EFFECTS OF VISCOSITY ON (BREAKING) WATER WAVES

19^{èmes} Journées de l'Hydrodynamique – Nantes 2024

Alan Riquier Département de Mathématiques et Applications École Normale Supérieure - PSL, Paris

Joint work with Emmanuel Dormy (DMA - ENS PSL)

November 26, 2024

Assumptions in Water Waves

Assumptions in Water Waves

Numerical method

Navier-Stokes Lagrangian advection Finite Element Methods

Viscous Water Waves

Nondimensionalization

Nondimensional quantities are defined as follows

$$egin{aligned} & m{x} o h_0 m{x} \ & m{u} o \sqrt{gh_0} \cdot m{u} \ & p o
ho gh_0 \cdot p \end{aligned}$$

This allows to define the **Reynolds number** *Re*,

$$Re = \frac{\rho h_0 \sqrt{g h_0}}{\mu}$$

Viscous Water Waves

Navier-Stokes equation

Incompressible, non-dimensional, Navier-Stokes equation in $\Omega(t)$:

$$\begin{cases} \partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} &= -\nabla p + \frac{1}{Re} \Delta \boldsymbol{u} + \boldsymbol{g} \\ \nabla \cdot \boldsymbol{u} &= 0 \end{cases}$$

Navier boundary conditions on Γ_b ,

$$oldsymbol{u}\cdotoldsymbol{n}=0$$
 ; $oldsymbol{t}\cdot[
ablaoldsymbol{u}+(
ablaoldsymbol{u})^t]\cdotoldsymbol{n}=0$

Stress-free boundary condition on $\Gamma_i(t)$,

$$p\boldsymbol{n} - \frac{1}{Re} \cdot \left[\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^t \right] \cdot \boldsymbol{n} = 0$$

Interface advection

Lagrangian scheme

Interface is a parametrised curve $\gamma(s,t)\in \mathbb{R}^2$ whose evolution is given by

$$\frac{\partial \gamma}{\partial t}(s,t) = \boldsymbol{u}\Big(t,\gamma(s,t)\Big)$$

i.e. points on the interface have the same velocity as the fluid particles.

Initial conditions

Theory of linear waves

Linear wave of (small) amplitude *a*,

$$\begin{split} \gamma_0(t,x) &= h_0 + a \cos(kx - \omega t) \quad \text{with} \quad \omega = \sqrt{gk \tanh(kh_0)} \\ \phi_0(t,x,y) &= \frac{a\omega}{k} \frac{\cosh(ky)}{\sinh(kh_0)} \cdot \sin(kx - \omega t) + \mathcal{O}(ka) \end{split}$$

The small amplitude velocity is then

$$\boldsymbol{u}_0(t,x,y) = \nabla \phi_0 = \frac{a\omega}{\sinh(kh_0)} \cdot \begin{bmatrix} \cosh(ky)\cos(kx-\omega t)\\ \sinh(ky)\sin(kx-\omega t) \end{bmatrix}$$

Initial conditions

Theory of linear waves

Linear wave of (small) amplitude *a*,

$$\begin{split} \gamma_0(t,x) &= h_0 + a \cos(kx - \omega t) \quad \text{with} \quad \omega = \sqrt{gk \tanh(kh_0)} \\ \phi_0(t,x,y) &= \frac{a\omega}{k} \frac{\cosh(ky)}{\sinh(kh_0)} \cdot \sin(kx - \omega t) + \mathcal{O}(ka) \end{split}$$

The finite amplitude velocity is then

$$\boldsymbol{u}_0(t,x,y) = \nabla \phi_0 = \frac{a\omega}{\sinh(kh_0)} \cdot \begin{bmatrix} \cosh(kh_0)\cos(kx-\omega t) \\ \sinh(kh_0)\sin(kx-\omega t) \end{bmatrix}$$

Finite Elements discretization

We use the FreeFem finite elements library 📑 Hecht (2012) for

- Mesh generation and handling
- Matrices computations and handling
- Interface with PETSc

 $4\,000$ points on the interface, initially $\approx 200\,000$ triangles, $\approx 10^6$ degrees of freedom.

Mesh advection scheme

Let w the velocity of the mesh. At each time step, we numerically solve the problem

 $\left\{ \begin{array}{rrrr} \Delta \boldsymbol{w} &=& 0 & \mbox{in } \Omega(t) \\ \boldsymbol{w} &=& \boldsymbol{u} & \mbox{on } \Gamma_i(t) \\ \boldsymbol{w} &=& 0 & \mbox{on } \Gamma_b \end{array} \right.$

And each point of the mesh is advected with velocity w. Points on the interface are thus purely Lagrangian!

This is called the Arbitrary Lagrangian Eulerian method (ALE).

Viscosity and Breaking Waves

Flat Topography Navier-Stokes ↔ Euler

If the video does not play, click here.

Mesh at $Re = 10^{6}$

 $Re = +\infty$ simulations (i.e. Euler solution) computed with the numerical methods of Dormy & Lacave (2024).

 $Re = +\infty$ simulations (i.e. Euler solution) computed with the numerical methods of Dormy & Lacave (2024).

 $Re = +\infty$ simulations (i.e. Euler solution) computed with the numerical methods of Dormy & Lacave (2024).

 $Re = +\infty$ simulations (i.e. Euler solution) computed with the numerical methods of Dormy & Lacave (2024).

 $Re = +\infty$ simulations (i.e. Euler solution) computed with the numerical methods of Dormy & Lacave (2024).

Where does a fluid dissipates energy?

Link with vorticity

The kinetic energy equation can be obtained multiplying Navier-Stokes by u_i ,

$$\frac{\mathrm{D}}{\mathrm{D}t}\left(\frac{\boldsymbol{u}^2}{2}\right) = \boldsymbol{g}\cdot\boldsymbol{u} - \boldsymbol{u}\cdot\nabla p - \frac{1}{Re}\Big[\nabla\cdot\left(\boldsymbol{u}\times\omega\right) + \omega^2\Big]$$

where $\omega = \nabla \times \boldsymbol{u}$ is the vorticity.

This shows that the fluid **dissipates energy** where $\omega \neq 0$!

Viscous dissipation

Viscous dissipation

Viscosity and (Breaking) Water Waves

Viscous dissipation

Is irrotationality well motivated?

Non-flat topography Navier-Stokes ↔ Euler

Rectangular step

No slip condition on the bottom,

$$\boldsymbol{u} = 0$$
 on Γ_b

Vortices at $Re = 10^5$

If the video does not play, click here.

Comparing the interfaces

If the video does not play, click here.

Streamlines $Re = 10^4$

What about a smooth edge?

What about a smooth edge?

What about a smooth edge?

Conclusion Can we assume that the flow is inviscid and irrotational?

		Inviscid & Irrotational
Shallow Water	with flat topography with curved topography	√ be cautious!
Deep Water	······	not discussed

Merci !

Viscosity and Breaking Waves: A. R. & E. Dormy (2024) Numerical study of a viscous breaking water wave and the limit of vanishing viscosity, J. Fluid Mech. (Rapids) 984, R5

Irrotationality: A. R. & E. Dormy (2024) Irrotationality of Water Waves and Topography, Submitted. arXiv:2411.09291 [physics.flu-dyn]