

EFFECTS OF VISCOSITY ON WATER WAVES

Séminaire doctoral du LAMFA - Université Picardie Jules Verne

Alan Riquier, joint work with Emmanuel Dormy

May 22, 2024

Free-surface Navier-Stokes equation

$$\partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla p = \frac{1}{\text{Re}} \Delta \boldsymbol{u} + \boldsymbol{y}$$
 $\nabla \cdot \boldsymbol{u} = 0$

with stress-free boundary conditions on the interface $\Gamma_s(t)$,

$$p\boldsymbol{n} - \frac{2}{\operatorname{Re}} \Big[\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^t \Big] \cdot \boldsymbol{n} = 0$$

and Navier conditions at the bottom Γ_b ,

$$\boldsymbol{u} \cdot \boldsymbol{n} = 0$$

 $\cdot \left[\nabla \boldsymbol{u} + \left(\nabla \boldsymbol{u} \right)^t \right] \cdot \boldsymbol{n} = 0$

Function space

$$\mathbf{H}_{\Gamma_b}^1(\Omega_t) = \left\{ \boldsymbol{v} \in \left(H^1(\Omega_t)\right)^2 : \boldsymbol{v} \cdot \boldsymbol{n} = 0 \text{ on } \Gamma_b \right\}$$

We do not assume the incompressibility, $\nabla \cdot u = 0$, directly in the function space as it would not work in finite element.

Find $u \in \mathcal{C}^1([0,T);\mathbf{H}^1_{\Gamma_h}(\Omega_t))$ and $p \in L^\infty([0,T), L^2(\Omega_t))$ such that

$$\int_{\Omega_t} \boldsymbol{v} \cdot \partial_t \boldsymbol{u} + \boldsymbol{v} \cdot (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \frac{2}{\text{Re}} \mathbb{S}(\boldsymbol{v}) : \mathbb{S}(\boldsymbol{u}) - p \nabla \cdot \boldsymbol{v} + q \nabla \cdot \boldsymbol{u} - \boldsymbol{v} \cdot \boldsymbol{g} = 0$$

for all $\boldsymbol{v} \in \mathbf{H}^{1}_{\Gamma_{b}}(\Omega_{t})$ and $q \in L^{2}(\Omega_{t})$, at all time $t \in (0,T)$.

Finite Element

We use FreeFem (c++ finite element library, 📑 Hecht, 2012) for

- mesh generation and advection
- matrices generation
- Multi-threading using a PETSc interface

Initial mesh with $4\,000$ points on the interface, leading to $\approx 200\,000$ triangles, $\approx 10^6$ degrees of freedom.

Mesh advection

Let w the mesh velocity. It is computed at each time step solving the following problem numerically

$$egin{array}{rcl} \Delta oldsymbol{w} &=& 0 & ext{in } \Omega_t \ oldsymbol{w} &=& oldsymbol{u} & ext{on } \Gamma_{s,t} \ oldsymbol{w} &=& 0 & ext{on } \Gamma_b \end{array}$$

Hence, points on the interface $\Gamma_s(t)$ are advected in a lagrangian manner.

This is called the Arbitrary Lagrangian-Eulerian (ALE) method.

Results with $Re = 10^6$

Mesh at $\operatorname{Re} = 10^6$

Increasing the Reynolds number Re

Time evolution of the maximum curvature

where $R_C = \kappa^{-1}$ is the curvature radius.

Energy dissipation Local equation

If we multiply Navier-Stokes by \boldsymbol{u} , we easily get a local equation of the evolution of the kinetic energy

$$\partial_t \left(\frac{\boldsymbol{u}^2}{2} \right) = \boldsymbol{g} \cdot \boldsymbol{u} - \boldsymbol{u} \cdot \nabla p + \frac{1}{\mathrm{Re}} \Big[\nabla \cdot (\boldsymbol{u}^\perp \omega) - \omega^2 \Big]$$

where $\boldsymbol{u}^{\perp} = [-u_y, u_x]$ and $\omega = \nabla^{\perp} \cdot \boldsymbol{u}$ is the vorticity.

Viscous dissipation

Viscous dissipation

Viscous dissipation

Non-convergence of the Navier-Stokes solution

Thank you!