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Abstract. We have developped a finite-element based numerical scheme to study the water-air interface evolution of viscous water waves in the presence of
a plunging jet. The results are compared with the inviscid case (figure 2). No finite-time singularity seems to appear as the minimum radius of curvature
becomes Reynolds-independant for Re > 10* with a non-vanishing limit (figure 3). The dissipation effects are located in the vicinity of the moving interface

(figure 4), in a boundary layer of size § ~ Re~2. In the particular case of (real units) water waves, the effects of viscosity become non-negligible at length-scales
smaller than the capillary length, at which surface tension becomes the prevailing regularizing mechanism.
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The viscous water waves problem

The non-dimensionnal Navier-Stokes equations with stress-free boundary conditions at
the top I';; and Navier condition at the bottom I'; (igure 1),
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with Re the Reynold number, £(u) = Vu+(Vu)! twice the stress tensor, ¢ the unit tangential | o = X

vector and n the unit normal vector. The initial condition is a finite amplitude extension

of the first-order two-dimensional solution of the inviscid water waves problem. Figure 1. Geometry of the initial domain.
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Figure 2. The shape of the interface for different values of the Reynolds number and at 9
different time with emphasis on the crest. The Re = 400 corresponds to the Euler solution | | |
obtained from [1]. The shaded region corresponds to the Euler domain. 0.7 39 11 13 15 L7 14 4 495 445 2
X X

Curvature at the tip of the wave Figure 4. (a-€) The vorticity w = 0,u, — d,u, near the crest for different values of the

Reynolds number at time ¢ = 2.9. (f) A zoom on the tip of the wave for the Re = 10° case

0.3 (dashed rectangle in (d)). The color legend has been truncated from below to guarantee
Re=10° 11 color coh The black li d to cuts made along th 1 at
R 103 overall color coherence. e black lines (forrespon o cuts made along the normal a
Re = 10 y = 1 used to investigate the scaling in Re 2 of the boundary layer size (not shown).
Re = 10°
Re = 10° This work has been carried out using the FreeFem c++ finite-element library [2].
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Figure 3. Evolution of the minimum radius of curvature of the interface (i.e. at the tip) [1] Emmanuel Dormy & Christophe Lacave (2023), Inviscid water-waves and interface

for different values of the Reynolds number. The Re = +o0o curve is computed from the modeling, arXiv:2306.02363. .
Euler solution obtained using the code from [1]. [2] Frédeéric Hecht (2012), New development in freefem++. J. Numer. Math., 20(3-4),

251-265.



