every double point x ∈ Xk we associate an edge e connecting the irreducible
components of Xk containing x (this is a loop edge if there is only one such component); if Cx is
such a component, then we set redx(e) = x. The completed local ring of X at x is isomorphic to
RJs, tK/(st − π) for some π ∈ mR \ {0}; we define the length of e to be `(e) = val(π). We connect
a point x ∈ D to the vertex corresponding to the irreducible component of Xk containing red(x).
These data define a metrized complex of curves Σ(X, D). By (5.7.1), the graphs underlying Σ(X, D)
and Σ(X,V (X) ∪D) are naturally isomorphic. The edge lengths coincide — see for instance [BPR11,
Proposition 5.37] — and the residue curves of the two metrized complexes are naturally isomorphic
by [Ber90, Proposition 2.4.4]. From this it is straightforward to verify that Σ(X, D) and Σ(X,V (X) ∪
D) are identified as metrized complexes of curves.

In particular, a semistable formal model X of (X,D) is stable if and only if V (X) is a stable vertex
set of (X,D).

As another consequence of Theorem 5.8, we obtain the following compatibility of skeleta and
extension of scalars.

Proposition 5.10. Let X be a smooth, proper, connected K-curve, let K ′ be a complete and algebraically
closed valued field extension of K, and let π : Xan

K′ → Xan
K be the canonical map. If X is a semistable

formal model of X, then

(1) π maps V (XR′) bijectively onto V (X), and
(2) π maps Σ(XK′ , V (XR′) ∪D) bijectively onto Σ(X,V (X) ∪D), with

π : Σ(XK′ , V (XR′) ∪D)
∼−→ Σ(X,V (X) ∪D)

an isomorphism of augmented metric graphs.

Proof. The reduction map is compatible with extension of scalars, in that the following square
commutes

Xan
K′

red //

π

��

Xk′

π

��
Xan

red
// Xk

with k′ the residue field of K ′. The first assertion is immediate because the extension of scalars
morphism π : Xk′ → Xk is a bijection on generic points. It is also a bijection on singular points, and
for any node x′ ∈ Xk′ the open annulus A′ = red−1(x′) is identified with the extension of scalars of
A = red−1(π(x′)). It is easy to see that π : A′ → A takes the skeleton of A′ isomorphically onto the
skeleton of A. n
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5.11. Extending morphisms to semistable models: analytic criteria. Let X be a smooth, proper,
connected K-curve and let X be a semistable formal model of X. The inverse image topology on Xan

is the topology T (X) whose open sets are the sets of the form red−1(Uk), where Uk is a Zariski-open
subset of Xk. Note that any such set is closed in the natural topology on Xan. If Uk ⊂ Xk is an affine
open subset, then Uk is the special fiber of a formal affine open U = Spf(A) ⊂ X, the set underlying
the generic fiber UK = M (AK) ⊂ Xan is equal to red−1(Uk), and A is equal to the ring ÅK of power-
bounded elements in the affinoid algebraAK . This essentially means that X is a formal analytic variety
in the sense of [BL85]; see [BPR11, Remark 5.30(3)] for an explanation. Therefore X is constructed
by gluing the canonical models of the affinoid subdomains of Xan which are open in the inverse
image topology T (X), along the canonical models of their intersections; here the canonical model of
an affinoid space M (B) is by definition Spf(B̊). The following general fact about formal analytic
varieties follows from these observations and the functoriality of the reduction map.

Proposition 5.12. Let X,X ′ be smooth, proper, connected algebraic curves over K, let ϕ : X ′ → X be a
finite morphism, and let X and X′ be semistable formal models of X and X ′, respectively. Then ϕ extends
to a morphism X′ → X if and only if ϕ is continuous with respect to the inverse image topologies T (X)
and T (X′), in which case there is exactly one morphism X′ → X extending ϕ.

Fix smooth, proper, connected algebraic K-curves X,X ′ and a finite morphism ϕ : X ′ → X. The
following theorem is well-known to experts, although no proof appears in the literature to the best of
our knowledge.

Theorem 5.13. Let X and X′ be semistable formal models of X and X ′, respectively. Then ϕ : X ′ → X
extends to a morphism X′ → X if and only if ϕ−1(V (X)) ⊂ V (X′), and X′ → X is finite if and only if
ϕ−1(V (X)) = V (X′).

Remark 5.14. If X and X′ are semistable formal models of the punctured curves (X,D) and (X ′, D′),
respectively, and ϕ : X ′ → X is a finite morphism with ϕ−1(D) = D′ which extends to a morphism
X′ → X, then since ϕ−1(V (X)) ⊂ V (X′) it follows from Remark 4.29 that there is a natural harmonic
morphism of metric graphs Σ(X ′, V (X′) ∪D′) → Σ(X,V (X) ∪D). The morphism X′ → X is finite if
and only if the local degree of this harmonic morphism at every v′ ∈ V (X′) is positive.

Before giving a proof of Theorem 5.13, we mention the following consequences. Let X1 and X2 be
semistable formal models of X. We say that X1 dominates X2 provided that there exists a (necessarily
unique) morphism X1 → X2 inducing the identity map on analytic generic fibers. Taking X = X ′

in Theorem 5.13, we obtain the following corollary; this gives a different proof of the second part
of [BPR11, Theorem 5.38].

Corollary 5.15. Let X1 and X2 be semistable formal models of X. Then X1 dominates X2 if and only if
V (X1) ⊃ V (X2).

In conjunction with Proposition 5.10, we obtain the following corollary. If K ′ is a complete and
algebraically closed field extension of K, we say that a semistable formal model X′ of XK′ is defined
over R provided that it arises as the extension of scalars of a (necessarily unique) semistable formal
model of X.

Corollary 5.16. Let K ′ be a complete and algebraically closed field extension of K, let X′ be a semistable
formal model of XK′ , and suppose that there exists a semistable formal model X of X such that XR′

dominates X′. Then X′ is defined over R.
Proof. Let π : Xan

K′ → Xan be the canonical map. By Corollary 5.15 we have V (XR′) ⊃ V (X′), and
by Proposition 5.10 the map π defines a bijection V (XR′)

∼−→ V (X) and an isomorphism

Σ(XK′ , V (XR′))
∼−→ Σ(X,V (X)).

Let V = V (X) and V ′ = π(V (X′)). We claim that V ′ is a semistable vertex set. Granted this,
letting Y be the semistable formal model of X associated to V ′, we have V (YR′) = V (X′) since
V (YR′) ⊂ V (XR′) (as XR′ dominates YR′) and π(V (YR′)) = V (Y), so YR′ = X′.
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It remains to prove the claim that V ′ is a semistable vertex set. The point is that the question of
whether or not a subset of V is a semistable vertex set is intrinsic to the augmented Λ-metric graph
Σ = Σ(X,V ) ∼= Σ(XK′ , V (XR′)). We leave the details to the reader. n

We will use the following lemmas in the proof of Theorem 5.13. Recall from (3.11) that if V is a
semistable vertex set of X, then a connected component C of Xan \ V is adjacent to a point x ∈ V
provided that the closure of C in Xan contains x.

Lemma 5.17. Let X be a semistable formal model of X, let V = V (X), let Uk ⊂ Xk be a subset, and let
U = red−1(Uk) ⊂ Xan. Then U is open in the topology T (X) if and only if the following conditions hold:

(1) U is closed in the ordinary topology on Xan, and
(2) for every x ∈ U ∩ V , all but finitely many connected components of Xan \ V which are adjacent

to x are contained in U .

Proof. Let ζ be a generic point of Xk and let y ∈ Xk be a closed point. Let x ∈ V be the unique
point of Xan reducing to ζ and let B = red−1(y). By the anti-continuity of the reduction map, y is in
the closure of {ζ} if and only if x is adjacent to B. The lemma follows easily from this and the fact
that the connected components of Xan \ V are exactly the inverse images of the closed points of Xk
under red. n

Lemma 5.18. Let V and V ′ be semistable vertex sets of X and X ′, respectively, and suppose that
ϕ−1(V ) ⊂ V ′. Let C ′ be a connected component of X ′an \ ϕ−1(V ). Then C ′ has the following form:

(1) If C ′ intersects Σ(X ′, V ′), then C ′ = τ−1
(
Σ(X ′, V ′) ∩ C ′

)
, and

(2) otherwise C ′ is an open ball connected component of X ′an \ V ′.

Proof. Let Σ′ = Σ(X ′, V ′). Suppose that there exists y′ ∈ C ′ such that τ(y′) /∈ C ′. Let B′ be the
connected component of X ′an \ Σ′ containing y′, so B′ is an open ball contained in C ′ and τ(y′) is
the end of B′. It follows that τ(y′) is contained in the closure of C ′ in X ′an. Since C ′ is a connected
component of X ′an \ ϕ−1(V ), its closure is contained in C ′ ∪ ϕ−1(V ), so τ(y′) ∈ ϕ−1(V ). Therefore
B′ = (B′ ∪ {τ(y′)}) ∩ (X ′an \ ϕ−1(V )) is open and closed in X ′an \ ϕ−1(V ), so B′ is a connected
component of X ′an \ ϕ−1(V ) and hence B′ = C ′.

Now suppose that τ(C ′) ⊂ C ′. Then τ(C ′) ⊂ C ′ ∩ Σ′, so C ′ ⊂ τ−1(C ′ ∩ Σ′). Let y′ ∈ τ−1(C ′ ∩ Σ′)
and let B′ be the connected component of X ′an \ Σ′ containing y′, as above. Since B′ = B′ ∪ {τ(y′)}
is a connected subset of X ′an \ ϕ−1(V ) intersecting C ′ we have B′ ⊂ C ′, so y′ ∈ C ′ and therefore
C ′ = τ−1(C ′ ∩ Σ′). n

Proof of Theorem 5.13. Let V = V (X) and V ′ = V (X′). If there is an extension X′ → X of ϕ, then
the square

(5.18.1) X ′an
ϕ //

red

��

Xan

red

��
X′k

// Xk

commutes. Let x′ ∈ ϕ−1(V ), so x = ϕ(x′) reduces to a generic point ζ of Xk. Since the reduction ζ ′

of x′ maps to ζ, the point ζ ′ is generic, so x′ ∈ V ′. Therefore ϕ−1(V ) ⊂ V ′. The morphism X′ → X is
finite if and only if every generic point of X′k maps to a generic point of Xk; as above, this is equivalent
to V ′ = ϕ−1(V ).

It remains to prove that if ϕ−1(V ) ⊂ V ′, then ϕ extends to a morphism X′ → X. By Proposi-
tion 5.12, we must show that ϕ is continuous with respect to the topologies T (X) and T (X′). Let
U ⊂ Xan be T (X)-open and let U ′ = ϕ−1(U). Clearly U is closed, so U ′ is closed (with respect to the
ordinary topologies). We must show that condition (2) of Lemma 5.17 holds for U ′. Let x′ ∈ U ′ ∩ V ′
and let x = ϕ(x′). If x /∈ V , then let C ⊂ U be the connected component of Xan \ V containing
x and let C ′ be the connected component of X ′an \ ϕ−1(V ) containing x′. Then C ′ ⊂ U ′ because



LIFTING HARMONIC MORPHISMS I 33

ϕ(C ′) ⊂ C, and C ′ contains every connected component of X ′an \ V ′ adjacent to x′ since C ′ is an
open neighborhood of x′.

Now suppose that x ∈ V . Any connected component of X ′an \ V ′ which is adjacent to x′ maps
into a connected component of Xan \ V which is adjacent to x. There are finitely many connected
components Xan \ V which are adjacent to x and not contained in U by Lemma 5.17. Let C be
such a component. Since ϕ is finite, there are only finitely many connected components of ϕ−1(C);
each of these is a connected component of X ′an \ ϕ−1(V ). If C ′ is such a connected component,
then either C ′ is an open ball connected component of X ′an \ V ′ or C ′ intersects Σ′ = Σ(X ′, V ′)
by Lemma 5.18. There are finitely many connected components of X ′an \ V ′ which intersect Σ′ —
these are just the open annulus connected components of X ′an \ V ′ — so there are only finitely many
connected components of X ′an \ V ′ contained in ϕ−1(C). Therefore all but finitely many connected
components of X ′an \V ′ which are adjacent to x′ map to connected components of Xan \V which are
contained in U . n

5.19. Simultaneous semistable reduction theorems. Recall that K0 is a field equipped with a non-
trivial non-Archimedean valuation val : K0 → R ∪ {∞}. As above we fix an algebraic closure K0 of
K0 and a valuation val on K0 extending the given valuation on K0; for any field K1 ⊂ K0 we consider
K1 as a valued field with respect to the restriction of val, and we write R1 for the valuation ring of K1.
In what follows, X and X ′ are smooth, proper, geometrically connected K0-curves and ϕ : X ′ → X is
a finite morphism.

Proposition 5.20. Let X be a semistable R0-model of X. If there exists a semistable R0-model X ′ of X ′

such that ϕ : X ′ → X extends to a finite morphism X ′ → X , then there is exactly one such model X ′ up
to (unique) isomorphism.

Proof. Suppose first that K = K0 is complete and algebraically closed. Let X (resp. X′) be the $-
adic completion of X (resp. X ′). In this case, the proposition follows from Theorem 5.8 and the fact
that if the morphism X′ → X of Theorem 5.13 is finite, then V (X′) is uniquely determined by V (X).
The general case follows from this case after passing to the completion of the algebraic closure K of
K0: if X ′,X ′′ are two semistable models of X ′ such that ϕ extends to finite morphisms X ′ → X and
X ′′ → X , then the isomorphism X ′′R

∼−→ X ′R descends to an isomorphism X ′′ ∼−→ X ′ by Lemma 5.5. n

Let X1,X2 be semistable R0-models of X. Recall that X1 dominates X2 if there exists a (necessarily
unique) morphism X1 → X2 inducing the identity on X.

Proposition 5.21. Let X and X ′ be semistable R0-models of X and X ′, respectively. Let D′ ⊂ X ′(K0)
be a finite set of points. Then there exists a finite, separable extensionK1 ofK0 and a semistableR1-model
X ′′ of (X ′K1

, D′) such that:

(1) X ′′ dominates X ′R1
,

(2) ϕK1 : X ′K1
→ XK1 extends to a morphism X ′′ → XR1 , and

(3) any other semistable R1-model of (X ′K1
, D′) satisfying the above two properties dominates X ′′.

Moreover, the formation of X ′′ commutes with arbitrary valued field extensions K1 → K ′1.
Proof. Suppose first that K0 = K is complete and algebraically closed. Let X and X′ be the $-adic

completions of X and X ′, respectively. Let V = V (X) and V ′ = V (X′). By Lemma 3.15, there is a
minimal semistable vertex set V ′′ of (X ′, D′) which contains ϕ−1(V ) ∪ V ′. Let X′′ be the semistable
formal model of X ′ corresponding to V ′′. Then X′′ dominates X′ by Corollary 5.15 and ϕ extends to a
morphism X′′ → X by Theorem 5.13. Part (3) follows from Corollary 5.15 and the minimality of V ′′.
Taking X ′′ to be the algebraization of X′′ yields (1)–(3) in this case.

For a general valued field K0, suppose that K is the completion of K0. By Lemma 5.4 the model of
X ′K constructed above descends to a model X ′′ defined over the ring of integers of a finite, separable
extension K1 of K0. Properties (1)–(3) follow from Lemma 5.5 and the corresponding properties of
X ′′R.

Now we address the behavior of this construction with respect to base change. Using Lemma 5.5
we immediately reduce to the case of an extension K → K ′ of complete and algebraically closed
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valued fields. Let R′ be the ring of integers of K ′. Let X ′′ (resp. X ′′′) be the minimal R-model of X ′

dominating X ′ (resp. R′-model of X ′K′ dominating X ′R′) mapping to X (resp. XR′). By (3) as applied
to X ′′′, we have that X ′′R′ dominates X ′′′. By Corollary 5.16, X ′′′ is defined over R, so by (3) as applied
to X ′′, we have X ′′R′ = X ′′′. n

Theorem 5.22. (Liu) Let X (resp. X ′) be a semistable R0-model of X (resp. X ′). Let D ⊂ X(K0) and
D′ ⊂ X ′(K0) be finite sets, and suppose that ϕ(D′) ⊂ D. Then there exists a finite, separable extension
K1 of K0 and semistable R1-models X1,X ′1 of (XK1 , D), (X ′K1

, D′), respectively, such that

(1) X1 dominates XR1
and X ′1 dominates X ′R1

,
(2) the morphism ϕK1

: X ′K1
→ XK1

extends to a finite morphism X ′1 → X1, and
(3) if X2, X ′2 are semistable formal models of (XK1 , D), (X ′K1

, D′), respectively, satisfying (1)
and (2) above, then X2 dominates X1 and X ′2 dominates X ′1.

Moreover, the formation of X ′1 → X1 commutes with arbitrary valued field extensions K1 → K ′1.

The morphism X ′1 → X1 is called the stable marked hull of X ′ 99K X in [Liu06].

Proof. First assume that K0 = K is complete and algebraically closed; let X,X′ be the $-adic
completions of X ,X ′, respectively. Let V = V (X) and V ′ = V (X′). By Theorem 5.8, Theorem 5.13,
and Corollary 5.15, we may equivalently formulate the existence and uniqueness of X′1 → X1 in terms
of semistable vertex sets, as follows. We must prove that there exists a semistable vertex set V1 of
(X,D) such that

(1) V1 contains V ∪ ϕ(V ′),
(2) ϕ−1(V1) is a semistable vertex set of (X ′, D′), and
(3) V1 is minimal in the sense that if V2 is another semistable vertex set of (X,D) satisfying (1)

and (2) above, then V2 ⊃ V1.

First we will prove the existence of V1 satisfying (1) and (2). By Lemma 3.15 we may enlarge V
to assume that V is a semistable vertex set of (X,D). Let Σ = Σ(X,V ∪ D) and Σ′ = Σ(X ′, V ′).
By Corollary 4.18, there exists a skeleton Σ1 of (X,D) such that Σ1 ⊃ Σ ∪ ϕ(Σ′) and such that
Σ′1 = ϕ−1(Σ1) is a skeleton of (X ′, ϕ−1(D)). Let V ′1 be a vertex set for Σ′1. Since any finite subset of
type-2 points of Σ′1 which contains V ′1 is again a vertex set for Σ′1 by Proposition 3.12(4), we may and
do assume that V ′ ⊂ V ′1 . Let V1 ⊂ Σ1 be the union of a vertex set for Σ1 with V ∪ ϕ(V ′1). Then V1 is
a semistable vertex set of (X,D), and ϕ−1(V1) ⊂ Σ′1 is a finite set of type-2 points containing V ′1 , thus
is a semistable vertex set of (X ′, ϕ−1(D)) (hence of (X ′, D′) as well).

To prove that there exists a minimal such V1, we make the following recursive construction. Let
V (0) = V , let V ′(0) = V ′, and for each n ≥ 1 let V (n) be the minimal semistable vertex set of (X,D)
containing V (n − 1) ∪ ϕ(V ′(n − 1)) and let V ′(n) be the minimal semistable vertex set of (X ′, D′)
containing ϕ−1(V (n)). These sets exist by Lemma 3.15. By induction it is clear that if V2 is any
semistable vertex set of (X,D) satisfying (1) and (2) above, then V (n) ⊂ V2 for each n. Since V2

is a finite set, for some n we have V (n) = V (n + 1), which is to say that ϕ(V ′(n)) ⊂ V (n); since
V ′(n) ⊃ ϕ−1(V (n)), we have that V ′(n) = ϕ−1(V (n)) is a semistable vertex set of (X ′, D′). Then
V1 = V (n) is the minimal semistable vertex set satisfying (1) and (2) above.

The case of a general ground field reduces to the geometric case handled above exactly as in the
proof of Proposition 5.21, as does the statement about the behavior of the stable marked hull with
respect to valued field extensions. n

Remark 5.23. (The skeletal viewpoint on Liu’s theorem) The statement of Theorem 5.22 is strongly
analogous to Corollary 4.18, which is indeed the main ingredient in the proof. The difference is that
whereas finite morphisms of semistable models correspond to pairs V, V ′ of semistable vertex sets such
that ϕ−1(V ) = V ′, for finite morphisms of triangulated punctured curves one requires in addition that
ϕ−1(Σ) = Σ′. The former condition (of Liu’s theorem) does not imply the latter: for instance, let
X ′ be the Tate curve y2 = x3 − x + $, let X = P1, and let ϕ : X ′ → X be the cover (x, y) 7→ x.
This extends to a finite morphism of semistable models given by the same equations; however, the
associated skeleton of X ′ (resp. of P1) is a circle (resp. a point), so ϕ−1(Σ) ( Σ′.
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In general, if ϕ−1(V ) = V ′ and ϕ−1(D) = D′, then by Remark 4.19 the image of the skeleton
Σ(X ′, V ′ ∪D′) is equal to Σ(X,V ∪D) union a finite number of geodesic segments T1, . . . , Tr, and by
Theorem 4.13 the saturation ϕ−1(ϕ(Σ(X ′, V ′ ∪D′)) is a skeleton of X ′.

Theorem 5.25 below follows the same philosophy in deriving a simultaneous semistable reduction
theorem of Liu–Lorenzini from Proposition 4.12.

Remark 5.24. Liu in fact works over an arbitrary Dedekind scheme (a connected Noetherian regular
scheme of dimension 1), which includes discrete valuation rings but not more general valuation rings.
In his statement of Theorem 5.22 the given models X ,X ′ are allowed to be any integral, projective
Spec(R0)-schemes with generic fibers X and X ′, respectively. Although we restrict to semistable mod-
els X ,X ′ in this paper, using a more general notion of a triangulation our methods can be extended
to treat relatively normal models X ,X ′.

The following simultaneous stable reduction theorem can be found in [LL99]. Theorem 5.25 is to
Proposition 4.12 as Theorem 5.22 is to Corollary 4.18

Theorem 5.25. (Liu–Lorenzini) Suppose that (X,D) and (X ′, D′) are both stable and that ϕ−1(D) =
D′. Assume that (X,D) and (X ′, D′) admit stable models X and X ′, respectively, defined over R0. Then
ϕ : X ′ → X extends to a (not necessarily finite) morphism X ′ → X .

Proof. By Lemma 5.5 we may assume that K0 = K is complete and algebraically closed. Let V
(resp. V ′) be the minimal semistable vertex set of (X,D) (resp. (X ′, D′)). By Theorem 5.13, we must
show that ϕ−1(V ) ⊂ V ′. Let Σ = Σ(X,V ) and Σ′ = Σ(X ′, V ′). Let V1 be a vertex set for Σ with
respect to which Σ has no loop edges. Recall that

V = {x ∈ V1 : g(x) ≥ 1 or x has valency at least 3}

by Proposition 3.18(2). Let V ′1 = ϕ−1(V1) ∪ V ′; this is a vertex set for Σ′ since ϕ−1(Σ) ⊂ Σ′ by
Proposition 4.12(2). If x ∈ V has genus at least 1, then any x′ ∈ ϕ−1(x) has genus at least 1, so
ϕ−1(x) ⊂ V ′. Let x ∈ V have genus 0, so x has valency at least 3 in Σ. Let x′ ∈ ϕ−1(x) ⊂ Σ′ and let
U ′ be the set containing x′ and all of the connected components of X ′an \ V ′1 adjacent to x′. Then U ′

is an open neighborhood of x′, so ϕ(U ′) is an open neighborhood of x by [Ber90, Lemma 3.2.4]. Let
A be an open annulus connected component of Xan \ V1 adjacent to x. Any open neighborhood of x
intersects A, so there exists y′ ∈ U ′ with ϕ(y′) ∈ A. Let A′ be the connected component of U ′ \ {x′}
containing y′, so ϕ(A′) ⊂ A. Since x′ is an end of A′ and ϕ(x′) is an end of A, Lemma 4.3 implies that
A′ is an open annulus. Since x has valency at least 3 in Σ (and since Σ has no loop edges), there are
at least 3 distinct open annulus connected components of Xan \ V1 adjacent to x. By the above, the
same is true of x′, so x′ has valency at least 3 in Σ′, so x′ ∈ V ′, as desired. n

6. A LOCAL LIFTING THEOREM

We now begin with the classification of lifts of harmonic morphisms of metrized complexes of
curves to finite morphisms of algebraic curves. We begin by working in the neighborhood of a vertex
of a metrized complex.

6.1. Let X be a smooth, proper, connected curve over K and let x ∈ Xan be a type-2 point. Let
V ⊂ Xan be a strongly semistable vertex set of X containing x, let Σ = Σ(X,V ), and let τ : Xan → Σ
be the retraction. Let e1, . . . , er be the edges of Σ adjacent to x and let Σ0 = {x} ∪ e◦1 ∪ · · · ∪ e◦r ,
where for a (closed) edge e we let e◦ denote the corresponding open edge, i.e. the edge without its
endpoints. Then Σ0 is an open neighborhood of x in Σ and τ−1(Σ0) is an open neighborhood of x
in Xan. Following [BPR11, 5.54] and [Ber93], we define a simple neighborhood of x to be an open
neighborhood of this form (for some choice of V ). The connected components of τ−1(Σ0) \ {x} are
open balls and the open annuli τ−1(e◦1), . . . , τ−1(e◦r).

Definition 6.2. A star-shaped curve is a pointed K-analytic space (Y, y) which is isomorphic to (U, x)
where x is a type-2 point in the analytification of a smooth, proper, connected curve over K and U is
a simple neighborhood of x. The point y is called the central vertex of Y .
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6.3. Let (Y, y) be a star-shaped curve, so Y \ {y} is a disjoint union of open balls and finitely many
open annuli A1, . . . , Ar. The skeleton of Y is defined to be the set Σ(Y, {y}) = {y} ∪

⋃r
i=1 Σ(Ai).

A compatible divisor in Y is a finite set D ⊂ Y (K) whose points are contained in distinct open ball
connected components of Y \ {y}, so the connected components of Y \ ({y} ∪D) are open balls, the
open annuli A1, . . . , Ar, and (finitely many) open balls B1, . . . , Bs punctured at a point of D. The
data (Y, y,D) of a star-shaped curve along with a compatible divisor is called a punctured star-shaped
curve. The skeleton of (Y, y,D) is the set

Σ(Y, {y} ∪D) = {y} ∪D ∪
r⋃
i=1

Σ(Ai) ∪
s⋃
j=1

Σ(Bj).

Fix a compatible divisorD in Y , and let Σ0 = Σ(Y, {y}∪D). There is a canonical continuous retraction
map τ : Y → Σ0 defined exactly as for skeleta of algebraic curves (3.11). The connected components
of Σ0 \ {y} are called the edges of Σ0; an edge is called infinite if it contains a point of D and finite
otherwise.

If Y is the simple neighborhood τ−1(Σ0) of x ∈ Xan as above, then Σ(Y, {x}) = Σ0 = Σ ∩ Y . A
finite set D ⊂ Y (K) is compatible with Y if and only if V is a semistable vertex set for (X,D), in
which case Σ(Y, {x} ∪D) = Y ∩Σ(X,V ∪D). The retraction τ : Y → Σ(Y, {x} ∪D) is the restriction
of the canonical retraction τ : Xan → Σ(X,V ∪D).

6.4. Let (Y, y) be a star-shaped curve. Then Y is proper as a K-analytic space if and only if all
connected components of Y \ {y} are open balls, i.e. if and only if Σ(Y, {y}) = {y}. If Y is proper,
then there is a smooth, proper, connected curve X over K and an isomorphism f : Y

∼−→ Xan. Let
x = f(y). Then {x} is a semistable vertex set of X, so by Theorem 5.8 there is a unique smooth formal
model X of Xan such that x reduces to the generic point of Xk. Let D ⊂ Y (K) be a finite set. Then D
is compatible with Y if and only if the points of f(D) reduce to distinct closed points of Xk.

Conversely, let X be a smooth, proper, connected formal curve over Spf(R). If x ∈ Xan is the point
reducing to the generic point of Xk, then (XK , x) is a proper star-shaped curve.

Proposition 6.5. Let (Y, y) be a star-shaped curve. Then (Y, y) is isomorphic to (U, x) where x is the
central vertex of a proper star-shaped curve X and U is a simple neighborhood of x.

Proof. LetA1, . . . , Ar be the open annulus connected components of Y \{y}. Choose isomorphisms
fi : Ai

∼−→ S(ai)+ with standard open annuli such that fi(x) approaches the Gauss point of B(1) as x
approaches y. Let X be the curve obtained from Y by gluing an open ball B(1)+ onto each Ai via the
inclusions fi : Ai

∼−→ S(ai)+ ⊂ B(1)+. Then X is a smooth, proper, connected K-analytic curve, and
it is clear from the construction that (X, y) is star-shaped and that Y is a simple neighborhood of y in
X. n

6.6. A proper star-shaped curve X and an inclusion i : Y
∼−→ U ⊂ X as in Proposition 6.5 is called a

compactification of Y (as a star-shaped curve). Note that X \ i(Y ) is a disjoint union of finitely many
closed balls, one for each open annulus connected component of Y \ {y}.
6.7. Let (Y, y) be a star-shaped curve. The smooth, proper, connected k-curve Cy with function field
H̃ (y) is called the residue curve of Y . The tangent vectors in Ty are naturally in bijective correspon-
dence with the connected components of Y \{y}. We define a reduction map red : Y → Cy by sending
y to the generic point of Cy, and sending every point in a connected component B of Y \ {y} to the
closed point of Cy corresponding to the tangent vector determined by B. This sets up a one-to-one
correspondence between the connected components of Y \ {y} and the closed points of Cy.

Remark 6.8.

(1) When Y is proper, so Y ∼= XK for a smooth, proper, connected formal curve over Spf(R),
then Cy ∼= Xk and the reduction map Y → Cy coincides with the canonical reduction map
XK → Xk.
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(2) Let D ⊂ Y (K) be a compatible divisor and let Σ0 = Σ(Y, {y} ∪ D). Every edge e of Σ0 is
contained in a unique connected component of Y \{y}, and red(e) ∈ Cy(k) is the closed point
corresponding to the tangent direction represented by e.

6.9. Tame coverings. We now study a class of morphisms of star-shaped curves analogous to (4.30).
We begin with the following technical result.

Lemma 6.10. Let A,A′ be open annuli or punctured open balls and let ϕ : A′ → A be a finite morphism
of degree δ. Suppose that δ is prime to char(k) if char(k) > 0. Fix an isomorphism A ∼= S(a)+ (where we
allow a = 0).

(1) There is an isomorphism A′ ∼= S(a′)+ such that the composition

(6.10.1) S(a′)+
∼= A′

ϕ−→ A ∼= S(a)+

is t 7→ tδ.
(2) There is an isomorphism A′ ∼= S(a′)+ such that (6.10.1) extends to a morphism ψ : B(1)+ →

B(1)+ with ψ−1(0) = 0.
(3) If (6.10.1) extends to a morphism ψ : B(1)+ → B(1)+ for a given isomorphism A′ ∼= S(a′)+,

then the extension is unique.

Proof. Let u be a parameter on A′, i.e. an isomorphism u : A′
∼−→ S(a′)+ ⊂ B(1)+ with a standard

open annulus. By Lemma 4.2, ϕ restricts to an affine map on skeleta Σ(A′) → Σ(A) with degree
δ. If B = S(b, c) is a closed sub-annulus of S(a′)+, then by [Thu05, Lemme 2.2.1], after potentially
replacing u by u−1, ϕ∗(t) has the form αuδ(1 + g(u)) on B, where α ∈ R× and |g|sup < 1. Since δ
is not divisible by char(k) if char(k) > 0, the Taylor expansion for δ

√
1 + g has coefficients contained

in R, hence converges to a δth root of 1 + g(u) on A. Choosing a δth root of α as well and letting
uB = u δ

√
α δ
√

1 + g, we have that uB is a parameter on B such that ϕ∗(t) = uδB . Hence for each such
B there are exactly δ choices of a parameter uB on B such that ϕ∗(t) = uδB; choosing a compatible
set of such parameters for all B yields a parameter on A′ satisfying (1).

Part (2) follows immediately from (1). A morphism from a K-analytic space X to B(1)+ is given
by a unique analytic function f on X such that |f(x)| < 1 for all x ∈ X, so (3) follows from the fact
that the restriction homomorphism O(B(1)+)→ O(S(a′)+) is injective. n

6.11. Let A be an open annulus. Let δ be a positive integer, and assume that δ is prime to the
characteristic of k if char(k) > 0. Let A′ be an open annulus and let ϕ : A′ → A be a finite morphism
of degree δ. By Lemma 6.10, the group AutA(A′) is isomorphic to Z/δZ. Moreover, if A′′ is another
open annulus and ϕ′ : A′′ → A is a finite morphism of degree δ, then there exists an A-isomorphism
ψ : A′

∼−→ A′′; the induced isomorphism AutA(A′)
∼−→ AutA(A′′) is independent of the choice of

ψ since both groups are abelian. Therefore the group AutA(δ) B AutA(A′) ∼= Z/δZ is canonically
determined by A and δ.

Definition 6.12. Let (Y, y,D) be a punctured star-shaped curve with skeleton Σ0 = Σ(Y, {y} ∪ D)
and let Cy be the residue curve of Y . A tame covering of (Y, y,D) consists of a punctured star-shaped
curve (Y ′, y′, D′) and a finite morphism ϕ : Y ′ → Y satisfying the following properties:

(1) ϕ−1(y) = {y′},
(2) D′ = ϕ−1(D), and
(3) if Cy′ denotes the residue curve of Y ′ and ϕy′ : Cy′ → Cy is the morphism induced by ϕ, then

ϕy′ is tamely ramified and is branched only over the points of Cy corresponding to tangent
directions at y represented by edges in Σ0.

Remark 6.13. The degree of ϕ is equal to the degree of ϕy′ .

Example 6.14. Let ϕ : (X ′, V ′, D′)→ (X,V,D) be a tame covering of triangulated punctured curves.
Let Σ = Σ(X,V ∪D) and Σ′ = Σ(X ′, V ′∪D′) = ϕ−1(Σ). Let x ∈ V be a finite vertex of Σ, let e1, . . . , er
be the finite edges of Σ adjacent to x, let Σ0 = {x} ∪

⋃r
i=1 e

◦
i , let Y = τ−1(Σ0), and let D0 = D ∩ Y .

Then (Y, x,D0) is a punctured star-shaped curve. Let Σ′0 be a connected component of ϕ−1(Σ0), let
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x′ ∈ Σ′0 be the unique inverse image of x, let Y ′ = τ−1(Σ′0), and let D′0 = D′ ∩ Y ′. Then (Y ′, x′, D′0)
is also a punctured star-shaped curve, and ϕ restricts to a finite morphism ϕ : Y ′ → Y . This is in fact
a tame covering of punctured star-shaped curves by Remark 4.34 and Proposition 4.35.

Proposition 6.15. Let ϕ : (Y ′, y′, D′)→ (Y, y,D) be a degree-δ tame covering of punctured star-shaped
curves.1 Let Σ0 = Σ(Y, {y} ∪D), let Σ′0 = Σ(Y ′, {y′} ∪D′), let Cy (resp. Cy′) be the residue curve of Y
(resp. Y ′), and let ϕy′ : Cy′ → Cy be the induced morphism.

(1) Let B be a connected component of Y \ {y} disjoint from Σ0. Then ϕ−1 is a disjoint union of δ
open balls mapping isomorphically onto B.

(2) Let B be a connected component of Y \ {y} meeting D, and choose an isomorphism of B with
B(1)+ which identifies the unique point of B ∩ D with 0. Let B′ be a connected component
of ϕ−1(B). Then ϕ|B′ : B′ → B is a finite morphism, the degree of ϕ|B′ is the ramification
degree δ′ of ϕy′ at red(B′), and there is an isomorphism B′ ∼= B(1)+ sending the unique point
of B′ ∩D′ to 0 such that the composition

B(1)+
∼= B′

ϕ−→ B ∼= B(1)+

is t 7→ tδ
′
.

(3) Let A be an open annulus connected component of Y \ {y}, and choose an isomorphism A ∼=
S(a)+. Let A′ be a connected component of ϕ−1(A). Then ϕ|A′ : A′ → A is a finite morphism,
the degree of ϕ|A′ is the ramification degree δ′ of ϕy′ at red(A′), and there is an isomorphism of
A′ with an open annulus S(a′) such that the composition

S(a′)+
∼= A′

ϕ−→ A ∼= S(a)+

is t 7→ tδ
′
.

(4) ϕ is étale over Y \D.
(5) ϕ−1(Σ0) = Σ′0.

Proof. In the situation of (1), let x = red(B). Since ϕy′ is not branched over x, there are δ distinct
points of Cy′ mapping to x; hence there are δ connected components B′1, . . . , B

′
δ of Y ′ \ {y′} mapping

onto B. The restriction of ϕ to each B′i is finite of degree 1.
Next we prove (2). It is clear that ϕ|B′ : B′ → B is finite, hence surjective; since B′ is a connected

component of Y ′ \ {y′} containing a point of D′ = ϕ−1(D), it is an open ball. Let x (resp. x′) be the
unique point of D (resp. D′) contained in B (resp. B′) and let e ⊂ Σ0 (resp. e′ ⊂ Σ′0) be the edge
adjacent to x (resp. x′). Then B′ \ {x′} → B \ {x} is a finite morphism of punctured open balls, so by
Lemma 3.3, Proposition 4.8, and Theorem 4.23(2), the restriction of ϕ to e′ is affine morphism e′ → e
of degree δ′, and δ′ is the degree of B′ → B. So by Lemma 6.10 there is an isomorphism B′ ∼= B(1)+

as described in the statement of the Theorem.
In the situation of (3), we claim that A′ is an open annulus. Clearly ϕ|A′ : A′ → A is finite,

hence surjective. If A′ is not an open annulus, then A′ ∼= B(1)+ is an open ball. The morphism
B(1)+

∼= A′ → A ∼= S(a)+ is given by a unit on B(1)+, which has constant absolute value; this
contradicts surjectivity, so A′ is in fact an open annulus. The proof now proceeds exactly as above.

Parts (4) and (5) follow immediately from parts (1)–(3). n

The following proposition is reminiscent of [Saï04, Proposition 3.3.2].

Corollary 6.16. Let ϕ : (Y ′, y′, D′0) → (Y, y,D0) be a tame covering of punctured star-shaped curves
and let i : (Y, y) ↪→ (X,x) be a compactification of Y . Let D1 be the union of i(D0) with a choice of
K-point from every connected component of X \ i(Y ). Then there exists a compactification i′ : (Y ′, y′) ↪→
(X ′, x′) and a tame covering ψ : (X ′, x′, D′1)→ (X,x,D1) such that ψ ◦ i′ = i ◦ ϕ.

Proof. We compactify (Y ′, y′) as in the proof of Proposition 6.5, gluing balls onto the annulus
connected components of Y ′\{y′}. By Proposition 6.15(3), ifA ∼= S(a)+ is an open annulus connected
component of Y \{y} and A′ ⊂ Y ′ \{y′} is a connected component mapping to A, then we can choose

1This δ need not be prime to char(k).
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an isomorphism A′ ∼= S(a′)+ such that S(a′)+
∼= A′ → A ∼= S(a)+ is of the form t 7→ tδ; this map

extends to a morphism B(1)+ → B(1)+, and these maps glue to give a tame covering X ′ → X. n

6.17. A local lifting theorem. Let (Y, y,D) be a punctured star-shaped curve with skeleton Σ0 =
Σ(Y, {y}∪D) and residue curve Cy. Let C ′ be a smooth, proper, connected k-curve and let ϕ : C ′ → Cy
be a finite, tamely ramified morphism branched only over the points of Cy corresponding to tangent
directions at y represented by edges in Σ0. A lifting of C ′ to a punctured star-shaped curve over (Y, y,D)
is the data of a punctured star-shaped curve (Y ′, y′, D′), a tame covering ϕ : (Y ′, y′, D′) → (Y, y,D),
and an isomorphism of the residue curve Cy′ with C ′ which identifies ϕwith the morphism ϕy′ : Cy′ →
Cy induced by ϕ. An isomorphism between two liftings (Y ′, y′) and (Y ′′, y′′) is a Y -isomorphism
Y ′ → Y ′′ such that the induced morphism Cy′

∼−→ Cy′′ respects the identifications Cy′ ∼= C ′ and
Cy′′ ∼= C ′.

Theorem 6.18. Let (Y, y,D) be a punctured star-shaped curve with skeleton Σ0 = Σ(Y, {y} ∪ D)
and residue curve Cy, let C ′ be a smooth, proper, connected k-curve, and let ϕ : C ′ → Cy be a finite,
tamely ramified morphism branched only over the points of Cy corresponding to tangent directions at
y represented by edges in Σ0. Then there exists a lifting of C ′ to a punctured star-shaped curve over
(Y, y,D), and this lifting is unique up to unique isomorphism.

Before giving the proof of this theorem, we need a technical lemma. Let X be a finitely pre-
sented, flat, separated R-scheme and let X be its $-adic completion; this is an admissible formal
R-scheme by [BPR11, Proposition 3.12]. There is a canonical open immersion iX : XK → X an

K de-
fined in [Con99, §A.3] which is functorial in X and respects the formation of fiber products, and
is an isomorphism when X is proper over R. (This fact is implicitly contained in the statement of
Lemma 5.1.)

Lemma 6.19. Let X ,X ′ be finitely presented, flat, separated R-schemes and let X,X′ denote their
$-adic completions. Let X ′ → X be a finite and flat morphism. Then the square

(6.19.1) X′K
iX′ //

f

��

X ′an
K

g

��
XK iX

// X an
K

is Cartesian.
Proof. The vertical arrows f, g of (6.19.1) are finite and the horizontal arrows iX ′ , iX are open

immersions. Let Y = X ′an
K ×X an

K
XK , so Y → X ′an

K is an open immersion and Y → XK is finite.
Let h : X′K → Y be the canonical morphism. Then h is an open immersion because its composition
with Y → X ′an

K is an open immersion, and h is finite because its composition with Y → XK is finite.
Therefore h is an isomorphism of X′K onto an open and closed subspace of Y . It suffices to show that
h is surjective, and since Y (K) is dense in Y , we only need to check that Y (K) is in the image of h.

Let x ∈ XK(K) and y ∈ X ′an
K (K) be points with the same image z ∈ X an

K (K), so (x, y) ∈ Y (K).
Choose an open formal affine U ⊂ X such that x ∈ UK(K), and assume without loss of generality that
there is an affine open U = Spec(A) ⊂ X such that U = Spf(Â), where Â is the $-adic completion of
A. Then x corresponds to a continuous K-homomorphism η : Â ⊗R K → K. We have η(Â) ⊂ R, so
composing with the completion homomorphism A → Â we obtain an R-homomorphism A → R. Let
ξ : Spec(R) → U ⊂ X denote the induced morphism. The corresponding morphism Spf(R)K → XK
is the point x.

Let Z be the fiber product of X ′ → X with η : Spec(R) → X and let Z be its $-adic completion.
Note that Z is finite and flat over Spec(R). In particular, Z is proper over R, so iZ : ZK → Zan

K is an
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isomorphism. We have a commutative cube

Zan
K

//

��

X ′an
K

g

��

ZK

∼=
66nnnnnnnnn //

��

X′K

<<xxxx

f

��

Spec(K)an z // X an
K

Spf(R)K

∼= 66nnnnnn
x // XK

<<xxxx

where the front and back faces are Cartesian and the diagonal arrows are the canonical open immer-
sions. Since g(y) = z and Zan

K = f−1(z), the point y lifts to a point in Zan
K (K), which then lifts to a

point in ZK(K) whose image in X′K(K) maps to x in XK(K) and y ∈ X ′an
K (K). n

6.20. Proof of Theorem 6.18. We first prove the theorem when Y is proper. In this case we may
and do assume that Y is the analytic generic fiber of a smooth, proper, connected formal curve X over
Spf(R). Let X → Spec(R) be the algebraization of X (Lemma 5.1); this is a smooth, proper relative
curve of finite presentation and with connected fibers whose $-adic completion is isomorphic to X.
Note that Xk = Xk = Cy. Let X = XK , so Xan = XK = Y . By the valuative criterion of properness,
every point x of D extends uniquely to a section Spec(R) → X which sends the closed point to the
reduction of x; hence the closure D of D in X is a disjoint union of sections. Let U = X \ D.

The theory of the tamely ramified étale fundamental group πt1 of a morphism of schemes with a rel-
ative normal crossings divisor is developed in [SGA1, Exposé XIII]. The finite-index subgroups of πt1
classify so-called tamely ramified étale covers. The subscheme D ⊂ X is a relative normal crossings
divisor relative to Spec(R), so the proof of Corollaire 2.12 of loc. cit. shows that the specialization
homomorphism π1(UK) → πt1(Uk) is surjective (we suppress the base points). What this means con-
cretely is that every tamely ramified cover U ′ → Uk over Xk relative to Dk extends to a finite étale
morphism U ′ → U , unique up to unique isomorphism, and the generic fiber of U ′ is connected.

Let D′ = ϕ−1(Dk) and let U ′ = C ′ \ D′, so U ′ → Uk is a tamely ramified cover of Uk over Xk
relative to Dk. Let ϕ : U ′ → U be the unique étale covering extending ϕ|U ′ ; this is equipped with an
isomorphism U ′k ∼= U ′ identifying ϕ|U ′ with ϕk. Let U = UK = X\D, let U ′ = U ′K , letX ′ be the smooth
compactification of U ′, and let ϕK : X ′ → X denote the unique morphism extending ϕK : U ′ → U .
We will show that there is a simple neighborhood W of y in Xan such that ϕ−1

K (W ) → W is a tame
covering, and conclude that a lifting exists using Corollary 6.16.

6.20.1. First we claim that ϕ−1
K (y) consists of a unique point y′ ∈ X ′an. Letting U and U′ denote the

$-adic completions of U and U ′, respectively, we have a Cartesian square

U′K
iU′ //

��

U ′an

��
UK iU

// Uan

by Lemma 6.19. In other words, U′K is the inverse image of UK under ϕK : U ′an → Uan. Since the
reduction map UK → Uk = Uk is surjective and y is the unique point of Xan reducing to the generic
point of Uk ⊂ Xk, we have y ∈ UK , so it suffices to show that there is a unique point y′ ∈ U′K mapping
to y. It follows easily from the functoriality of the reduction map that the only point y′ mapping to y
is the unique point of U′K reducing to the generic point of U′k. In particular, the residue curve of X ′an

at y′ is identified with C ′, which is the smooth completion of U′k = U ′.

6.20.2. Choose a strongly semistable vertex set V ′ of X ′ containing y′, let Σ′ = Σ(X ′, V ′), and let
τ : X ′an → Σ′ be the retraction. Let B ⊂ Xan be the formal fiber of a point x ∈ Uk(k); equivalently,
B is a connected component of Xan \ {y} not meeting D. Let B′ be a connected component of
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X ′an \ {y′} contained in ϕ−1
K (B). We have B ⊂ UK ; therefore B′ ⊂ U′K , so B′ is a connected

component of U′K \ {y′}, hence B′ is the formal fiber of a point x′ ∈ U′k(k), so B′ ∼= B(1)+. It follows
that V ′ \ (V ′ ∩B′) is again a semistable vertex set, so we may and do assume that Σ′ ∩B′ = ∅ for all
such B′.

Let e′ ⊂ Σ′ be an edge adjacent to y′ and let B be the connected component of Xan\{y} containing
ϕK(e′◦). By the above, B is the formal fiber of a point x ∈ Dk. Fix an isomorphism B ∼= B(1)+ taking
the unique point in D ∩ B to 0. Let v′ ∈ Ty′ be the tangent vector in the direction of e′ and let
v = dϕK(y′)(v′) ∈ Ty. The point in Xk(k) corresponding to v is x; let x′ ∈ D′ ⊂ C ′(k) be the point
corresponding to v′, so ϕ(x′) = x. By Theorem 4.23, the ramification degree δ of ϕ at x′ is equal to
dv′ϕK(x′).

Let B′ be the connected component of X ′an \ {y′} containing e′◦. Viewing ϕK |B′ as a morphism
B′ → B(1)+ ⊂ A1,an

K via our chosen isomorphism B ∼= B(1)+, the map x′ 7→ log |ϕK(x′)| is a
piecewise affine function on e′◦ which changes slope on the retractions of the zeros of ϕK . Shrinking
e′ if necessary, we may and do assume that log |ϕK | is affine on e′◦; its slope has absolute value δ, and
log |ϕK(x′)| → 0 as x′ → y′. By (4.24) the restriction of ϕK to the open annulus τ−1(e′◦) is a finite
morphism of degree δ onto an open annulus S(a)+ ⊂ B(1)+, where val(a) is δ times the length of e′◦.

6.20.3. Enlarging Σ′ if necessary, we may and do assume that every tangent direction v′ ∈ Ty′ corre-
sponding to a point in D′ is represented by an edge in Σ′. Let e′1, . . . , e

′
r be the edges of Σ′ adjacent

to y′, for i = 1, . . . , r let Bi be the connected component of Xan \ {y} containing ϕK(e′◦i ), and choose
isomorphisms Bi

∼−→ B(1)+ sending the unique point of D ∩ Bi to 0. (The balls B1, . . . , Br are not
necessarily distinct; we mean that one should choose a single isomorphism for each distinct ball.) Let
x′i ∈ D′ be the point corresponding to the tangent direction at y′ in the direction of e′i, and let δi be
the ramification degree of ϕ at x′i. Applying the procedure of (6.20.2) for each e′i, and shrinking if
necessary, we may and do assume that for every i, ϕK induces a degree-δi morphism of τ−1(e′◦i ) onto
an open annulus S(a)+ ⊂ B(1)+

∼= Bi, with a independent of i.
Let W ⊂ Xan be the union of τ−1(y) with the annuli S(a)+ ⊂ Bi, so W is obtained from Xan by

removing a closed ball around each point of D. This is a simple neighborhood of y in Xan, hence is
a star-shaped curve. Let Σ′0 = {y′} ∪

⋃r
i=1 e

′◦
i and let W ′ = τ−1(Σ′0), so W ′ is a simple neighborhood

of y′ in X ′an and is hence a star-shaped curve. We claim that W ′ = ϕ−1
K (W ). Clearly ϕK(W ′) ⊂ W ,

so it suffices to show that the fibers of ϕK have length equal to deg(ϕK). This is certainly the case
for ϕ−1

K (y) = {y′}. If B ⊂ Xan is the formal fiber of a point in Uk(k), then as in the proof of
Proposition 6.15(1), ϕ−1

K (B) ⊂ W ′ is a disjoint union of deg(ϕK) open balls mapping isomorphically
onto B. For each i the inverse image of S(a)+ ⊂ B(1)+

∼= Bi in W ′ is a disjoint union of annuli, one
for each point in the fiber of ϕ containing x′i, and the degree of ϕK restricted to each annulus is the
ramification degree of ϕ at the corresponding point. The sum of the ramification degrees of ϕ at the
points in any fiber is equal to deg(ϕ) = deg(ϕ), which proves the claim. Therefore ϕK induces a finite
morphism W ′ →W , which is a tame covering of (W, y) (really of (W, y, ∅)).

By construction, (Y, y) is a compactification of (W, y), so by Corollary 6.16, the tame covering
W ′ → W lifts to a tame covering Y ′ → Y relative to D. It is clear that (Y ′, y′, ϕ−1

K (D)) is a lifting of
C ′ to a punctured star-shaped curve over (Y, y,D). (One can show that in fact Y ′ ∼= X ′an, although
this is not clear a priori.)

6.20.4. It remains to prove (still in the case when Y is proper) that liftings are unique up to unique
isomorphism. Let ϕK : (Y ′, y′, D′) → (Y, y,D) and ϕ′K : (Y ′′, y′′, D′′) → (Y, y,D) be two liftings of
C ′ to punctured star-shaped curves over (Y, y,D). Then Y ′ and Y ′′ are also proper, hence we may
and do assume that they are the analytic generic fibers of smooth, proper, connected formal curves
X′ and X′′ as in (6.20). Since ϕK(y′) = ϕ′K(y′′) = y, there are unique finite morphisms ϕ : X′ → X
and ϕ′ : X′′ → X extending ϕ and ϕ′, respectively, and ϕk and ϕ′k are identified with ϕ under the
isomorphisms Cy′ = X′k

∼= C ′ and Cy′′ = X′′k
∼= C ′. Let X ′ and X ′′ be the algebraizations of X′ and X′′,

respectively, and let U ′ = X ′\ϕ−1(D) and U ′′ = X ′′\ϕ′−1
(D). Then U ′,U ′′ are finite étale coverings of

U lifting U ′ → Uk, so there is a unique isomorphism ψ : U ′ ∼−→ U ′′ over U . Since Y ′ (resp. Y ′′) is the
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analytification of the smooth completion of U ′K (resp. U ′′K), ψK extends uniquely to a Y -isomorphism
ψK : Y ′

∼−→ Y ′′; we have ψK(y′) = y′′, and ψy′ : Cy′
∼−→ Cy′′ is a Cy-isomorphism because U ′k

∼−→ U ′′k
is a Uk-isomorphism. Hence ψK is an isomorphism of liftings.

As for uniqueness, suppose that ψK : (Y ′, y′) → (Y ′, y′) is an automorphism of Y ′ as a lifting of
C ′. Then ψK extends uniquely to an X -automorphism ψ : X ′ ∼−→ X ′ that is the identity on X ′k, which
restricts to a U -automorphism of U ′ that is the identity on U ′k. It follows from the uniqueness of U ′ up
to unique isomorphism that ψK is the identity when restricted to U ′K , so since Y ′ is the analytification
of the smooth completion of U ′K , the automorphism ψK is the identity. This concludes the proof for
proper Y .

6.20.5. Now suppose that (Y, y) is not proper. Let Y ↪→ X be a compactification (6.6) of Y ; we will
identify Y with its image in X. Let D1 be the union of D with a choice of one K-point from every
connected component of X \ Y . Let ϕ : (X ′, y′, D′1) → (X, y,D1) be a lifting of C ′ to a punctured
star-shaped curve over (X, y,D1) and let Y ′ = ϕ−1(Y ). Then (Y ′, y′, ϕ−1(D)) is a lifting of C ′ to a
punctured star-shaped curve over (Y, y,D).

Let ψ : Y ′ → Y ′ be an automorphism of Y ′ as a lifting of C ′. Since ψ induces the identity map
Cy′ → Cy′ on residue curves, ψ takes each connected component of Y ′\{y′} to itself. Recall thatX ′\Y ′
consists of a disjoint union of closed balls around the points of D′1 \ D′, where D′1 = ϕ−1(D1). Let
x′ ∈ D′1 \D′, let B′ be the connected component of X ′ \ {y′} containing x′, and let B = ϕ(B′) ⊂ X.
By Proposition 6.15(2), we can choose isomorphisms B ∼= B(1)+ and B′ ∼= B(1)+ sending x′ and
ϕ(x′) to 0, such that the composition

B(1)+
∼= B′

ϕ−→ B ∼= B(1)+

is of the form t 7→ tδ. Let A′ = Y ′ ∩ B′ and let A = Y ∩ B = ϕ(A′). The isomorphism B ∼= B(1)+

(resp. B′ ∼= B(1)+) identifies A (resp. A′) with an open annulus S(a)+ (resp. S(a′)+) in B(1)+. Since
ψ|A′ : A′ → A′ is an A-morphism, the composition S(a′)+

∼= A′ → A′ ∼= S(a′)+ is of the form
t 7→ ζt, where ζ ∈ R× is a δth root of unity. Therefore ψ|A′ extends uniquely to a B-morphism
ψ|B′ : B′ → B′ fixing 0. Gluing these morphisms together, we obtain an X-morphism ψ : X ′ → X ′

extending ψ : Y ′ → Y ′. By construction this is an automorphism of X ′ as a lifting of C ′ to X, which
is thus the identity. Therefore ψ : Y ′ → Y ′ is the identity.

Let ϕ′ : (Y ′′, y′′, D′′) → (Y, y,D) be another lifting of C ′ to a punctured star-shaped curve over
(Y, y,D). By Corollary 6.16, there exists a compactification Y ′′ ↪→ X ′′ of Y ′′ and an extension of ϕ′ to
a tame covering ϕ′ : (X ′′, y′′, ϕ′−1(D1))→ (X, y,D1). This is another lifting of C ′ to a punctured star-
shaped curve over (X, y,D1), so there is an isomorphism ψ : (X ′, y′)

∼−→ (X ′′, y′′) of liftings. Since
Y ′ = ϕ−1(Y ) and Y ′′ = ϕ′

−1
(Y ), the isomorphism ψ restricts to an isomorphism (Y ′, y′)

∼−→ (Y ′′, y′′)
of liftings. n

Corollary 6.21. With the notation in Theorem 6.18, let (Y ′, y′, D′) → (Y, y,D) be a lifting of C ′ to a
punctured star-shaped curve over (Y, y,D). Then the natural homomorphism

AutY (Y ′) −→ AutCy (C ′)

is bijective. If (Y ′′, y′′, D′′) → (Y, y,D) is a second lifting of C ′ to a punctured star-shaped curve over
(Y, y,D) then the natural map

IsomY (Y ′′, Y ′) −→ IsomCy (Cy′′ , Cy′)

is bijective.

7. CLASSIFICATION OF LIFTINGS OF HARMONIC MORPHISMS OF METRIZED COMPLEXES

Fix a triangulated punctured curve (X,V ∪D) with skeleton Σ = Σ(X,V ∪D) and let τ : Xan → Σ
be the canonical retraction. Throughout this section, we assume that Σ has no loop edges. Let
ϕ : Σ′ → Σ be a tame covering of metrized complexes of curves. A lifting of Σ′ to a tame covering
of (X,V ∪ D) is a tame covering of triangulated punctured curves ϕ : (X ′, V ′ ∪ D′) → (X,V ∪ D)
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(see (4.30)) equipped with a Σ-isomorphism ϕ−1(Σ) ∼= Σ′ of metrized complexes of curves. Since
V ′ = ϕ−1(V ) and D′ = ϕ−1(D), we will often denote a lifting simply by X ′. Let ϕ : X ′ → X and
ϕ′ : X ′′ → X be two liftings of Σ′ and let ψ : X ′

∼−→ X ′′ be an X-isomorphism of curves. Then ψ
restricts to a Σ-automorphism

ψ|Σ′ : Σ′ ∼= ϕ−1(Σ)
∼−→ ϕ′−1(Σ) ∼= Σ′.

We will consider liftings up to X-isomorphism preserving Σ′, i.e. such that ψΣ′ is the identity, and we
will also consider liftings up to isomorphism as curves over X.

7.1. For every finite vertex x ∈ V , let Σ(x) be the connected component of x in {x}∪(Σ\V ), let Y (x) =
τ−1(Σ(x)), and let D(x) = D ∩ Y (x), as in Example 6.14. Then (Y (x), x,D(x)) is a punctured star-
shaped curve. By Proposition 2.22, for every finite vertex x′ ∈ V (Σ′) lying above x the morphism ϕx′ :
Cx′ → Cx is finite, tamely ramified, and branched only over the points of Cx corresponding to tangent
directions at x represented by edges of Σ(x). Let ψ(x′) : (Y ′(x′), x′, D(x′)) → (Y (x), x,D(x)) be the
unique lifting of Cx′ to a punctured star-shaped curve over (Y (x), x,D(x)) provided by Theorem 6.18
and let Σ′(x′) = ψ(x′)−1(Σ(x)) = Σ(Y ′, {x′} ∪ D′(x′)). Then Σ′(x′) is canonically identified with
the connected component of x′ in {x′} ∪ (Σ′ \ Vf (Σ′)) in such a way that for every edge e′ of Σ′(x′),
the point redx′(e

′) ∈ Cx′(k) is identified with the point red(e′) defined in (6.7). This induces an
identification of D′(x′) with ϕ−1(D) ∩ Σ′(x′). Let τx′ be the canonical retraction Y ′(x′) → Σ′(x′)
defined in (6.3).

7.2. Let e′ ∈ Ef (Σ′) and e = ϕ(e′). Choose a, a′ ∈ K× with val(a) = `(e) and val(a′) = `(e′). Let
x′, y′ be the endpoints of e′. By Proposition 6.15(3), we can choose isomorphisms τ−1(e◦) ∼= S(a)+

and τ−1
x′ (e′◦) ∼= S(a′)+, τ−1

y′ (e′◦) ∼= S(a′)+ in such a way that the finite morphisms τ−1
x′ (e′◦)→ τ−1(e◦)

and τ−1
y′ (e′◦) → τ−1(e◦) are given by t 7→ tde′ (ϕ), where de′(ϕ) is the degree of the edge map e′ → e.

In particular, there exists a τ−1(e◦)-isomorphism τ−1
x′ (e′◦)

∼−→ τ−1
y′ (e′◦). As explained in (6.11), there

are canonical identifications

Autτ−1(e◦)(de′(ϕ)) B Autτ−1(e◦)(τ
−1
x′ (e′◦)) = Autτ−1(e◦)(τ

−1
y′ (e′◦)) ∼= Z/de′(ϕ)Z;

hence the set of isomorphisms τ−1
x′ (e′◦)

∼−→ τ−1
y′ (e′◦) is a principal homogeneous space under the pre-

or post-composition action of Autτ−1(e◦)(de′(ϕ)).
Let E±f (Σ′) denote the set of oriented finite edges of Σ′, and for e′ ∈ E±f (Σ′) let e′ denote the

same edge with the opposite orientation. Let G(Σ′, X) denote the set of tuples (Θe′)e′∈E±f (Σ′) of
isomorphisms

(7.2.1) Θe′ : τ−1
x′ (e′◦)

∼−→ τ−1
y′ (e′◦)

such that Θe′ = Θ−1
e′ , where e′ =

−−→
x′y′. We call G(Σ′, X) the set of gluing data for a lifting of Σ′ to a

tame covering of (X,V ∪D), and we emphasize that G(Σ′, X) is nonempty.

7.3. Let α ∈ AutΣ(Σ′), so α is a degree-1 finite harmonic morphism Σ′
∼−→ Σ′ preserving Σ′ → Σ.

Let x′ ∈ Vf (Σ′) and let x′′ = α(x′) and x = ϕ(x′) = ϕ(x′′). Part of the data of α is a Cx-isomorphism
αx′ : Cx′

∼−→ Cx′′ . By Corollary 6.21 there is a unique lift of αx′ to a Y (x)-isomorphism Y ′(x′)
∼−→

Y ′(x′′) of punctured star-shaped curves inducing the isomorphism Cx′
∼−→ Cx′′ on residue curves. Let

e′ ∈ Ef (Σ′) be an edge adjacent to x′, let e′′ = α(e′), and let e = ϕ(e′) = ϕ(e′′). Then αx′ restricts to
an isomorphism

αx′ : τ−1
x′ (e′◦)

∼−→ τ−1
x′′ (e

′′◦).

Define the conjugation action of AutΣ(Σ′) on G(Σ′, X) by the rule

(7.3.1) α · (Θe′)e′∈E±f (Σ′) = (α−1
y′ ◦Θα(e′) ◦ αx′)e′∈E±f (Σ′)

where e′ =
−−→
x′y′.
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Theorem 7.4. (Classification of lifts of harmonic morphisms) Let (X,V ∪D) be a triangulated punc-
tured curve with skeleton Σ = Σ(X,V ∪D). Assume that Σ has no loop edges. Let ϕ : Σ′ → Σ be a tame
covering of metrized compexes of curves.

(1) There is a canonical bijection between the set of gluing data G(Σ′, X) and the set of liftings of Σ′

to a tame covering of (X,V ∪D), up to X-isomorphism preserving Σ′. In particular, there exists
a lifting of Σ′. Any such lifting has no nontrivial automorphisms which preserve Σ′.

(2) Two tuples of gluing data determine X-isomorphic curves if and only if they are in the same orbit
under the conjugation action (7.3.1). The stabilizer in AutΣ(Σ′) of an element of G(Σ′, X) is
canonically isomorphic to the X-automorphism group of the associated curve.

Proof. Given (Θe′) ∈ G(Σ′, X) one can glue the local lifts {Y (x′)}x′∈Vf (Σ′) via the isomorphisms
(7.2.1) to obtain an analytic space which one easily verifies is smooth and proper, hence arises as
the analytification of an algebraic curve X ′. Moreover the morphisms Y ′(x′) → Y (x) glue to give a
morphism X ′an → Xan, which is the analytification of a morphism ϕ : X ′ → X. By construction, if
V ′ = ϕ−1(V ) and D′ = ϕ−1(D), then (X ′, V ′ ∪D′)→ (X,V ∪D) is a lifting of Σ′ to a tame covering
of (X,V ∪D).

Now let ϕ : (X ′, V ′ ∪ D′) → (X,V ∪ D) be any lifting of Σ′ to a tame covering of (X,V ∪ D).
As explained in Example 6.14, for every x ∈ V the inverse image ϕ−1(Y (x)) is a disjoint union
of tame covers of the punctured star-shaped curve (Y (x), x,D(x)), one for each x′ ∈ ϕ−1(x). By
Theorem 6.18, we have canonical identification ϕ−1(Y (x)) =

∐
x′ 7→x Y (x′). For x′, y′ ∈ V ′ we have

Y (x′) ∩ Y (y′) =
∐
e′3x′,y′ τ

−1(e′◦), where τ : X ′an → Σ′ is the retraction. Hence X ′an is obtained by
pasting the local liftings Y (x′) via a choice of isomorphisms (Θe′) ∈ G(Σ′, X).

Let ψ : X ′
∼−→ X ′ be an X-automorphism preserving Σ′. Since ψ is the identity on the set

Σ′ ⊂ X ′an, for x′ ∈ V ′ we have ψ(Y (x′)) = Y (x′). We also have that for x′ ∈ V ′ the map of residue
curves ψx′ : Cx′ → Cx′ is the identity, so by Corollary 6.21, ψ restricts to the identity morphism
Y (x′)→ Y (x′). Since X ′an =

⋃
x′∈V ′ Y (x′) we have that ψ is the identity. It follows from this that the

tuple (Θe′) can be recovered from the class of X ′ modulo X-isomorphisms preserving Σ′, so different
gluing data give rise to curves which are not equivalent under such isomorphisms. This proves (1).

Let ϕ : (X ′, V ′ ∪ D′) → (X,V ∪ D) and ϕ′′ : (X ′′, V ′′ ∪ D′′) → (X,V ∪ D) be the liftings of Σ′

associated to the tuples of gluing data (Θ′e′), (Θ
′′
e′) ∈ G(Σ′, X), respectively. Suppose that there exists

α ∈ AutΣ(Σ′) such that α · (Θ′e′) = (Θ′′e′). Then for all e′ =
−−→
x′y′ ∈ E±f (Σ′) we have

Θ′′α(e′) ◦ αx′ = αy′ ◦Θ′e′ ,

so the Y (ϕ(x′))-isomorphisms αx′ : Y (x′)
∼−→ Y (α(x′)) glue to give an X-isomorphism α : X ′

∼−→
X ′′. Conversely, the restriction of an X-isomorphism α : X ′

∼−→ X ′′ to Σ′ is a Σ-automorphism
of Σ′. It is easy to see that these are inverse constructions. Taking X ′ = X ′′ we have an injective
homomorphism AutX(X ′) ↪→ AutΣ(Σ′); it follows formally from the above considerations that its
image is the stabilizer of (Θ′e′). n

Remark 7.5. LetX ′ be a lifting of Σ′ to a tame covering of (X,V ∪D). It follows from Theorem 7.4(1)
that the natural homomorphism

AutX(X ′) −→ AutΣ(Σ′)

is injective. It is not in general surjective: see Example 7.8 (where all the stabilizer groups of elements
of G(Σ′, X) are proper subgroups of AutΣ(Σ′)).

Remark 7.6. It is worth mentioning that the question of lifting (and classification of all possible
liftings) in the wildly ramified case is more subtle and cannot be guaranteed in general. Some lifting
results in the wildly ramified case are known: e.g., Liu proves in [Liu03, Proposition 5.4] that any
finite surjective generically étale admissible cover of proper semistable curves over an algebraically
closed field k lifts to a finite morphism of smooth proper curves over K. However, the same statement
for metrized complexes cannot be true in general: consider the metrized complex C consisting of a
single finite vertex v and an infinite vertex u attached to v by an infinite edge e with Cv ∼= P1

k and
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redv(e) = ∞. Consider the degree p generically étale morphism of metrized complexes C → C which
restricts to a degree p Artin-Schreier cover ϕ : P1

k → P1
k, étale over A1

k → A1
k and ramified at∞ (with

ramification index p), and which is linear of slope p on the infinite edge e. This map cannot be lifted
to a degree p cover P1

K → P1
K in characteristic zero, otherwise, we would obtain a (connected) étale

degree p cover of A1
K which is impossible since A1

K is simply connected.

We now state a variant of Theorem 7.4 in which we allow loop edges.

Theorem 7.7. Let (X,V ∪ D) be a triangulated punctured K-curve, let Σ = Σ(X,V ∪ D), and let
ϕ : Σ′ → Σ be a tame covering of Λ-metrized complexes of k-curves. Then there exists a tame covering
ϕ : (X ′, V ′ ∪D′)→ (X,V ∪D) of triangulated punctured K-curves lifting ϕ.

Proof. The only issue is that in Theorem 7.7, we merely require that V is a semistable vertex set
whereas whereas in Theorem 7.4 we require it to be strongly semistable. However, we can modify
Σ by inserting a (valence 2) vertex v along each loop edge, with Cv ∼= P1

k, and with the marked
points on Cv being 0 and ∞. Call the resulting metrized complex Σ̃, and let V 0 denote the set of
vertices which have been added to the vertex set V for Σ. We construct a new metrized complex
Σ̃′ from Σ′ by adding V ′0 := ϕ−1(V 0) to the vertex set V ′ for Σ′ and letting C ′v′ ∼= P1

k for v′ ∈ V ′0,
with the marked points on C ′v′ being 0 and ∞. We can extend the tame covering ϕ : Σ′ → Σ to a
tame covering Σ̃′ → Σ̃ by letting the map from C ′v′ to Cϕ(v′), for v′ ∈ V ′0, be z 7→ zd, where d is the
local degree of ϕ along the loop edge corresponding to v′. By Theorem 7.4, there is a tame covering
(X ′, V ′ ∪ V ′0 ∪ D′) → (X,V ∪ V0 ∪ D) lifting Σ̃′ → Σ̃, where V ′0 (resp. V0) corresponds to V

′
0 (resp.

V 0). Removing the vertices in V ′0 and V0 gives a tame covering (X ′, V ′ ∪ D′) → (X,V ∪ D) lifting
ϕ. n

Example 7.8. In this example we suppose that char(k) 6= 2. Let E be a Tate curve over K, let Σ be
its (set-theoretic) skeleton, and let τ : Ean → Σ be the canonical retraction. Let U : Gan

m /q
Z ∼−→ Ean

be the Tate uniformization of Ean. The 2-torsion subgroup of E is U({±1,±√q}); choose a square
root of q, let y = U(1) and z = U(

√
q), and let V = {y, z} ⊂ Σ. This is a semistable vertex set of

E and Σ = Σ(E, V ) is the circle with circumference val(q); the points y and z are antipodal on Σ.
Let e1, e2 be the edges of Σ; orient e1 so that y is the source vertex and e2 so that z is the source
vertex. The residue curves Cy and Cz are both isomorphic to P1

k; fix isomorphisms Cy ∼= P1
k and

Cz ∼= P1
k such that the tangent direction at a vertex in the direction of the outgoing (resp. incoming)

edge corresponds to∞ (resp. 0).
Let Σ′ be a circle of circumference 1

2 val(q), let V ′ = {y′, z′} be a pair of antipodal points on Σ′, and

let e′1 =
−−→
y′z′ and e′2 =

−−→
z′y′ be the two edges of Σ′, with the indicated orientations. Enrich Σ′ with the

structure of a metrized complex of curves by setting Cy′ = Cz′ = P1
k and letting the tangent direction

at a vertex in the direction of the outgoing (resp. incoming) edge correspond to∞ (resp. 0). Define a
morphism ϕ : Σ′ → Σ of metric graphs by

ϕ(y′) = y, ϕ(z′) = z, ϕ(e′1) = e1, ϕ(e′2) = e2,

with both degrees equal to 2. See Figure 3.
Topologically, Σ′ → Σ is a homeomorphism. Let ϕy′ : Cy′ → Cy and ϕz′ : Cz′ → Cz both be the

morphism t 7→ t2 : P1
k → P1

k. This makes ϕ into a degree-2 tame covering of metrized complexes of
curves.

For x ∈ V the analytic space Y (x) is an open annulus of logarithmic modulus val(q); fix an isomor-
phism Y (x) ∼= S(q)+ for each x. For x′ ∈ V ′ the analytic space Y ′(x′) is an open annulus of logarithmic
modulus 1

2 val(q); fix isomorphisms Y ′(x′) ∼= S(
√
q)+ such that the morphisms Y ′(x′)→ Y (ϕ(x′)) are

given by t 7→ t2 : S(
√
q)+ → S(q)+. For e′ ∈ E(Σ′) we have dϕ(e′) = 2 by definition. Hence G(Σ′, E)

has four elements, which we label (±1,±1). By Theorem 7.4(1) there are four corresponding classes
of liftings of Σ′ to a tame covering of (E, V ) up to isomorphism preserving Σ′.

Any Σ-automorphism of Σ′ is the identity on the underlying topological space. Hence an element
of AutΣ(Σ′) is a pair of automorphisms (ψy′ , ψz′) ∈ AutCy (Cy′)×AutCz (Cz′) such that ψy′ , ψz′ fix the
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yy′ z′Σ′ z
ϕ

e′1

e′2

e1

e2

Σ

FIGURE 3. This figure illustrates Example 7.8. The morphism ϕ is a homeomorphism
of underlying sets but has a degree of 2 on e′1 and e′2. The arrows on e1, e2, e

′
1, e
′
2

represent the chosen orientations and the indicated tangent vectors at y, z, y′, z′ rep-
resent the tangent direction corresponding to∞ in the corresponding k-curve.

points 0,∞ ∈ P1
k. Thus ψy′ , ψz′ = ±1, so AutΣ(Σ′) = {±1} × {±1}. For x′ = y′, z′ the automorphism

−1 : Cx′
∼−→ Cx′ lifts to the automorphism −1 : S(

√
q)+

∼−→ S(
√
q)+. Therefore the conjugation

action of AutΣ(Σ′) on G(Σ′, E) is given as follows:

(1, 1) · (±1,±1) = (−1,−1) · (±1,±1) = (±1,±1)

(−1, 1) · (±1,±1) = (1,−1) · (±1,±1) = −(±1,±1).

By Theorem 7.4(2), there are two isomorphism classes of lifts of Σ′ to a tame covering of (E, V ), and
each such lift has two automorphisms.

These liftings can be described concretely as follows. Fix a square root of q, let E± be the alge-
braization of the analytic elliptic curve Gan

m /(±
√
q)Z, and let ψ± : E± → E be the morphism t 7→ t2

on uniformizations. Let Σ± = ψ−1
± (Σ). Then Σ± is isomorphic to Σ′ as a tame covering of Σ and E± is

a lifting of Σ′ to a tame covering of (E,D). The elliptic curves E± are not isomorphic (as K-schemes)
because they have different q-invariants, so they represent the two isomorphism classes of liftings of
Σ′. The nontrivial automorphism of E± is given by translating by the image of −1 ∈ Gan

m (K) (this is
not a homomorphism). In fact, since ψ± : E± → E is an étale Galois cover of degree 2, this is the only
nontrivial automorphism of E± as an E-curve, so the homomorphism

AutE(E±) −→ AutΣ(Σ′) ∼= {±1} × {±1}

is injective but not surjective (its image is {±(1, 1)}).

7.9. Consider now the automorphism group Aut0
Σ(Σ′) ⊂ AutΣ(Σ′) consisting of all degree-1 finite

harmonic morphisms α : Σ′ → Σ′ respecting ϕ : Σ′ → Σ and inducing the identity on the metric graph
Γ′ underlying Σ′. The restriction of the conjugacy action of AutΣ(Σ′) on G(Σ′, X) to the subgroup
Aut0

Σ(Σ′) admits a simplified description that we describe now. Combining this with arguments similar
to those in the proof of Theorem 7.4 yields a classification of the set of liftings of Σ′ up to isomorphism
as liftings of the metric graph underlying Σ′; see Theorem 7.10.

First, for each x′ ∈ V (Σ′) with image x = ϕ(x′), let Aut0
Cx(Cx′) be the subgroup of AutCx(Cx′)

that fixes every point of Cx′ of the form red(e′) for some edge e′ of Σ′ adjacent to x′. Then

Aut0
Σ(Σ′) =

∏
x′∈Vf (Σ′)

Aut0
Cϕ(x)

(Cx′) =: E0.

Denote by E1 the finite abelian group

E1 =
∏

e′∈Ef (Σ′)

Autτ−1(ϕ(e′)◦)(de′(ϕ)).

The discussion preceding Theorem 7.4 shows that the set of gluing data G(Σ′, X) is canonically a
principal homogeneous space under E1.
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The subgroup Aut0
Cx(Cx′) ⊂ AutCx(Cx′) corresponds to the subgroup Aut0

Y (x)(Y
′(x′)) of au-

tomorphisms in AutY (x)(Y
′(x′)) which act trivially on the skeleton Σ′(x′). Restriction of a Y (x)-

automorphism of Y ′(x′) to τ−1
x′ (e′◦) defines a homomorphism

ρx′,e′ : Aut0
Cx(Cx′) = Aut0

Y (x)(Y
′(x′)) −→ Autτ−1(e◦)(de′(ϕ)).

Fix an orientation of each finite edge of Σ′. For x′ ∈ Vf (Σ′) with image x = ϕ(x′), let ρx′ :

Aut0
Cx(Cx′)→ E1 be the homomorphism whose e′-coordinate is

(ρx′(α))e′ =


ρx′,e′(α) if x′ is the source vertex of e′

ρx′,e′(α)−1 if x′ is the target vertex of e′

1 if x′ is not an endpoint of e′.

Taking the product over all x′ ∈ Vf (Σ′) yields a homomorphism ρ : E0 → E1. The kernel and cokernel
of ρ are independent of the choice of orientations. Viewing E0 → E1 as a two-term complex E• of
groups, its cohomology groups are

H0(E•) = ker(ρ) and H1(E•) = coker(ρ).

Theorem 7.10. Let (X,V ∪ D) be a triangulated punctured curve with skeleton Σ = Σ(X,V ∪ D).
Assume that Σ has no loop edges. Let ϕ : Σ′ → Σ be a tame covering of metrized compexes of curves.

(1) G(Σ′, X) is canonically a principal homogeneous space under E1 and the conjugacy action of
Aut0

Σ(Σ′) on G(Σ′, X) is given by the action of the subgroup ρ(Aut0
Σ(Σ′)) = ρ(E0) ⊆ E1 on

G(Σ′, X).
(2) The set of liftings of Σ′ up to isomorphism as liftings of the metric graph underlying Σ′ is a

principal homogeneous space under H1(E•), and the group of automorphisms of a given lifting
as a lifting of the metric graph underlying Σ′ is isomorphic to H0(E•).

7.11. Descent to a general ground field. Let K0 be a subfield of K, let X0 be a smooth, projective,
geometrically connected K0-curve, and let D ⊂ X0(K0) be a finite set. Let X = X0 ⊗K0

K, let V be a
strongly semistable vertex set of (X,D), let Σ = Σ(X,V ∪D), and let ϕ : Σ′ → Σ be a tame covering
of metrized complexes of curves, as in the statement of Theorem 7.4. Let ϕ : X ′ → X be a lifting of ϕ
to a tame covering of (X,V ∪D). Whereas we take the data of the morphism Σ′ → Σ to be geometric,
i.e. only defined over K, the covering X ′ → X is in fact defined over a finite, separable extension of
K0. This follows from the fact that if U = X \D and U ′ = X ′ \ ϕ−1(D), then ϕ : U ′ → U is a tamely
ramified cover of U over X relative to D (see Remarks 2.20(1) and 4.32(1)), along with the following
lemma.

Lemma 7.12. Let K0 be any field, let K be a separably closed field containing K0, let X0 be a smooth,
projective, geometrically connected K0-curve, and let D ⊂ X0(K0) be a finite set. Let X = X0⊗K0 K, let
ϕ : X ′ → X be a finite morphism with X ′ smooth and (geometrically) connected, and suppose that ϕ is
branched only over D, with all ramification degrees prime to the characteristic of K. Then there exists a
finite, separable extension K1 of K and a morphism ϕ1 : X ′1 → X0 ⊗K0

K1 descending ϕ.
Proof. Let U0 = X0\D, and let U = X\D and U ′ = X ′\ϕ−1(D). First suppose thatK0 is separably

closed. By [SGA1, Exposé XIII, Corollaire 2.12], the tamely ramified étale fundamental groups πt1(U0)
and πt1(U) are isomorphic (with respect to some choice of base point). Since ϕ : U ′ → U is a tamely
ramified cover of U over X relative to D, it is classified by a finite-index subgroup of πt1(U) = πt1(U0),
so there exists a tamely ramified cover ϕ0 : U ′0 → U0 of U0 over X0 relative to D descending ϕ.

Now we drop the hypothesis thatK0 is separably closed. By the previous paragraph we may assume
that K is a separable closure of K0. By general principles the projective morphism X ′ → X descends
to a subfield of K which is finitely generated (i.e. finite) over K0. n

Remark 7.13. With the notation in (7.11), suppose that K0 is a complete valued field with value
group Λ0 = val(K×0 ) and algebraically closed residue field k, that Σ is “rational over K0” in that
it comes from a (split) semistable formal R0-model of X0 in the sense of Section 5, and that Σ′ has
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edge lengths contained in Λ0. With some extra work it is possible to carry out the gluing arguments
of Theorem 7.7 directly over the field K0 (in this context Lemma 6.10(1) still holds), which shows
that the cover X ′ → X is in fact defined over K0. In the case of a discrete valuation this also follows
from [Wew99], or from [Saï97] if D = ∅.
7.14. Liftings of tame harmonic morphisms. Theorem 7.7 implies the existing of liftings for (fi-
nite) tame harmonic morphisms of metrized complexes which are not necessarily tame coverings, the
difference being generic étaleness. See Definition 2.21 for both definitions.

Proposition 7.15. Let (X,V ∪ D) be a triangulated punctured K-curve, let Σ = Σ(X,V ∪ D), and
let ϕ : Σ′ → Σ be a tame harmonic morphism of metrized complexes of curves. Then there exists a
triangulated punctured K-curve (X ′, V ′ ∪ D′) and a finite morphism ψ : (X ′, V ′ ∪ D′) → (X,V ∪ D)
lifting ϕ.

Proof. For any finite vertex x′ of Σ′ at which ϕ, seen as a morphism of augmented metric graphs,
is ramified, let q1, . . . , qr ∈ Cv be all the branch points of ϕx′ which do not correspond to any edge of
Σ, and let pij denote the preimages of qi under ϕx′ . We modify Σ′ and Σ by attaching infinite edges ei
to Σ at x = ϕ(x′) for each qi, infinite edges e′ij to Σ′ at x′ for each pij , and defining redx(ei) = qi and
redx′(e

′
ij) = pij . Since each ϕx′ is tamely ramified, the harmonic morphism ϕ naturally extends to a

tame covering ϕ̃ : Σ̃′ → Σ̃ between the resulting modifications. Enlarging D to D̃ by choosing points
in X(K) \D with reduction qi, we can assume that Σ̃ = Σ(X,V ∪ D̃). The result now follows from
Theorem 7.7 by first lifting ϕ̃ to a tame covering ψ : (X ′, V ′ ∪ D̃′)→ (X,V ∪ D̃) and then taking the
restriction of ψ to (X ′, V ′ ∪D′)→ (X,V ∪D), where D′ = ψ−1(D). n

Remark 7.16. As mentioned above, in Proposition 7.15 we do not require that ϕ : Σ′ → Σ be
generically étale. This corresponds to not requiring that D ⊂ X(K) contain the branch locus of the
lift ψ : X ′ → X: indeed, by Lemma 4.33, if D contains the branch locus then ϕ is a tame covering. In
the situation of Proposition 7.15 the set of liftings of Σ′ to a tame covering of (X,V ∪D) can be infinite.
For example, if Γ′ = {p′} and Γ = {p} are both points and the morphism ϕp′ : Cp′ ∼= P1 → Cp ∼= P1

is z 7→ z2, with (X,V ) a minimal triangulation of P1 and D = ∅, then there are infinitely many such
lifts, corresponding to the different ways of lifting the critical points and critical values of ϕp′ from k
to K.

8. APPLICATION: COMPONENT GROUPS OF NÉRON MODELS

8.1. In contrast to the rest of the paper, we assume in this section that R is a complete discrete
valuation ring with fraction field K and algebraically closed residue field k. In this case we take the
value group Λ to be Z.

There is a natural notion of harmonic 1-forms on a metric graph Γ of genus g (see [MZ08]). The
space Ω1(Γ) is a g-dimensional real vector space which can be canonically identified with H1(Γ,R),
but we write elements of Ω1(Γ) as ω =

∑
e ωe de as in [BF11], where the sum is over all edges with

respect to a fixed vertex set for Γ. There is a canonical lattice Ω1
Z(Γ) of integer harmonic 1-forms

inside Ω1(Γ); these are the harmonic 1-forms for which every ωe is an integer. A harmonic morphism
ϕ : Γ′ → Γ induces a natural pullback map on harmonic 1-forms via the formula

ϕ∗(
∑
e

ωe de) =
∑
e′

de′(ϕ) · ωϕ(e′) de
′.

Recall that a Z-metric graph (i.e. a Λ-metric graph for Λ = Z) with no infinite vertices is a (compact
and finite) metric graph whose edge lengths are all positive integers (or equivalently, having a vertex
set with respect to which all edge lengths are 1). If X/K is a smooth, proper, geometrically connected
analytic curve and X is a semistable R-model forX, the skeleton ΓX of X is naturally a Z-metric graph.
Moreover, as we have seen earlier in this paper, a finite morphism of semistable models induces in a
natural way a harmonic morphism of Z-metric graphs.
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Let Γ be a Z-metric graph with no infinite vertices. We define the regularized Jacobian Jacreg(Γ) of
Γ to be the group Jac(G), where G is the “regular model” for Γ (the unique graph induced by a vertex
set with all edge lengths equal to 1). The group Jac(G) can be described explicitly as

Jac(G) = Ω1(G)#/H1(G,Z),

where Ω1(G)# denotes the linear functionals Ω1(G,R) → R of the form
∫
α

with α ∈ C1(G,Z) (see
[BF11]). There is a canonical isomorphism between Jac(G) and Pic0(G), the group of divisors of
degree 0 on G modulo the principal divisors (see [BdlHN97]) as well as a canonical isomorphism

Jac(G) ∼= H1(G,Z)#/Ω1
Z(G),

where

H1(G,Z)# =

{
ω ∈ Ω1(G,R) :

∫
γ

ω ∈ Z ∀γ ∈ H1(G,Z)

}
.

We recall (in our own terminology) the following result of Raynaud (cf. [Ray70] and [Bak08,
Appendix A]):

Theorem 8.2. (Raynaud) If X/K is a semistable curve, then the component group of the Néron model
of Jac(X) over R is canonically isomorphic to Jacreg(ΓX) (for any semistable model X of X).

A harmonic morphism ϕ : Γ′ → Γ of Z-metric graphs induces in a functorial way homomorphisms
ϕ∗ : Jacreg(Γ′)→ Jacreg(Γ), defined by

ϕ∗

([∫
α′

])
=

[ ∫
ϕ∗(α′)

]
,

where
ϕ∗
(∑

αe′e
′) =

∑
αe′ϕ(e′),

and ϕ∗ : Jacreg(Γ)→ Jacreg(Γ′), defined by

ϕ∗([ω]) = [ϕ∗ω],

where
ϕ∗
(∑

ωede
)

=
∑
e′

de′(ϕ)ωϕ(e′)de
′.

We have the following elementary result, whose proof we omit:

Lemma 8.3. Under the canonical isomorphism between Jac(G) and Pic0(G), the homomorphism
ϕ∗ : Jac(G′) → Jac(G) corresponds to the map [D′] 7→ [ϕ∗(D

′)] from Pic0(G′) to Pic0(G), where
ϕ∗(
∑
av′(v

′)) =
∑
av′ϕ(v′).

The following is a “relative” version of Raynaud’s theorem; it implies that the covariant functor
which takes a semistable R-model X for a K-curve X to the component group of the Néron model
of the Jacobian of X factors as the “reduction graph functor” X 7→ ΓX followed by the “regularized
Jacobian functor” Γ 7→ Jacreg(Γ). It is a straightforward consequence of the analytic description of
Raynaud’s theorem given in [Bak08, Appendix A] (see also [BR13]):

Theorem 8.4. If fK : X ′ → X is a finite morphism of curves over K, the induced maps f∗ :
ΦJ(X′) → ΦJ(X) and f∗ : ΦJ(X) → ΦJ(X′) on component groups coincide with the induced maps
ϕ∗ : Jacreg(ΓX′) → Jacreg(ΓX) and ϕ∗ : Jacreg(ΓX) → Jacreg(ΓX′) for any morphism f : X′ → X of
semistable models extending fK . (Here ϕ denotes the harmonic morphism of skeleta induced by f ; see
Remark 5.14.)

It follows easily from Lemma 8.3 and Theorem 8.4 that if fK : X ′ → X is regularizable, i.e., if
fK extends to a morphism of regular semistable models, then the induced map f∗ : ΦX′ → ΦX on
component groups is surjective. Thus whenever f∗ is not surjective, it follows that fK does not extend
to a morphism of regular semistable models. One can obtain a number of concrete examples of this
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situation from modular curves (e.g. the map X0(33) → E over Qunr
3 , where E is the optimal elliptic

curve of level 33.)

Remark 8.5. One can show that if ϕ : Γ′ → Γ is a harmonic morphism of Z-metric graphs, then
ϕ∗ : ΦX′ → ΦX is surjective iff ϕ∗ : ΦX → ΦX′ is injective. Indeed, it is not hard to check that the
maps ϕ∗ and ϕ∗ are adjoint with respect to the combinatorial monodromy pairing, the non-degenerate
symmetric bilinear form 〈 , 〉 : Jac(G) × Jac(G) → Q/Z defined by 〈[ω], [

∫
α

]〉 = [
∫
α
ω], where

ω ∈ H1(G,Z)# and
∫
α
∈ Ω1(G)#. Thus the groups ker(ϕ∗) and coker(ϕ∗) are canonically dual. This

is a combinatorial analogue of results proved by Grothendieck in SGA7 on the (usual) monodromy
pairing.

As an application of Theorem 8.4 and our results on lifting harmonic morphisms, one can construct
many examples of harmonic morphisms of Z-metric graphs for which ϕ∗ is not surjective. For example,
consider the following question posed by Ken Ribet in a 2007 email correspondence with the second
author (Baker):

Suppose f : X ′ → X is a finite morphism of semistable curves over a complete discretely
valued field K with g(X) ≥ 2. Assume that the special fiber of the minimal regular model of
X ′ consists of two projective lines intersecting transversely. Is the induced map f∗ : ΦX′ →
ΦX on component groups of Néron models necessarily surjective?

We now show that the answer to Ribet’s question is no.

Example 8.6. Consider the “banana graph” B(`1, . . . , `g+1) consisting of two vertices and g + 1
edges of length `i. This is the reduction graph of a semistable curve whose reduction has two P1’s
crossing transversely at singular points of thickness `1, . . . , `g+1. If we set G′ = B(1, 1, 1, 1) and
G = B(1, 2, 2) and let Γ′,Γ be the geometric realizations of G′ and G, respectively, then there is a
degree 2 harmonic morphism of Z-metric graphs ϕ : Γ′ → Γ taking e′1 and e′2 to e1, e′3 to e2, and e′4
to e3. The homomorphism ϕ∗ is non-surjective since | Jacreg(Γ)| = 4 and | Jacreg(Γ′)| = 8. The map ϕ
can be enriched to a harmonic morphism ϕ̃ of metrized complexes of curves by attaching a P1 to each
vertex and letting each morphism P1 → P1 be z 7→ z2, with 0, ±1, and ∞ being the marked points
upstairs. By Remark 7.13, the morphism ϕ̃ lifts to a morphism ψ : X ′ → X of curves over K. Since
all edges of G′ have length 1, the minimal proper regular model of X ′ has a special fiber consisting of
two P1’s crossing transversely. By Theorem 8.4, the induced covariant map on component groups of
Néron models is not surjective.
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