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Abstract. We have developped a finite-element based numerical scheme to study the water-air interface evolution of viscous water waves in the presence of
a plunging jet. The results are compared with the inviscid case (figure 2). No finite-time singularity seems to appear as the minimum radius of curvature
becomes Reynolds-independant for Re > 104 with a non-vanishing limit (figure 3). The dissipation effects are located in the vicinity of the moving interface
(figure 4), in a boundary layer of size δ ∼ Re−

1
2. In the particular case of (real units) water waves, the effects of viscosity become non-negligible at length-scales

smaller than the capillary length, at which surface tension becomes the prevailing regularizing mechanism.

The viscous water waves problem
The non-dimensionnal Navier-Stokes equations with stress-free boundary conditions at
the top Γi,t and Navier condition at the bottom Γ0 (figure 1),
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∆u = −ŷ in (0, T )× Ωt

∇ · u = 0 in (0, T )× Ωt

u · n̂ = 0 on (0, T )× Γ0

t̂ · ε̄(u) · n̂ = 0 on (0, T )× Γ0
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ε̄(u) · n̂ = 0 on (0, T )× Γi,t

u(0, ·) = u0 in Ω0

, (1)

with Re the Reynold number, ε̄(u) = ∇u+(∇u)t twice the stress tensor, t̂ the unit tangential
vector and n̂ the unit normal vector. The initial condition is a finite amplitude extension
of the first-order two-dimensional solution of the inviscid water waves problem.
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Figure 1. Geometry of the initial domain.

Convergence to the Euler solution
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Figure 2. The shape of the interface for different values of the Reynolds number and at
different time with emphasis on the crest. The Re = +∞ corresponds to the Euler solution
obtained from [1]. The shaded region corresponds to the Euler domain.

Curvature at the tip of the wave
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Figure 3. Evolution of the minimum radius of curvature of the interface (i.e. at the tip)
for different values of the Reynolds number. The Re = +∞ curve is computed from the
Euler solution obtained using the code from [1].

Boundary layer
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Figure 4. (a-e) The vorticity ω = ∂xuy − ∂yux near the crest for different values of the
Reynolds number at time t = 2.9. (f) A zoom on the tip of the wave for the Re = 105 case
(dashed rectangle in (d)). The color legend has been truncated from below to guarantee
overall color coherence. The black lines correspond to cuts made along the normal at
y = 1 used to investigate the scaling in Re−

1
2 of the boundary layer size (not shown).

This work has been carried out using the FreeFem c++ finite-element library [2].
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