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Model description
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Figure 1. Geometry of the initial domain.

We solve (numerically) the non-dimensional incompressible Navier-Stokes equa-
tion in the moving domain Ω𝑡. Navier conditions are used at the bottom Γ0 while
Stress-free conditions are used on the water-air interface,
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𝜕𝒖
𝜕𝑡 + (𝒖 ⋅ 𝛁)𝒖 + 𝛁𝑝 − 1

ReΔ𝒖 = − ̂𝒚 in (0, 𝑇 ) × Ω𝑡
𝛁 ⋅ 𝒖 = 0 in (0, 𝑇 ) × Ω𝑡
𝒖 ⋅ �̂� = 0 on (0, 𝑇 ) × Γ0

̂𝒕 ⋅ (𝛁𝒖 + (𝛁𝒖)𝑡) ⋅ �̂� = 0 on (0, 𝑇 ) × Γ0

−𝑝�̂� + 1
Re(𝛁𝒖 + (𝛁𝒖)𝑡) ⋅ �̂� = 0 on (0, 𝑇 ) × Γ𝑖,𝑡

𝒖(0, ⋅) = 𝛁𝜙0 in Ω0

.

The initial potential 𝜙0 is a harmonic functionwhose value on the interface is given
by a finite amplitude extension of the linear wave solution,

𝜕𝜙0
𝜕�̂� (𝑥) = 𝒖(0, 𝑥) ⋅ �̂� = 𝑎√𝑔𝑘 tanh(𝑘ℎ0) ⋅ [( tanh 𝑘ℎ0)

−1 cos 𝑘𝑥
sin 𝑘𝑥 ] .

The interface is advected with the fluid.

Evolution of a Water Wave at Re = 106
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Figure 2. Evolution of a wave of initial amplitude 𝑎 = 0.5 at Re = 106.

Convergence to the inviscid solution
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Figure 3. Influence of the viscosity on the shape of the wave as time increases.
The Re = +∞ simulation has been achieved using an Euler-based code (see [2] for
details).

Where does the viscous dissipation happen?
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(a) Re = 102
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(c) Re = 104
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Figure 4. (a-e) The vorticity 𝜔 = 𝜕𝑥𝑢𝑦 − 𝜕𝑦𝑢𝑥 at time 𝑡 = 2.9. We see that the viscous
dissipation is happening in a boundary layer below the surface of size 𝛿 ≈ Re−1

2. Solid
black lines correspond to vorticity cuts (not shown here). (f) A zoom on a positive
vorticity region in the Re = 105 case.
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This work makes use of the FreeFEM finite-element library [3].
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