Géométrie Différentielle, TD 4 du 27 Février 2020

1. Questions diverses - A FAIRE AVANT LE TD

- 1– Montrer qu'un groupe de Lie connexe est engendré par tout voisinage de son élément neutre.
- 2– Soit G un groupe de Lie, K un sous groupe compact. Montrer que la projection canonique $\pi: G \to K \backslash G$ est propre.
- 3- Soit G un groupe de Lie, $H \subseteq G$ un sous groupe de Lie. Montrer que si H et $H \setminus G$ sont connexes alors G aussi.
- 4– On définit les groupes

$$U_n(\mathbb{C}) := \{ A \in M_n(\mathbb{C}), A^*A = I_n \}, \quad SU_n(\mathbb{C}) := \{ A \in U_n(\mathbb{C}), \det A = 1 \}$$

où la notation A^* désigne l'image de la matrice tA sous la conjugaison complexe. Montrer que $U_n(\mathbb{C})$ et $SU_n(\mathbb{C})$ sont des groupes de Lie (réels) et que l'espace projectif complexe $\mathbb{P}^n(\mathbb{C})$ est difféomorphe au quotient $SU_{n+1}(\mathbb{C})/U_n(\mathbb{C})^1$.

2. Équation globale d'une sous-variété

Soit N une sous-variété fermée de M.

- 1- Soit $x \in M$. Montrer qu'il existe un voisinage U_x de x dans M et une fonction C^{∞} $F_x: U_x \to \mathbb{R}^+$ telle que $U_x \cap N = F_x^{-1}(0)$.
- 2– Montrer qu'il existe une fonction C^{∞} $F: M \to \mathbb{R}$ telle que $N = F^{-1}(0)$.

3. Transversalité

- 1– Soit $M \subseteq \mathbb{R}^n$ une sous variété de codimension au moins 2, qui ne rencontre pas l'origine. Montrer qu'il existe une droite $D \in \mathbb{P}(\mathbb{R}^n)$ telle que $M \cap D = \emptyset$
- 2- Soit $M \subseteq \mathbb{R}^n$ une hypersurface. Montrer qu'il existe une droite $D \in \mathbb{P}(\mathbb{R}^n)$ telle que pour tout $x \in M \cap D$, on a $T_x M \cap D = \{0\}$. On dit que la droite D et la sous variété M sont transverses.

4. Sous-variétés immergées

Soit $f: M \to N$ une immersion injective entre variétés. Son image S = f(M) est une sous-variété immergée de N. Pour éviter les confusions, on appelle sous-variété plongée une sous-variété au sens usuel, dans cet exercice seulement.

1- Montrer qu'il existe une unique topologie et une structure de variété différentielle sur S telle que $f: M \to S$ soit un difféomorphisme.

^{1.} On montrera notamment que $U_n(\mathbb{C})$ s'identifie à un sous-groupe de Lie de $SU_{n+1}(\mathbb{C})$ pour donner un sens au quotient.

- 2– On considère une action d'un groupe G par difféomorphismes sur une variété M. Montrer que les orbites de G sont des sous-variétés immergées.
- 3- Donner un exemple d'une action d'un groupe G par difféomorphismes sur une variété M telle que les orbites de G ne soient pas toutes des sous-variétés (plongées) de M.
- 4- Montrer que les orbites sont des sous-variétés (plongées) si et seulement si elles sont localement fermées.

5. Exemple de surface modulaire

1- Montrer que le groupe $SL_2(\mathbb{R})$ agit par homographie sur le demi-plan de Poincaré $H:=\{z\in\mathbb{C}\mid \mathrm{Im}\;z>0\}$ via :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \bullet z = \frac{az+b}{cz+d}.$$

- 2– A quelle condition un élément $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ de $SL_2(\mathbb{Z})$ a-t-il un point fixe dans H?
- 3- On considère le sous-groupe $G = \ker f$ de $SL_2(\mathbb{Z})$, où f est le morphisme :

$$\begin{array}{ccc}
SL_2(\mathbb{Z}) & \to & SL_2(\mathbb{Z}/2\mathbb{Z}) \\
\begin{pmatrix} a & b \\ c & d \end{pmatrix} & \mapsto & \begin{pmatrix} \bar{a} & \bar{b} \\ \bar{c} & \bar{d} \end{pmatrix}
\end{array}$$

Montrer que $G \backslash H$ est une variété quotient.

6. Restriction de fonctions C^{∞}

Soit M variété, X une partie de M et $f: X \to \mathbb{R}$ une application. On dit que f est C^{∞} si, pour tout x dans X, il existe un voisinage ouvert U de x dans M et une fonction lisse $g: U \to \mathbb{R}$ telle que f et g coïncident sur $X \cap U$.

- 1- Montrer que cette définition est équivalente à la définition par paramétrisations dans le cas où X est une sous-variété de M.
- 2- Si X est une sous-variété fermée de M, montrer que toute application C^{∞} sur X est restriction d'une application C^{∞} de M dans \mathbb{R} .
- 3- Le point précédent reste-t-il vrai pour une sous-variété quelconque?

7. Hypersurface algébrique

1– Soit P un polynôme homogène de \mathbb{R}^{n+1} tel que $d_xP\neq 0$ pour tout $x\neq 0$. Montrer que

$$H = \{ [x_0 : x_1 : \ldots : x_n] \mid P(x_0, x_1, \ldots, x_n) = 0 \}$$

est une sous-variété de \mathbb{RP}^n .

2- Montrer que pour i, j > 0 et $P = x_0^2 + \dots + x_i^2 - (y_0^2 + \dots + y_j^2)$, H est difféomorphe au quotient de $S^i \times S^j$ par l'action de $\mathbb{Z}/2\mathbb{Z}$ par antipodie sur chacun des facteurs.