Géométrie Différentielle, TD 13 du 7 mai 2020

1. Exercices

NB: Des indications sont proposées plus bas.

-	A	1.	
1	Questions	divarcac	
	VALICATIONS	UIVELSES	

Soient M et N des variétés connexes compactes orientées de dimension $n \ge 1$ et $f: M \to N$ une application lisse.

- 1– Montrer que si f n'est pas surjective alors $\deg f = 0$ (il s'agit de détailler la démonstration du théorème 21.4 vue en cours dans ce cas précis). Que dire de la réciproque?
- 2– Le degré de f est il nécessairement dans \mathbb{Z} ?
- 3- Soit $i \in \mathbb{Z}$. Construire un champ de vecteurs sur \mathbb{R}^2 s'annulant en l'origine et seulement en l'origine, et d'indice i en l'origine.
- 4- On considère \mathbb{S}^2 comme réunion de \mathbb{R}^2 et du point à l'infini ∞ . Considérons un champ de vecteurs sur \mathbb{S}^2 qui ne s'annule pas sur $\mathbb{R}^2 \setminus \{0\}$, et qui est d'indice i en 0. Quel est son indice en ∞ ?

Solution:

- 1– Si f n'est pas surjective, alors le complémentaire de son image est un ouvert non vide $V\subseteq N$. On se donne $\alpha\in\Omega^nN$ à support dans V tel $\int_N\alpha=1$. Le degré de f est alors donné par deg $f=\int_Mf^*\alpha=0$ car $f^*\alpha=0$.
 - La réciproque est fausse. Se donner une fonction $f: S^1 \to S^1$ telle que : si x fait un tour de S^1 , f(x) fait une fois le tour de S^1 dans le sens positif puis une fois le tour de S^1 dans le sens négatif. f est homotope à une application constante donc de degré nul.
- 2- Oui d'après le théorème 21.4 du cours.
- 3- On peut prendre par exemple $X(z) = z^i$ en identifiant \mathbb{R}^2 à \mathbb{C} .
- 4– On peut appliquer le théorème de Poincaré-Hopf. On a : ind $_0$ + ind $_\infty = \chi(\mathbb{S}^2) = 2$. Ainsi, l'indice en ∞ vaut 2-i.

2. Degré d'une application	
2. Degre a une application	

1- Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une application C^{∞} qui coïncide avec l'identité hors d'un compact.

- —Montrer que f se prolonge en une application C^{∞} $\widetilde{f}: \mathbb{S}^n \to \mathbb{S}^n$.
- —Calculer $\deg(f)$.
- —Montrer que f est surjective.
- 2- Soient $P, Q \in \mathbb{C}[X]$ des polynômes, avec Q non nul.
 - —Montrer que P/Q induit une application C^{∞} $f: \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$.
 - —Calculer $\deg(f)$.

Solution:

1– Comme f coïncide avec l'identité hors d'un compact, f se prolonge en $\widetilde{f}: \mathbb{S}^n \to \mathbb{S}^n$ en posant $\widetilde{f}(\infty) = \infty$. \widetilde{f} est bien C^{∞} car f et l'identité sont C^{∞} .

Soit K ce compact, et soit x une valeur régulière de \widetilde{f} dans l'ouvert complémentaire de $K \cup f(K)$. Alors x possède un et un unique antécédent par \widetilde{f} : lui-même. De plus, $d_x\widetilde{f} = \operatorname{Id}$ préserve l'orientation. Ceci montre que $\operatorname{deg}(\widetilde{f}) = 1$.

Alors, si f nétait pas surjective, soit $x \in \mathbb{R}^n$ n'appartenant pas à son image. C'est une valeur régulière de \widetilde{f} sans antécédents par \widetilde{f} . Ceci montre $\deg(\widetilde{f}) = 0$: c'est une contradiction.

2- Ecrivons $P = \sum_{k=0}^{m} a_k X^k$ et $Q = \sum_{k=0}^{n} b_k X^k$, où ces deux polynômes sont sans facteurs communs, et où $a_m, b_n \neq 0$. On prolonge la fonction P/Q qui est a priori définie hors des zéros de Q et du point à l'infini [1:0] par la valeur [1:0] en les zéros de Q. On la prolonge également en [1:0] par la valeur [0:1] si m < n, la valeur a_m/b_n si m = n, et la valeur [1:0] si m > n.

On vérifie que cette fonction est C^{∞} en utilisant la carte $z \mapsto 1/z$ au voisinage de [1:0]. En changeant de carte au but, la nouvelle expression de P/Q est Q/P, qui est bien C^{∞} et nulle en les zéros de Q. En changeant de carte à la source, la nouvelle expression de P/Q est P(1/z)/Q(1/z), qui est C^{∞} et prend en zéro la bonne valeur si $m \leq n$. Le dernier cas se traite de même, en changeant de carte à la source et au but

La fonction P/Q est holomorphe, donc préserve l'orientation. Le degré de P/Q est donc le cardinal de l'image réciproque d'un élément général λ de \mathbb{C} . Soit donc $\lambda \in \mathbb{C}$ suffisament général (par exemple tel que $P([1:0]) \neq \lambda$, ...). On cherche à compter le nombre de racines de $P(x) - \lambda Q(x)$. Si λ n'est pas de la forme P(z)/Q(z) pour un z tel que P(z)Q'(z) = Q(z)P'(z), ce polynôme est à racines simples, et a donc exactement $\max(m, n)$ racines. Ainsi, $\deg(f) = \max(m, n)$.

3	. App	lications	de l	la s	phère	dans	elle-même

1– Soit $f: \mathbb{S}^n \to \mathbb{S}^n$ une application C^{∞} dont le degré n'est pas $(-1)^{n+1}$. Montrer que f admet un point fixe.

- 2- Soit $f: \mathbb{S}^n \to \mathbb{S}^n$ une application C^{∞} de degré impair. Montrer qu'il existe $x \in \mathbb{S}^n$ tel que f(-x) = -f(x).
- 3- Soit $x \in \mathbb{S}^n$ et $U \subset \mathbb{S}^n$ un ouvert non vide. Montrer qu'il existe un ouvert $V \subset U$ et une application $C^{\infty} f : \mathbb{S}^n \to \mathbb{S}^n$ tels que f réalise un difféomorphisme entre V et $\mathbb{S}^n \setminus \{x\}$, et que $f(\mathbb{S}^n \setminus V) = \{x\}$.
- 4- Soit $d \in \mathbb{Z}$. Déduire de la question précédente qu'il existe une application C^{∞} de degré d de la sphère dans elle-même.

Solution:

- 1– Soit $f: \mathbb{S}^n \to \mathbb{S}^n$ une application C^∞ sans point fixe. L'application $(t,x) \mapsto \frac{-tx + (1-t)f(x)}{||-tx + (1-t)f(x)||}$ est alors une homotopie entre f et l'antipodie. Comme l'antipodie a degré $(-1)^{n+1}$, on a $\deg(f) = (-1)^{n+1}$.
- 2- Soit $f: \mathbb{S}^n \to \mathbb{S}^n$ une application C^{∞} telle qu'il n'existe pas $x \in \mathbb{S}^n$ tel que f(-x) = -f(x). Alors $(t,x) \mapsto \frac{t/2f(-x)+(1-t/2)f(x)}{\|t/2f(-x)+(1-t/2)f(x)\|}$ est une homotopie entre f et le normalisé de $x \mapsto \frac{f(x)+f(-x)}{2}$. Cette dernière application a toutes ses fibres de cardinal pair. En particulier, son degré pair. Ceci montre que $\deg(f)$ est pair.
- 3- Quitte à restreindre U, on peut supposer que U est difféomorphe à \mathbb{R}^n . On choisit alors $V = B(0,1) \subset \mathbb{R}^n$. D'autre part, on écrit $\mathbb{S}^n = \mathbb{R}^n \cup \{\infty\}$. Il est alors facile de construire $f: U = \mathbb{R}^n \to \mathbb{R}^n \cup \{\infty\}$ à la main en la choisissant de la forme $y \mapsto \rho(||y||^2)$.
- 4- Supposons $d \ge 0$. On choisit un point $x \in \mathbb{S}^n$ et d ouverts disjoints U_1, \ldots, U_d ; on considère des applications f_1, \ldots, f_d comme dans la question précédente. Comme l'image réciproque d'un point général de \mathbb{S}^n par f_i a un antécédent, $\deg(f_i)$ vaut 1 ou -1. Quitte à composer au but par une symétrie, on peut supposer que $\deg(f_i) = 1$. Soit f l'application C^{∞} qui coïncide avec f_i sur U_i et qui vaut x ailleurs. Par construction, l'image réciproque d'un point $\neq x$ est constituée de d points, et toutes les différentielles préservent l'orientation. Ainsi, $\deg(f) = d$.
 - Si d < 0, on compose au but une application de degré -d avec une symétrie, pour obtenir une application de degré d.

4. Degré et homotopie

Soit $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$ le tore de dimension 2. On considère les applications $f,g:\mathbb{T}^2 \to \mathbb{T}^2$ définies par f(w,z)=(w,z) et $g(w,z)=(z,\bar{w})$. Montrer que f et g ont même degré, mais ne sont pas homotopes. On pourra considérer les morphismes induits sur le premier groupe de cohomologie.

Solution:

Soit $d\theta_1 \wedge d\theta_2$ la forme volume sur le tore : $d\theta_1$ est la forme volume sur la sphère de première coordonnée, $d\theta_1$ est la forme volume sur la sphère de deuxième coordonnée. Alors $f^*(d\theta_1 \wedge d\theta_2) = d\theta_1 \wedge d\theta_2$, car f est l'identité sur le tore. Pour x = (w, z), on note $h_1(x)$ et $h_2(x)$ les vecteurs unitaires tangents positivement à la première sphère (resp. à la deuxième) en x. Le couple $(h_1(x), h_2(x))$ forme une base de $T_x \mathbb{T}^2 = T_{(w,z)} \mathbb{T}^2$ et

$$g^*(d\theta_1 \wedge d\theta_2)(x)[h_1(x), h_2(x)] = d\theta_1 \wedge d\theta_2(g(x))[T_{(w,z)}h_1(x), T_{(w,z)}h_2(x)]$$

$$= d\theta_1 \wedge d\theta_2(g(x))[-h_2(g(x)), h_1(g(x))]$$

$$= d\theta_1 \wedge d\theta_2(g(x))[h_1(g(x)), h_2(g(x))]$$

$$= 1 = (d\theta_1 \wedge d\theta_2)(x)[h_1(x), h_2(x)]$$

Donc $g^*(d\theta_1 \wedge d\theta_2) = d\theta_1 \wedge d\theta_2$. En particulier, f et g sont de degré 1.

Mais on remarque de la même manière que $g^*(d\theta_1) = -d\theta_2$ et $g^*(d\theta_2) = d\theta_1$ (on aurait pu d'ailleurs d'abord montrer ça pour ensuite calculer $g^*(d\theta_1 \wedge d\theta_2)$). En particulier

$$[g^*][d\theta_1] = -[d\theta_2] \neq [d\theta_1] = [f^*][d\theta_1]$$

puisque $([d\theta_1], [d\theta_2])$ est une base de $H^1(\mathbb{T}^2)$. On a montré que $[g^*] \neq [f^*]$ et donc f et g ne sont pas homotopes.

5. Théorème de Brouwer

Soit $n \geqslant 1$. Le but de cet exercice est de montrer le théorème de Brouwer : toute application continue $f: \overline{\mathbb{B}^n} \to \overline{\mathbb{B}^n}$ admet un point fixe.

- 1– Soit $f: \overline{\mathbb{B}^n} \to \mathbb{S}^{n-1}$ une application continue. Montrer que $\deg(f|_{\mathbb{S}^{n-1}}) = 0$.
- 2– En déduire qu'il n'existe pas d'application continue $f: \overline{\mathbb{B}^n} \to \mathbb{S}^{n-1}$ pour laquelle $f|_{\mathbb{S}^{n-1}} = \operatorname{Id}|_{\mathbb{S}^{n-1}}$.
- 3– Conclure que toute application continue $f: \overline{\mathbb{B}^n} \to \overline{\mathbb{B}^n}$ admet un point fixe.

Solution:

- 1- Posons $h: [0,1] \times \mathbb{S}^{n-1} \to \mathbb{S}^{n-1}$, $(t,x) \mapsto f(tx)$. C'est une homotopie entre l'application constante $h_0 = f(0)$ et l'application $f_{|\mathbb{S}^{n-1}}$. Ainsi $\deg(f_{|\mathbb{S}^{n-1}}) = \deg(h_0) = 0$.
- 2- Une telle application vérifierait d'une part $\deg(f_{|\mathbb{S}^{n-1}}) = 0$ et d'autre part $\deg(f_{|\mathbb{S}^{n-1}}) = \deg(\operatorname{Id}|_{\mathbb{S}^{n-1}}) = 1$, ce qui est impossible.
- 3– Supposons qu'il existe $f: \overline{B^n} \to \overline{B^n}$ C^{∞} sans point fixe. On construit alors $g: \overline{B^n} \to \mathbb{S}^{n-1}$ en prenant pour g(x) le point d'intersection entre \mathbb{S}^{n-1} et la demi-droite d'origine f(x) passant par x. Cette application est bien C^{∞} (le vérifier) et vérifie $g|_{\mathbb{S}^{n-1}} = \operatorname{Id}|_{\mathbb{S}^{n-1}}$, ce qui est impossible d'après la question précédente. On a montré par l'absurde le résultat désiré.

6. Invariant de Hopf

- 1– Soit $f: \mathbb{S}^3 \to \mathbb{S}^2$ une application C^{∞} et $\alpha \in \Omega^2(\mathbb{S}^2)$. Montrer que la forme $f^*\alpha$ est exacte.
- 2- Soit $\alpha \in \Omega^2(\mathbb{S}^2)$ et $\beta \in \Omega^1(\mathbb{S}^3)$ une primitive de $f^*\alpha$. Montrer que l'intégrale $\int_{\mathbb{S}^3} \beta \wedge f^*\alpha$ ne dépend pas du choix de β .
- 3– Montrer que cette intégrale est nulle si α est exacte.
- 4– Soit $\alpha \in \Omega^2(\mathbb{S}^2)$ telle que $\int_{\mathbb{S}^2} \alpha = 1$. Montrer que $\int_{\mathbb{S}^3} \beta \wedge f^* \alpha$ ne dépend pas non plus du choix de α satisfaisant à cette condition.
- 5- Ce qui précède montre que cette intégrale ne dépend que de f. On la note H(f) et on l'appelle l'invariant de Hopf de f. Si $\varphi : \mathbb{S}^3 \to \mathbb{S}^3$ est une application lisse, montrer que $H(f \circ \varphi) = \deg(\varphi)H(f)$.
- 6- Si $\psi: \mathbb{S}^2 \to \mathbb{S}^2$ est une application lisse, montrer que $H(\psi \circ f) = \deg(\psi)^2 H(f)$.
- 7- Montrer que H(f) = 0 si f n'est pas surjective.
- 8- Montrer que si f_1 et f_2 sont homotopes, $H(f_1) = H(f_2)$.

Solution:

- 1- On a $d(f^*\alpha) = f^*(d\alpha) = 0$. Ainsi, $f^*\alpha$ est fermée sur \mathbb{S}^3 . Mais $H^2(\mathbb{S}^3) = 0$. Elle est donc exacte. Il existe donc β de degré 1 telle que $f^*\alpha = d\beta$.
- 2– Soit β' une autre forme différentielle telle que $d\beta' = d\beta = f^*\alpha$. Alors $\beta \beta'$ est fermée. C'est une forme différentielle de degré 1. Comme $H^1(\mathbb{S}^3) = 0$, elle est donc exacte : on peut écrire $\beta' = \beta + du$. Alors

$$\int \beta' \wedge f^* \alpha = \int \beta' \wedge d\beta' = \int \beta \wedge d\beta + \int du \wedge d\beta.$$

Il faut donc vérifier que $\int du \wedge d\beta = 0$. Mais $du \wedge d\beta = d(u \wedge d\beta)$. Ainsi,

$$\int_{\mathbb{S}^3} du \wedge d\beta = \int_{\mathbb{S}^3} d(u \wedge d\beta) = \int_{\partial \mathbb{S}^3} u \wedge d\beta = 0,$$

puisque $\partial \mathbb{S}^3 = \emptyset$.

3– Si $\alpha = d\gamma$ avec $\gamma \in \Omega^1(\mathbb{S}^2)$, on peut prendre $\beta = f^*\gamma$. On a alors

$$\beta \wedge f^* \alpha = f^* \gamma \wedge f^* \alpha = f^* (\gamma \wedge \alpha) = 0$$

car $\gamma \wedge \alpha$ est une forme de degré 3 sur \mathbb{S}^2 .

4- Soit α' une autre forme volume sur \mathbb{S}^2 avec $\int \alpha' = 1$. Alors $\int (\alpha' - \alpha) = 0$. Mais, par dualité de Poincaré, l'application "intégrale" est un isomorphisme entre H^n et \mathbb{R} , donc $\alpha' - \alpha$ est exacte : il existe une forme différentielle γ telle que $\alpha' = \alpha + d\gamma$. Soit β telle que $f^*\alpha = d\beta$. Alors $f^*\alpha' = d\beta + d(f^*\gamma)$. Par conséquent,

$$\int (\beta + f^* \gamma) \wedge f^* (\alpha + d\gamma) = \int (\beta) \wedge f^* \alpha) + \int f^* \gamma \wedge f^* \alpha + \int f^* \gamma \wedge d(f^* \gamma) + \int \beta \wedge d(f^* \gamma).$$

De plus,

$$\int f^* \gamma \wedge f^* \alpha = \int f^* (\gamma \wedge \alpha).$$

Comme $\gamma \wedge \alpha = 0$ car c'est une forme différentielle de degré 3 sur \mathbb{S}^2 , cette intégrale est nulle. De même, $f * \gamma \wedge d(f^*\gamma) = f^*(\gamma \wedge d\gamma) = 0$.

Finalement, $d(\beta \wedge f^*\gamma) = d\beta \wedge f^*\gamma - \beta \wedge d(f^*\gamma)$. Comme $d\beta \wedge f^*\gamma = 0$, comme ci-dessus, on obtient

$$\int \beta \wedge d(f^*\gamma) = -\int d(\beta \wedge f^*\gamma) = \int_{\partial \mathbb{S}^3} \beta \wedge f^*\gamma = 0.$$

Cela montre le résultat désiré.

5– Soit $\alpha \in \Omega^2(\mathbb{S}^2)$ telle que $\int_{\mathbb{S}^2} \alpha = 1$. Soit β une primitive de $f^*\alpha$. Alors $\beta' = \varphi^*\beta$ est une primitive de $\varphi^*f^*\alpha = (f \circ \varphi)^*\alpha$. On a donc

$$H(f \circ \varphi) = \int_{\mathbb{S}^3} \beta' \wedge (f \circ \varphi)^* \alpha$$
$$= \int_{\mathbb{S}^3} \varphi^* \beta \wedge \varphi^* f^* \alpha$$
$$= \int_{\mathbb{S}^3} \varphi^* (\beta \wedge f^* \alpha)$$
$$= \deg(\varphi) \int_{\mathbb{S}^3} \beta \wedge f^* \alpha$$
$$= \deg(\varphi) H(f).$$

6- Soit $\alpha \in \Omega^2(\mathbb{S}^2)$ telle que $\int_{\mathbb{S}^2} \alpha = 1$. Alors $\psi^* \alpha \in \Omega^2(\mathbb{S}^2)$ et $\int_{\mathbb{S}^2} \psi^* \alpha = \deg(\psi)$. Donc $\alpha' = \psi^* \alpha / \deg(\psi)$ vérifie $\int_{\mathbb{S}^2} \alpha' = 1$. Soit β une primitive de $f^* \psi^* \alpha$. Alors $\beta' = \beta / \deg(\psi)$ est une primitive de $f^* \alpha'$. On a donc

$$H(\psi \circ f) = \int_{\mathbb{S}^3} \beta \wedge (\psi \circ f)^* \alpha$$
$$= \int_{\mathbb{S}^3} \beta \wedge f^* \psi^* \alpha$$
$$= \deg(\psi)^2 \int_{\mathbb{S}^3} \beta' \wedge f^* \alpha'$$
$$= \deg(\psi)^2 H(f).$$

- 7- Supposons f non surjective. Comme $f(\mathbb{S}^3)$ est compact (image d'un compact), $f(\mathbb{S}^3)$ est fermé dans \mathbb{S}^2 et en particulier $\mathbb{S}^2 \setminus f(\mathbb{S}^3)$ est ouvert non vide. Soit $\alpha \in \Omega^2(\mathbb{S}^2)$ à support inclus dans $\mathbb{S}^2 \setminus f(\mathbb{S}^3)$ telle que $\int_{\mathbb{S}^2} \alpha = 1$. Alors $f^*\alpha = 0$ et donc H(f) = 0.
- 8- Si f_1 et f_2 sont homotopes, elles sont aussi C^{∞} -homotopes, de sorte qu'il existe $F: \mathbb{S}^3 \times \mathbb{R} \to \mathbb{S}^2$ C^{∞} coïncidant avec f_1 pour $t \leq 0$ et avec f_2 pour $t \geq 1$. Soit α

une forme volume d'intégrale 1 sur \mathbb{S}^2 . Comme $\mathbb{S}^3 \times \mathbb{R}$ se rétracte par déformation sur \mathbb{S}^3 , $H^2(\mathbb{S}^3 \times \mathbb{R}) = 0$, de sorte que $F^*\alpha$ est exacte : $F^*\alpha = d\beta$. Appliquons alors le théorème de Stokes à la variété à bord $\mathbb{S}^3 \times [0,1]$ et à la forme différentielle $\beta \wedge d\beta$. On prend garde à ce que la sphère $\mathbb{S}^3 \times \{0\}$ est orientée négativement et à ce que la sphère $\mathbb{S}^3 \times \{1\}$ est orientée positivement. Il vient :

$$H(f_{2}) - H(f_{1}) = \int_{\mathbb{S}^{3} \times \{1\}} \beta \wedge F^{*} \alpha + \int_{\mathbb{S}^{3} \times \{0\}} \beta \wedge F^{*} \alpha$$

$$= \int_{\mathbb{S}^{3} \times \{1\}} \beta \wedge d\beta + \int_{\mathbb{S}^{3} \times \{0\}} \beta \wedge d\beta$$

$$= \int_{\mathbb{S}^{3} \times [0,1]} d\beta \wedge d\beta$$

$$= \int_{\mathbb{S}^{3} \times [0,1]} F^{*}(\alpha \wedge \alpha)$$

$$= 0.$$

car $\alpha \wedge \alpha$ est nulle comme forme différentielle pour raisons de degrés. Cela conclut.

2. Indications

Exercice 1:

- 1.1 : Montrer que la réciproque est fausse en construisant une application surjective $f: \mathbb{S}^1 \to \mathbb{S}^1$ homotope à une application constante.
- 1.3 : Commencer par construire une application $f: \mathbb{S}^1 \to \mathbb{S}^1$ de degré i puis la prolonger en un champ de vecteur sur \mathbb{R}^2 dont l'origine est le seul point d'annulation.
- 1.4 : Formule de Poincaré-Hopf.

Exercice 2:

- 2.1: Montrer que $\deg \widetilde{f}=1$ en tirant en arrière une $n\text{-}{\rm forme}$ différentielle supportée par un voisinage du point à l'infini.
- 2.2 : On identifie $P^1(\mathbb{C})$ à $\mathbb{C} \cup \{\infty\}$ via l'application $\varphi : \mathbb{C} \cup \{\infty\} \to P^1(\mathbb{C})$ définie par $\varphi(z) = [z:1]$ si $z \in \mathbb{C}$, et $\varphi(\infty) = [1:0]$. Le prolongement de P/Q s'obtient naturellement en définissant sa valeur aux zéros de Q et en ∞ comme des limites. Calculer alors le degré via le théorème 21.4 du cours.

Exercice 3:

- 3.1: Raisonner par contraposée en montrant que si f n'a pas de point fixe, alors f est homotope à l'antipodie.
- 3.2 : Raisonner par contraposée en montrant que s'il n'y a pas de point x tel que f(-x) = -f(x) alors f est homotope au normalisé de $x \mapsto \frac{1}{2}(f(x) + f(-x))$.
- 3.3 : On peut identifier \mathbb{S}^n à $\mathbb{R}^n \cup \{\infty\}$ et supposer $V = B(0, \varepsilon)$.
- 3.4: Fixer un point x et considérer d-ouverts disjoints U_1, \ldots, U_d munis d'applications f_1, \ldots, f_d comme dans 3.3.

Exercice 4 : Soit $d\theta_1$, $d\theta_2$ les formes volumes canoniques sur les cercles S^1 décomposant le tore. Montrer que $g^*d\theta_1 = -d\theta_2$ et $g^*d\theta_2 = d\theta_1$. Vérifier aussi que $[d\theta_1]$ et $[\theta_2]$ forment une base de $H^1(\mathbb{T}^2)$.

Exercice 5:

- 5.1 : Montrer que $f_{\mathbb{S}^{n-1}}$ est homotope à une application constante.
- 5.3 : Raisonner par l'absurde et considérer l'application qui à x associe le point d'intersection entre \mathbb{S}^{n-1} et la demi-droite d'origine f(x) passant par x.

Exercice 6:

 $6.1: H^2(\mathbb{S}^3) = 0.$

- $6.2: H^1(\mathbb{S}^3) = 0.$
- 6.3 : Dans ce cas, exprimer $\beta \wedge f^*\alpha$ comme un tiré en arrière d'une 3-forme sur \mathbb{S}^2 (pour un bon choix de β).
- 6.4 : Soit α' une autre forme volume sur \mathbb{S}^2 avec $\int \alpha' = 1$. Vérifier qu'il existe une forme différentielle γ telle que $\alpha' = \alpha + \mathrm{d}\gamma$. Pour la suite des calculs, on pourra observer que $\mathrm{d}(\beta \wedge f^*\gamma) = \mathrm{d}\beta \wedge f^*\gamma \beta \wedge \mathrm{d}(f^*\gamma)$ et que $\mathrm{d}\beta \wedge f^*\gamma = f^*(\alpha \wedge \gamma) = 0$.
- 6.6 : Un facteur deg ψ apparaît pour normaliser α , un autre pour normaliser β .
- 6.7: Bien choisir α .
- 6.8 : Par approximation C^{∞} des homotopies, il existe $F: \mathbb{S}^3 \times \mathbb{R} \to \mathbb{S}^2$ C^{∞} coïncidant avec f_1 pour $t \leq 0$ et avec f_2 pour $t \geq 1$. Vérifier ensuite que $F^*\alpha$ est exacte, donc de la forme $F^*\alpha = d\beta$. Exprimer alors $H(f_2) H(f_1)$ comme l'intégrale de $\beta \wedge F^*\alpha$ sur le bord de $\mathbb{S}^3 \times [0,1]$. Conclure avec la formule de Stokes.